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1 Introduction

We shall consider undirected graphs without loops and multiple edges. The
complete graph on »n vertices will be denoted K,; d(G) means the diameter
of G. Other notions from graph theory are used in the sence of [3].

Denote f(k) the smallest such natural that the edge-set of K,,, can be
decomposed into k factors of diameter two. That f(k) is finite for every k = 2
was proved in [2]. In 1970 Sauer [7] proved that

flk) =Tk
and in 1974 Bosak [4] showed that
J(k) = 6k.
On the other hand in 1980 Bollobas showed in [1] that for kK = 6 we have
f(k) =z 6k —9

and later in [8] Znam improved that:
fk)= 6k —17 for k= 664.
Finally in [9] Znam showed that for kK = 10'” we have
f(k) = 6k.

For small k the values of f(k) were studied by Bollobas, Bosak and
Nedela [6]. Presently the following bounds and exact values of f(k) are
known:

f@=5
132/3)z 12
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242f4) =215

302 f(5) = 22

36 = f(6) = 28

6k = f(k)= 6k —9 for 7<k<663
6k = f(k)= 6k —7 for k= 664
6k = f(k) for k= 10".

The cases k =4, 5, 6 were studied in detail by Nedela. Our paper is
devoted to the cases k = 7 and 8. We show that f(7) = 34, which is an improve-
ment of the known bound given above.

In what follows we shall use the following notations:

V(G) — the vertex set of G,

O(x) — the set of neighbours of the vertex x,

S(x) — the sum of degrees of vertices from O(x),

degx — the degree of the vertex x,

e(G) — the number of edges of G,

E — some factor from a decomposition of K, into factors with diameter
two.

The following assertions are proved in [3], [6] and [9].
P1. If K, (n > 1) can be decomposed into m factors of diameter 2, then for

N > n the complete graph K, can also be decomposed into m factors of diameter
two.

P2. For kK = 3 we have
3<degx=<n-—3k+2,

in any factor of decomposition of K, into k factors of diameter 2.
P3. In the decomposition of K, into k factors of diameter 2 there exists a
(minimal) factor F, with

e(F) < | n(n—1)2k | .

P4. Let d(G) = 2 and let for xe V(G) there exist r edges with both endpoints
in O(x). Then

S(x) =n— 142r+ Z (s_r_ 1),

ye V(G) — {x} — O(x)

where s, means the number of edges connecting y with vertices of O(x).
In our consideration we shall use also the following Lemma by Bollobas [1]:
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Lemma 1. Let @ > 0 and let for all vertices of G the following inequality hold

(1) D(x) =degx+ ) (degy — a)/degy = a.
reo(x)
degy > a

Then e(G) = a/2 |V(G)).

2 f(7) is at least 34

According to Pl it is sufficient to prove that K,; cannot be decomposed into
7 factors of diameter two. In the proof we shall proveed indirectly. Suppose K,
is decomposed into 7 factors with diameter 2. Denote the factors K, ..., F,
where £ has minimal number of edges.

Lemma 2. A vertex of degree 3 cannot be adjacent to a vertex of degree 3, 4,
or 5 in any factor of the decomposition. i

Proof. We shall prove it indirectly. Suppose that in F, there is a vertex v, of
degree 3 adjacent to some vertex of degree 5. Namely, let

O(vy) = {v), v5, v}, where 5 =degv, <degv, < degu,.
Then owing to P2 and P4, v,, vy are not adjacent in F, and we have
degv, + degv, = 27.

Hence due to P2: degv, > 13, degv, 2 14. Thus in the remaining factors v, is of
degree 3 and v, can be of degree 3 or 4. Suppose v, and v, are adjacent in F and

O(v;) = {v,, vy, v5}, degv, <4 in F,.
Then
deguv, + degovs = 28
and hence, using P2
degv, = degv, = 14.

Therefore, in the remaining factors the vertices v, and vs are of degree 3. Then
there exists a factor F in which v, and vs are adjacent and we have

O(vy) = {vs, vg, v,}, degog = 3.
From this it follows (see P4) that
degv, + degv, =229 inF

which is a contradiction with P2.

Lemma 3. For vertices of degree at least 4 the inequality (1) holds for
a = 4.55 in any factor.

Proof. First of all consider the values of (deg x — «)/deg x for different values
of deg x (see table 1)
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Table 1

deg x 14 13 12 11 10 9 8 7 6

degx —a
—| 0.67 0.65 0.62 0.58 0.54 0.49 0.43 0.35 0.24

deg.x

Let v, be of degree 4. If O(v,) contains some vertex of degree at least 11, then
using the above list it can be easily checked, that D(v,) > 4.55. If no vertex of
degree at least 11 is contained in O(v,), then O(v,) contains at least two vertices
of degree at least 8, and using the above list, we get D(v,) > 4.55 again. The
proof is finished.

Theorem 1. f(7) = 34.

Proof. We shall proceed indirectly. Consider the minimal factor F,. If all
vertices are of degree at least 4, then due to Lemma 3, F; contains at least

iéé-33 = 75.075 edges, a contradiction with P3 wich asserts that e(F) < 75.
2

The proof is finished in this case.

Hence in what follows we shall suppose that F; contains a vertex v, of degree
3. Suppose O(vy) = {v,, v, U3}. We shall distinguish 3 cases and show that in all
of them we have D(r,) > 4.55.

a) There exists and edge between two vertices of O(r,). Since d(F)) = 2, in
this case (due to P4) we have S(v,) = 32 + 2 = 34. Using P2 we get that all
vertices of F, are of degree at most 14. Thus none of v,, v,, v, is of degree smaller
than 6. Hence if S(r,) = 34 than for degrees of vertices v; we have the following
possibilities:

(6. 14, 14), (7, 13.14), (8.12,14), (8, 13.13), (9,11, 14),
(9. 12, 13), (10, 10, 14), (10, 11, 13), (10, 12, 12), (11, 11, 12).

However, using the above list we can check in all cases the ineguality
D(r,) > 4.55. From this obviously the inequality follows for S(v,) > 34, as well,
because D(.x) is an increasing function. Now using Lemma | we have a con-
tradiction with P3.

b) There is no edge between vertices of O(t,) but there is a vertex (different
from r,) belonging to the neighbourhood of two vertices t,.

Without loss of generality it can be supposed t,€ O(t,) » O(r,). From P4 and
the fact that d(F,) = 2 follows that in this case

S(ry) 232+ 1=33.

According to Lemma 2 if one of vertices t,. t., t; is of degree 14, then the
remaining are of degree at most 11. Hence if S(r,) = 33 we have only the

238



following possibilities for degrees of v, v,, v;:
(7,13, 13), (8,14, 11), (8,13,12), (9, 14, 10), (9, 13, 11),
9, 12, 12), (10, 13, 10), (10,12, 11), (11, L1, 11).
It can be easily checked that in all cases the inequality
D(vy) > 4.55 holds.

Futher argument as above.

¢) There is no edge between v,, v,, v; and their neighbourhoods contain the
only common element v,. Then S(v)) = 32 and it is obviously sufficient to
consider only the case S(v,) = 32.

For degrees of vertices v,, v,, v; we have the following possibilities (see
Lemma 2):

(6, 13, 13), (7, 11, 14), (7,12, 13), (8,10, 14), (8, 11, 13),
8,12, 12), (9,9, 14), (9,10,13), (9, 11, 12), (10, 10, 12),
(10, 11, 11).

Using similar considerations as above, we can show that D(v,) > 4.55 holds
for all cases with the only exeption: (6, 13, 13). Hence in what follows we shall
deal with this case. Suppose O(v,) = {v,, v, v;} and deg v, = 6 and put

A=0() —{ve}, B=0()—{v}, C=0(;)— {vo}.
If v, is the only vertex of degree 3, then due to P4 we have
2e(F) =23+ S(vy) +29.4 = 151,

thus we have a contradiction with P3. Hence we can suppose that a futher vertex
v, of degree 3 exists.

Now we shall show that in F, there exist at least 13 vertices of degree 3. If v
and v, are the neighbours of v, (different from v,, v,, v;) then

deguvs + degv, = 19
(see P4).
Now, if the number of vertices of degree 3 in F, is less than 13, we have:
2e(F) = S(vy) + degvs + deguvg + 12.3 + 16.4 = 151

a contradiction with P3.

Note that if v,€ 4, then deg v + degv, = 26 and reasoning similarly as above
we can show that F contains at least 20 vertices of degree 3.

In that last case both B and C have to contain a vertex of degree 3. We shall
show now that it is true also if 4 contains no vertex of degree 3.
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Suppose no vertex of degree 3 exists in 4. As we know that at least 13 vertices
of degree 3 exist in F;, only the following two cases can happen:

cl) All vertices of B are of degree 3. A vertex from C can be reached (by a
path of lenght 2) from v, only trough vertices of B; thus every vertex of C is
adjacent to some vertex of B and hence, due to L2, all vertices of C are of degree
at least 6. Thus we have

2e(F) = S(v,) + 12.6 + 18.3 > 158

— a contradiction with P3.

c2) Both B and C contain a vertex of degree 3. Then both B and C contain
a vertex of degree at least 6. Now suppose that the number of vertices of degree
3in Bu C is less then 14. Then we get:

2e(F) = S(vy) + S(,) + 2.6+ 13.3+9.4> 151

— a contradiction with P3.

Hence B U C contains always at least 14 vertices of degree 3 and hence both
B and C contain at least one vertex of degree 3. Take two vertices of degree 3:
r,€ B, v,e C. These two vertices can be connected by a way of length 2 only
trough a vertex v, € 4. But then every vertex of degree 3 from B must be adjacent
to ty, and the same is true for vertices of degree 3 in C. Thus v, is of degree 15,
what is a contradiction with P2.

Since we get a contradiction in all cases, F, cannot contain any vertex of
degree 3 having neighbours of degree 6, 13 and 13, respectively. Thus for all
vertices of F, (1) is fulfilled for « = 4.55. Hence F, has at least 76 edges, which
contradicts P3.

The proof of the theorem is finished.

Remark. Using similar but rather more complicated considerations as above
we proved recently

Theorem 2. f(8) = 40.

REFERENCES

1. Bollobas. B.: Extremal Graph Theory. Academic Press London 1978.

2. Bosak. P.-—Erdés. A.—Rosa. A.: Decomposition of complete graphs into factors with
diameter two. :

3. Bosak.J.—Rosa. A.—Znam. §.: On decompositions of complete graphs into factors with
given diameters. In Theory of Graphs. Proc. Collog. Tihany. 1966. Academic Press. New York
and Akademiai Kiado. Budapest (1968) 37— 56.

4. Bosak. J.: Disjoint factors of diameter two in complete graphs. J. Combinatorial Theory

Ser. B. 16 1974. 57—63.
. Harary. F.: Graph Theory. Addison-Wesley Publishing Company. 1969.

. Nedela. R.: On one problem of extremal graph theory. Thesis. Universitas Comeniana.
1984.

N

240



7. Suaer, N.: On the factorization of complete graphs into factors of diameter two, J. Com-
binatorial Theory 9 (1970) 423—426.

8. Znam, 8.: Decomposition of complete grafs into factors of diameter two, Math. Slovaca 30,
1980, No. 4, 373—378.

9. Znam, S.: On a Conjecture of Bollobas and Bosak, J. Graph Theory, Vol. 6 (1962)
139—146.

Author’s address : Received: 1. 10. 1988

Iveta Markova

Katedra stavebnej fyziky
Stavebna fakulta SVST
Radlinského 11

813 68 Bratislava

SUHRN
ROZKLAD KOMPLETNYCH GRAFOV NA FAKTORY PRIEMERU DVA
IVETA MARKOVA, Bratislava
Ozna¢me f(k) také najmensie prirodzené Cislo, Ze hranovd mnozina kompletného grafu X, ,

méze byt rozlozena na k faktorov priemeru dva. Clanok obsahuje vylepsenie tvrdenia Bollobasa pre
k = 6: f(k) = 6k — 9; kde v naSom pripade f(7) = 34.

PE3IOME
PA3JIOXKEHHME TMOJIHbIX TPA®OB HA ®AKTOPbI JUAMETPA [1BA
UBETA MAPKOBA, Bpatucnasa
MycTs f(k) Takoe HaMMEHbILEE HATYPATBHOE YHMCIIO, HTO MHOXECTBO pebep nosiHoro rpada
K, MoxeT ObiTh pa3noxeHo Ha k dakTopoB anameTpa ABa. CTaTbs COAEPKHUT yNyHILEHHS

yTBepxaeHus bonnobaca ans k = 6: f(k) = 6k — 9; xOHKpeTHO A1A cay4as K = 7 Mbl NOKa3bl-
BaeM, uto f(7) = 34.
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