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ON A PROBLEM FROM EXTREMAL GRAPH THEORY

ROMAN NEDELA. Banska Bystrica

0 Introduction

We say that a system F, ..., F; of factors of a graph G presents an edge
decomposition of G if every edge of G belongs to exactly one of the factors F,,
...» . Let f(k) be the smallest natural number such that the complete graph
K, is decomposable into k factors with diameter 2. |

Decompositions of complete graphs into factors with a given diameter were
introduced by Bosak, Rosa and Znam in [4]. In [2] Bosak showed that
6k — 52 < f(k) < 6k for k > 2. Later B. Bollobas proved f(k)> 6k —9
for k> 6 in [1]. S. Znam proved f(k) = 6k for sufficiently large k in [7].
This has been improved in [5] by showing that f(k) = 6k for kK > 153. For small
k the unique value exactly known is f(2) = 5. From [4], [2], [1] we have the
following bounds: 12 < f(3) < 13, 15 < f(4) < 24,20 < f(5) < 30,27 < f(6) <
< 36.

In the present paper we prove f(4) > 17, f(5) > 22, f(6) > 28. The problem,
what are the exact values f(3), f(4), f(5), f(6) remains open.

1 Some general results

We summarise some general results here. All graphs considered in our paper
are undirected, without loops and multiple edges. We will use usual notations:
d(x) — the degree of vertex x in a given graph, I'(x) — the neighbourhood of
a vertex x (x¢ I'(x)), e(G) — the number of edges of a graph G.

The basic result of [4] reads as follows:

Theorem 1. If the complete graph K, is decomposable into k factors with
diameters d,, d,, ..., d; then for N > n the complete graph K, is also decompos-
able into k factors with diameters d,, d,, ..., d,.

Denote by S(«) the sum of degrees of the vertices adjacent to a vertex u in
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a given graph G. It is generally known that, if G of order n has diameter 2, then
S(u) = n — 1 for every vertex u of G. However the following stronger result
holds.

Proposition 1. Let F be a graph of order n and of diameter 2. Let u be its
vertex of degree m. Let p, (i = 1, ..., m) be the numbers of the vertices which are
not adjacent to u and have at least i common neighbours with u. Finally, let r
be the number of edges between vertices adjacent to u. Then

Swy=n—-14+p,+...+p, +2r (1.1)

Proof. Let ¢; (i =1, 2, ..., m) be the numbers of the vertices which are not
adjacent to u and have exactly i common neighbours with . It is easy to see that

Sw)=m+c, +2c,+ ... + mc,, + 2r (1.2)
The graph F has diameter 2. Thus p, = n — m — 1. Now we obtain the equality
(1.1) from (1.2) by the substitution p, = ) ¢,
j=1

The following properties of decompositions were proved in [6].
Proposition 2. Let F be a factor of a decomposition of K, into k factors of
diameter 2 and u be its vertex. Then

3<du)<n-—-3k+2 for k> 3.

Proposition 3. Let F be a factor with a minimum number of edges of a
decomposition of K, into k factors of diameter 2, then

e(F) <[n(n— 1)/2k].

2Case k=4

Theorem 2. f(4) > 17.

Proof. It follows by Theorem 1 that it is sufficient to prove that K,, cannot
be decomposed into 4 factors with diameter 2. We prove it by contradiction. Let
such a decomposition exist and F be its minimal factor.

Propositions 1, 2 and 3 give us: .

let x be a vertex of F, then

S(x) > 15, @.1)
3 < d(x) <6, (2.2)
e(F) < 30. (2.3)

First of all we will show that no two vertices of degree 3 are adjacent in F.
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Assume, on the contrary, that u, v are such vertices. If the vertices u, v have a
common vertex in their neighbourhoods, then it follows by Proposition 1 that
S(u) > 17, which contradicts (2.2). Thus the vertices u, v have no common
neighbour. Denote the vertices adjacent to u by u,, u, and the vertices adjacent
to v by v, v,. By (2.1) and (2.2) we get

d(u)) = d(u,) =d(v)) =d(v,) =6 (2.4)

PutJ =V — {u, u,, u,, v, v,, v,}, where V' is the vertex set of F. The factor F has
diameter 2, thus each of the ten vertices of J is adjacent to at least one pair
(u;, v;) i, je{l, 2}. No three vertices from the set {u,, u,, v|, v,} can be adjacent
to any vertex from J, otherwise we would get S(x) > 15 or S(v) > 15, which
contradicts Proposition 1. As we can see by (2.3) and (2.4) all vertices of J are
of degree 3 and so S(x) = 15 for xeJ. By Proposition 1, no two vertices of J
have the same pair (4, v,) in their neighbourhoods. From the abové mentioned
facts it follows there is one-one correspondence between the sets J and I =
= {(u;, v;); i,j = 1, 2}. But this is impossible since |J| = 10 and |/| = 4. Thus no
two vertices of degree 3 are adjacent in F.

There is at least one vertex u of degree 3 in F, otherwise Y d(u) > 64 > 60,
' ueF
a contradiction with (2.3). Let m be the number of vertices of degree at least 4

in F. Then the following inequality holds:
60 > > d(v) > S(u) + 3(16 — m) + 4(m — 3),
reF
and consequently
9> m. (2.5)

From (2.5) it follows that there are at least 7 vertices of degree 3 in F. Assume
that all these vertices are adjacent to at least two vertices in I'(x). Then
Proposition 1 implies S(«) > 21, which contradicts (2.2). Thus there is a vertex
v of degree 3, which has only one common neighbour w with the vertex u. It

follows by (2.1) that v is adjacent to at least one vertex different from w of degree
at least 5. Thus we obtain

9 > m. ' (2.6)

According to (2.2) we have d(w) < 6 and thus there is a vertex of degree 3
which is not adjacent to w. Denote by ¢, the number of edges which are incident
with the vertices of degree 3 in F and by ¢, the number of other edges. Then

30>¢e(F)=e¢,4+e,>3(16 —m) + 2(m — 6) + 3, (2.7)
and consequently m > 9, a contradiction. The proof is complete.
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3 On a method of Bollobas

In [1] Bollobas used the following lemma in the proof of the bound
f(k) > 6k — 9 for k > 6.
Lemma 4. Suppose a > 0 and the graph G is such that for every vertex xe G

dx)+ > (d(y)—a)d(y)=a. (3.1)
hre.l“(>.\")l
Then “
e(G) = (a/2)|V(G)|. (3.2)

Proof [1]. If x, yeGand d(y) > alet W(x, y) = (d(y) — a)/d(y), if xe G and
d(x) < a put '
d'(x)=dx)+ Y W),

vel(v)
d(v)y>a

if reG and d(y) > a set

d(y)y=diy)— > W, ) =a.

xel(y)

By the assumption we have d’(x) > a for every vertex xe G. Therefore

2e(G) = Z d(x) > Z d’(x) (3.3)
xelG NeG
Y d'(x) = alV(G)|. (3.4)
YEG

The original formulation in [1] of the present Lemma 4 claimed, moreover,
that if there is a vertex for which the inequality (3.1) is sharp then so is (3.2).
However this claim is false. In fact take as counterexample the star with n > 4
vertices and put ¢ = 2(n — 1)/n. The following proposition solves this problem.

Proposition 5. Let a be such that for every vertex x of G (3.1) holds. then
e(G) = (a/2)|V(G)] iff the following two conditions are fulfilled for every vertex
xof G

(i) If d(x) < a, then d(x) + ) (d(y)— a)/d(y) = a,

vel(v)
dty)>a

(i1) if d(x) > a and veI'(x), then d( ) < a.
Proof. Let 2¢(G) = a|V(G)|. Then the inequalities (3.1), (3.2) are transformed
to equalities

Y dx) =) d'(x), (3.5)
xeG NEG

Y d'(x) = a|V(G)|. (3.6)
NeG
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We obtain the conditions (1) and (i1) from (3.6) and (3.5) respectively. on the
other hand if the conditions (i) and (ii) are fulfilled, then so are (3.5), (3.6) and
thus e(G) = (a/2)|V(G)| holds.

If we want to apply Lemma 4 we must verify the validity of the assumption
(3.1). We can use the following properties of (3.1).

Let a > 0 and a graph G be fixed. Let x be a vertex of degree d in G. Denote
by y,, ¥,, ..., v, the degrees of d vertices adjacent with x. Suppose that the first
p of them are greater than a. In this case we shall say that x has type ( y,, y>, ...
..., ¥,). Consider the left hand side of (3.1) as a function

P
g(d,pa J’1aJ’2,~--,yp)=d+P"‘ za/yi (37)

i=1
with arguments d, p, y,, ,, ..., y, and a parameter a. From (3.7) it is easy to see
that:

the value of g is independent of the ordering of the arguments
Yis Vs wooa Vps (3.8)
gd, p, yis ya s y,) <gldip,yi + 1, yas s y,) (3.9)
if yy <y,and y, — 1 > a then
g, p.yi = Ly + 1, ys, s 3,) <8(d, py yis Yoy oo 3 (3.10)

Consider the function g independently of the graph G. Let the numbers n, k,
a, d and p be given. Let 4 be set of d-tuples of integers y, (i = 1. ..., d) satisfying
the following conditions:
d

> yizn—1, (3.11)
i=1
for every ie{l, ..., d}
' 3<y,<n-—3k+1, (3.12)
for i=1,...p p<d and y,>a>0. (3.13)

The conditions (3.11) and (3.12) correspond with the Proposition 1 and 2
respectively. It is clear, that if 4 is non-empty we can find (y,, 3>, ..., y,) in 4
minimizing the function g. Since the value of the function g depends directly
only on the first p integers of y,, y,, ..., y, we use the notation (y,, v, .... ¥p)
to describe the d-tuple minimizing the value of g. We shall called such p-tuple
the minimal type of neighbourhood. Obviously it is sufficient to verify (3.1) only
for the minimal type of neighbourhoods.

4 Casesk =5and k =6
Theorem 3. f(5) > 22
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Proof. According to Theorem 1 it is sufficient to prove that K,, cannot be
decomposed into 5 factors with diameter 2. Assume, on the contrary, that there
exists such a decomposition. Let F be a factor with minimum number of edges
and u be its vertex. then Propositions 1, 2 and 3 give us:

S(u) > 20 4.1)
3<du)<8 4.2)
e(F) < 42 (4.3)

Now we shall use Lemma 4. Put ¢ = 4. The inequality (3.1) is trivial for the
vertices with degrees > 4. If a vertex x of F has degree 3 we distinguish two cases
accordingtoas p =2 or p = 3. If p = 2, then by (4.1) and (4.2) we get x has a
type (8,8). Then from (3.7) we obtain g(3, 2, 8, 8) =4 =a.

Now let p = 3. Considering (4.1) and (4.2) and using (3.8), (3.9), (3.10) we get
(5, 7, 8) is the minimal type of neighbourhood for which g(3, 3, 5, 7, 8) =
= 299/70 > a.

Therefore e(F) > (a/2) V(F) = 42. 4.4)

If there is equality in (4.4) then Proposition 5 gives us that all vertices of
degree 3 have type (8.8). In such case by Proposition 5 (ii) we get that there are
at least 15 vertices of degree 3 in F. By (4.1) and (4.2) these vertices cannot be
adjacent. Then by trivial calculation we have e(F) > 15.3 = 45 > 42,

a contradiction with (4.3).

Theorem 4. 1(6) > 28.

Proof. It is sufficient to prove that K,, cannot be decomposed into 6 factors
of diameter 2. Assume, on the contrary, that there exists such a decomposition.
Propositions 1, 2 and 3 give us that for minimal factor F and its vertex u the
following inequalities hold: '

S(u) > 26 (4.5)
3<du) <11 (4.6)
e(F) < 58 (4.7)

Assume 5> a > 116 27. As in the previous case we must verify (3.1). The
assumption (3.1) holds trivially for vertices with degree > 5. using (4.5), (4.6),
(3.8). (3.9). (3.10) we determine the minimal types of neighbourhoods for d = 3
and d = 4. We summarise the results in the following table:

If 220 51 > a > 116 27 (note that such a exists), then (3.1) holds and it is
sharp. in all cases except d = 3 and p = 2. Consequently, if there is no vertex
with degree 3 and type (11. 11) in F, then by Lemma 4 and we have e(F) > 58,
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d p min. type
4 2 (7. 1D

4 3 (5,6.11)
4 4 (5.5, 5.1
3 2 (11, 11)

3 3 (5. 10, 11)

a contradiction with (4.7). The inequality (3.1) does not hold for d =3 and
p = 2, so we must use another method in this case.

Suppose that there exists a vertex « of degree 3 and of type (11, 11) in F.
Denote by v a vertex of degree 4 adjacent to uw. By (4.5) we have
S(u) + S(v) = 52. Then from (4.7) it follows that there are at least 17 vertices
with degree 3 in F. Therefore

Y

m < 10, 4.8)

where m 1s the number of vertices with degree > 4 in F. As we can see from (4.5),
no two vertices of degree 3 are adjacent in F. In the same way as in the proof
of theorem 2 (see 2.7) we can obtain

e(F)>3R27—m)+2m—6)+3=72—m.
Hence using (4.8) we get e(F) > 62, a contradiction with (4.7).
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SUHRN
O JEDNOM PROBLEME Z EXTREMALNEJ TEORIE GRAFOV
ROMAN NEDELA, Banska Bystrica
Nech f(k) (k = 3) je najmenSie prirodzené Cislo n také, Ze existuje rozklad kompletného grafu

K, na k faktorov priemeru 2. Je zname, Ze f(k) < 6k pre k > 3. V ¢lanku je dokazané, ze f(4) > 17,
f(5) 222 af(6) > 27.

PE3IOME
OB BOJAHOW MPOBJEME B 2KCTPEMAJIbBHOW TEOPUU I'PA®OB
POMAH HEJEJIA, Baucka BeicTpuua
Myctb f(k) (ke N. k > 3) HaWiMeHblIIeE HATYPAJbHOE YMCJIO H, MPH KOTOPOM CYLIECTBYET
JEKOMMNO3MIIMS NOTHOTO rpada ¢ 77 BEpIUMHAMH Ha K OCTOBHBIX noarpadax amamerpa 2. MU3secTHo,

4yto f(k) < 6k aas Bcex K > 3. B craTbe npuBedeHbl HUXHHE OUEHKHM f(4) > 17, f(5) =22 a
f(6) = 27.
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