

Werk

Label: Article
Jahr: 1990

PURL: https://resolver.sub.uni-goettingen.de/purl?312901348_56-57|log26

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

UNIVERSITAS COMENIANA ACTA MATHEMATICA UNIVERSITATIS COMENIANAE LVI—LVII

TRANSITIVITY OF EXPANDING MAPS OF THE INTERVAL

KATARÍNA JANKOVÁ-MARCEL POLAKOVIČ, Bratislava

1 Introduction

We show that for any continuous piecewise expanding self-mapping f of a real compact interval I with a finite number of turning points there is an iterate f^n , $n \in \mathbb{N}$, and an interval $J \subset I$ such that $f^n \colon J \to J$ is transitive in J. Consequently, f is chaotic in the sense of Li and Yorke.

2 Notations and notions

Throughout this paper f denotes a continuous self-mapping of a real compact interval I, f^n denotes the n-th iterate of f. A point $p \in I$ is periodic point of period n if n is the least integer with the property that $f^n(p) = p$. The basic notions used in this paper are the notions of expanding and transitive self-mapping.

Definition 1. A self-mapping $f: I \to I$ is piecewise expanding with expansion constant $\lambda > 1$ if f is piecewise monotonic and $|f(x) - f(y)| \ge \lambda |x - y|$ whenever both x and y belong to some interval on which f is monotonic.

Definition 2. A self-mapping $f: I \to I$ is transitive in I if there is $x \in I$ such that the set Orb $x = \{x, f(x), ..., f^n(x), ...\}$ is dense in I.

Transitivity is characterized by the following well-known

Lemma 1. A self-mapping $f: I \to I$ is transitive in I if and only if, for any interval $K \subset I$, $I = \overline{\bigcup_{k \ge 0} f^k(K)}$.

For completeness, we present here a proof of this result.

Proof. Assume that $I = \overline{\bigcup_{k \geqslant 0} f^k(K)}$ for any interval $K \subset I$. Let $\{I_n\}_{n \in N}$ be a sequence of all subintervals of I with rational endpoints. Then there is a natural number n(1) with the property that $f^{n(1)}(I_1) \cap I_2$ is an interval, hence there is a closed interval $J_1 \subset I_1$ with the property that $f^{n(1)}(J_1) \subset I_2$. Similarly, $f^{n(2)}(J_1) \cap I_3$ is an interval for some n(2), hence $f^{n(2)}(J_2) \subset I_3$ for an appropriate

closed interval $J_2 \subset J_1$. We obtain a sequence of closed intervals $J_1 \supset J_2 \supset J_3 \supset \ldots$ with the property that $f^{n(i)}(J_i) \subset I_{i+1}$, $i = 1, 2, \ldots$ For $x \in \bigcap_{i=1}^{\infty} J_i$, $f^{n(i)}(x) \in I_{i+1}$, hence Orb x is dense in I.

The converse implication is trivial.

3 Results

Our main result is the following.

Theorem. If $f: I \to I$ is piecewise expanding, continuous, with a finite number of turning points then there exists $n \in N$ and a closed interval $J \subset I$ such that $f^n: J \to J$ is transitive in J.

As a consequence of this theorem we obtain another proof of a result from [6], according to which any expanding self-map f with a finite number of turning points has a cycle of order $\neq 2^n$, n = 1, 2, ..., and consequently, f is chaotic in the sense of Li and Yorke (cf. also [1], [2]).

Recall that a continuous function $f: I \to I$ is chaotic (cf. [3]) if there is an uncountable set $S \subset I$ such that for any $x, y \in S$, $x \neq y$ and any periodic point p of f:

- (1) $\limsup |f''(x) f''(y)| > 0$
- (2) $\liminf_{n \to \infty} |f^n(x) f^n(y)| = 0$
- (3) $\limsup |f''(x) f''(p)| > 0$.

Corollary. Let $f: I \to I$ be piecewise expanding with a finite number of turning points. Then f is chaotic in the sense of Li and Yorke.

Proof. Transitivity implies the existence of a cycle of order $\neq 2^n$, n = 1, 2, ..., (cf. [5]) and hence by [4] f is chaotic in the sense of Li and Yorke.

The following lemmas will be useful in the proof of our result. By an interval we always mean a non-trivial interval and |. | denotes the length of the interval.

Lemma 2. Let $f: I \to I$ be piecewise expanding with a finite number of turning points and expansion constant $\lambda > 2$. Then the following holds.

- (1) There exists d(f) > 0 such that for any interval $J \subset I$
 - (i) $|J| \ge d(f)$ implies $|f(J)| \ge d(f)$
 - (ii) |J| < d(f) implies |f(J)| > J
 - (iii) $f^k(J) \subset J$, $k \ge 1$ implies $|f^i(J)| \ge d(f)$, i = 0, 1, ..., k.
- (2) The set $P(f) = \{k : \text{there exists an interval } J \subset I \text{ with } f^k(J) \subset J \text{ and any two intervals } J, f(J), \dots, f^{k-1}(J) \text{ have at most one point in common} \text{ is bounded.}$ **Proof.** (1) Let I = [a, b] and let $a = a_0 < a_1 < \dots < a_n = b$ be the turning

points of f together with the endpoints of I. Put $d(f) = \min\{a_i - a_{i-1}, i = 1, 2, ..., n\}$.

- (i) If $|J| \ge d(f)$ then J contains at least two points $a_i \ne a_{i-1}$, i = 1, 2, ..., n and consequently $|f(J)| \ge |a_i a_{i-1}| \ge d(f)$.
- (ii) Assume that $J \subset I$, $|f(J)| \le J$. Since $\lambda > 2$, J must contain at least two points $a_i \ne a_j$, $0 \le i, j \le n$, hence $|J| \ge d(f)$.
- (iii) Let $J \subset I$, $f^k(J) \subset J$, $k \ge 1$. Since $f^k(J) \subset J$, by (ii) there is some i, $0 \le i \le k-1$, with $|f^i(J)| \ge d(f)$. But then by (i) $|f^{i+n}(J)| \ge d(f)$ for all n, hence $|J| \ge |f^k(J)| \ge d(f)$ and by (i) $|f^i(J)| \ge d(f)$, i = 0, 1, ..., k.
- (2) Let $J \subset I$, $f^k(J) \subset J$ and let any two of the intervals J, f(J), ..., $f^{k-1}(J)$ have at most one point in common. Then by (iii) for any $0 \le j \le k$, $|f^j(J)| \ge d(f)$, hence $k \le \frac{|I|}{d(f)}$.

For $f: I \to I$, n(f) denotes max P(f), where P(f) is the same as in Lemma 2. **Lemma 3.** Let $f: I \to I$ be expanding with a finite number of turning points and expansion constant $\lambda > 2$. Then there is a minimal invariant interval $J \subset I$, i.e. an interval with the property that f(J) = J and for any interval $K \subsetneq J$, $f(K) \not\subset K$.

Proof. We use Zorn's lemma. Let \mathscr{S} be the system of all subintervals L of I with $f(L) \subset L$ partially ordered by the inclusion \subset . By Lemma 2, $|L| \ge d(f)$ for any $L \in \mathscr{S}$. Take a linearly ordered family $\{L_i\}_{i \in T}$ of members of \mathscr{S} . Denote

$$L = \bigcap_{t \in T} L_t$$
. Since

$$f(L) = f\left(\bigcap_{t \in T} L_{t}\right) \subset \bigcap_{t \in T} f(L_{t}) \subset \bigcap_{t \in T} L_{t} = L,$$

L is an interval from \mathcal{S} . Thus by Zorn's lemma, there is a minimal member J of \mathcal{S} .

We show that f(J) = J. Let J = [a, b]. First consider the case that $b \notin f(J)$. Put $H = \{x \in J : f(x) \ge x\}$. Clearly $H \ne \emptyset$. Let $x_1 = \max\{f(x), x \in H\}$. Then $f(x) \le x_1$ and $f(x) \ge a$ for all $a \le x \le x_1$. Hence for $J_1 = [a, x_1]$ we have $f(J_1) \subset J_1$, which is impossible. In the case that $a \notin f(J)$ the argument is similar.

Lemma 4. Let $g = f^k$, $k \ge 1$, f be expanding with a finite number of turning points. Let J be a minimal invariant interval of $g = f^k$. Then there is $r \le k$, $r \mid k$ with the property that any two of the intervals $J, f(J), ..., f^{r-1}(J)$ have at most one point in common and $f^r(J) = J$.

Proof. First consider the case that $J \cap f^i(J)$ is not an interval for all $0 < i \le k - 1$. Assume that $f^m(J) \cap f^n(J)$ is an interval for some $0 \le m$, $n \le k - 1$, m < n. Then since f is expanding and

$$f^{k-m}(f^m(J)\cap f^n(J))\subset f^k(J)\cap f^{k+n-m}(J)=J\cap f^{n-m}(J)$$

we obtain that $J \cap f^{n-m}(J)$ is an interval, which is impossible. Hence any two of the intervals $J, f(J), ..., f^{k-1}(J)$ have at most one point in common and the lemma holds for r = k.

Now consider the case that $J \cap f^i(J)$ is an interval for some $0 < i \le k - 1$. We can suppose that i is the minimal positive integer with this property. Since

$$f^k(J \cap f^i(J)) \subset J \cap f^i(J)$$

we have $J \cap f^i(J) = J = f^i(J)$. We show that $i \mid k$. Really, if k = qi + j, q, jpositive integers, i < i, then we have

$$f^{i-j}(J) = f^{i-j}(f^k(J)) = f^{k+i-j}(J) = f^{qi+j+i-j}(J) = f^{(q+1)i}(J) = J$$

which is a contradiction with the minimality of i. Hence $f^{i}(J) = J$, $i \mid k$ and J, $f(J), ..., f^{i-1}(J)$ have at most one point in common. Thus the lemma is true for r = i.

Lemma 5. Let $f: I \to I$ be expanding with a finite number of turning points and expansion constant $\lambda > 2$. Then there is such m that $n(f^m) = 1$. (For the definition of n(f) see Lemma 2.)

Proof. Put m = n(f)!. Let $J \subset I$, $f^{km}(J) \subset J$, $k \ge 1$ and any two of the intervals $J, f^m(J), ..., f^{(k-1)m}(J)$ have at most one point in common. By Lemma 3 there is a minimal invariant interval of $g = f^{km}$. Denote it by J_1 . Then by Lemma 4 there is $r \mid km$ such that any two of the intervals $J_1, f(J_1), ..., f^{r-1}(J_1)$ have at most one point in common and $f^r(J_1) = J_1$. Clearly $r \le n(f)$, hence $r \mid m$ and $f^m(J_1) = J_1$. Hence k = 1, q.e.d.

Proof of Theorem. We may assume that the expansion constant λ of f is greater than 2, since otherwise we replace f by an appropriate iterate. We show that $g = f^m$, where m = n(f)!, is transitive in its minimal invariant interval J. Now the condition from Lemma 1 will be used. Let $K \subset J$ be any interval. We

show that $\overline{\bigcup_{n\geq 0}}g^n(K)=J$. Lemma 2 implies that $|g^n(K)|\geq \min\{d(g),|K|\}$ and it is easy to see that $\overline{\bigcup_{n\geq 0}}g^n(K)=K_1\cup K_2\cup ...\cup K_s$, where $K_1,K_2,...,K_s$ are pairwise disjoint closed intervals. Since $g\left(\bigcup_{n\geq 0}g^n(K)\right)\subset\bigcup_{n\geq 0}g^n(K)$, there is natural number $r \leq s$ such that for some $i \in \{1, ..., s\}$ $g'(K_i) \subset K_i$. Again by Lemma 2, $|g'(K_i)| \ge d(g)$ and also $|g'''(K_i)| \ge d(g)$ for all $n \in \mathbb{N}$. Put $L = \bigcap_{n \ge 0} g^{rn}(K_i)$. Since $K_i \supset g^r(K_i) \supset ... \supset g^{rn}(K_i) \supset ..., L$ is a closed interval, $|L| \ge d(g)$. Further g'(L) = L and n(g) = 1 (Lemma 5) implies r = 1. Thus L is an invariant interval of g, $L \subset J$, hence L = J. Since $L \subset \overline{\bigcup_{n \geq 0} g^n(K)}$ we obtain

that $\overline{\bigcup g''(K)} = J$ and by Lemma 1 g is transitive in J.

REFERENCES

- 1. Butler, G. J.—Pianigiani, G.: Periodic points and chaotic functions in the unit interval, Bull. Austral. Math. Soc. 18 (1978), 255—265.
- 2. Byers, B.: Periodic points and chaos for expanding maps of the interval, Bull. Austral. Math. Soc. 24 (1981), 79—83.
- 3. Li, T. Y.—Yorke, J. A.: Period three implies chaos, Amer. Math. Monthly 82 (1975), 985—992.
- 4. Oono, Y.: Period \neq 2" implies chaos, Prog. Theor. Phys. 59 (1978), 1028—1030.
- 5. Šarkovskii, A. N.—Majstrenko, Ju. L.—Romanenko, E. Ju.: Difference equations and their applications, Naukova Dumka, Kijev 1986 (Russian).
- Zhang Zhenhua: Periodic points and chaos for expanding selfmaps of the interval. Bull. Austral. Math. Soc. 31 (1985), 439—443.

Author's address:

Received: 21. 11. 1988

Katarína Janková Marcel Polakovič Katedra teórie pravdepodobnosti a matematickej štatistiky MFF UK Mlynská dolina 842 15 Bratislava

SÚHRN

TRANZITIVITA EXPANZÍVNYCH ZOBRAZENÍ INTERVALU

K. JANKOVÁ-M. POLAKOVIČ, Bratislava

Ukazuje sa, že pre spojité expanzívne zobrazenie kompaktného intervalu do seba, pozostávajúce z konečného počtu monotónnch častí existuje iterácia f'', $n \in N$, a interval $J \subset I$ tak, že $f^{N} : J \to J$ je tranzitívne v J.

РЕЗЮМЕ

ТРАНСИТИВНОСТЬ РАСТЯГИВАЮЩИХ ОТОБРАЖЕНИИ ИНТЕРВАЛА

К. ЯНКОВА-М. ПОЛАКОВИЧ, Братислава

Показывается, что для любого непрерывного растягивающего отображения f компактного интервала I в себя, состоящего из конечного числа промежутков монотонности, существует итерация f'' и интервал $J \subset I$ так, что f'': $J \to J$ транситивно в J.

.