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A VEHICLE ROUTING PROBLEM IN NETWORK CLUSTERS

JAROSLAV JANACEK., Zilina

1 Introduction

To simplify the vehicle routing problem in large networks [6], a decom-
position of the network into clusters is often used [3], [4]. The whole problem
at the level of the clusters can be solved by some known method [5]. We shall
study the routing problem inside the single cluster in this paper. Each cluster
may contain both supply and demand nodes but the travel costs between nodes
inside the cluster are supposed to be insignificant.

However, any visit at a node of the cluster claims a fixed cost. Having done
the decomposition (see Fig. 1), we can solve the vehicle routing subproblem in
each cluster and obtain either the supply or demand surrogate node from it.

Fig. 1. Black and empty small circles represent supply and demand respectively

Thus we get a simpler surrogate netwcik than the original one (see Fig. 2).
We shall regard the subproblem — vehicle routing problem in network cluster
in the rest of this paper.
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If we add a subsidiary node to each cluster where the total supply is not equal
to the total demand and define the supply or the demand of this node to get rid
of the inequality, we can state the vehicle routing problem in a network cluster
in the following way.

Fig. 2. Surrogate network

Given set of ¢ sources and r sinks with integer supply g, at each source i = 1,
.... 1 and an integer demand b, at each sink j =1, ..., r.
Let

iaizibi

i=1 j=1
hold.

Find a route of a vehicle with capacity K to minimize the total number of
visits at nodes and satisfy all demands in the cluster.

2 Other mathematical formulations

First. we shall show the way how to formulate the problem mentioned above
as an integer linear programme. Let us create a substitutional network (see
Fig. 4) for the given cluster (see Fig. 3), where each element of a source and each
demanded element of a sink will be a node of the substitutional network.

Fig. 3. A cluster with supplies (black circles) and demands (empty circles) and travel costs at the
edges.

Thus we get the network where the original node of the cluster is represented
by several new nodes. We add a depot to the network and denote it by 0. Let
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Fig. 4. The substitutional network

us denote N* set of sources, N~ set of sinks and N ={0} U N" U N~ in the
substitutional network. The following costs ¢;; are assigned to the arcs:

¢, = oo for all sources ie N ™,

co=0  for all sinks je N,

¢; =1 for all sources ieN ™,
¢y = oo for all sinks je N7,
¢; =0 if substitutional network nodes i, j were derived from the same

original node,

¢; =1  if substitutional network nodes i, j were derived from different
original nodes.

Furthermore, we shall use non-negative integer variables x; which get value
1 if the vehicle moves from node i to node j and they get value 0 in the opposite
case. Non-negative integer variables r; will be equal to the number of elements
transported on the vehicle along the arc (i, /). Besides variables x; and r;,
auxiliary non-negative integer variables y; will be used.

The problem can be formulated in this way [2]:
minimize

DN (N

jeN ieN
subject to

Y x;=1 for jeN (2)

ieN
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Y x;=1 for ieN 3)

JieN

r,<K.x; for i jeN 4
to=ro=0 for ieN (5)
—y;+IN|x;ZIN| -1 for ijeNTUN-~ (6)
Zr”.-—-Zrﬁ=l for jEN_ (7)
eV ieN
Yri—Yr=—1 for jeN* ' 8
ieN ieN

where |N| denotes the number of elements from the set N.

Constraints (2) and (3) express that whenever a vehicle enters a node it leaves
that node, and each node will be visited just once. Inequalities (4) ensure that
the capacity of a vehicle will not be exceeded.

Equations (5) express that a vehicle will start and finish its route empty.

Inequalities (6) state that each circuit of the route will start and finish at the
depot.

Equations (7) and (8) assert that all demands will be satisfied and all supplies
will be used.

The optimal route in the cluster can be obtained from the optimal route in
the substitutional network (see Fig. 5a) by contracting all the adjoining nodes
which come from the same original node (see Fig. 5b).

0 (O—@-D)—D2D)-@) @O
oY oYoYo o Wo

Fig. 5. Black small circles represent a load of the vehicle along the appropriate part of the route

The model (1)—(8) is usually very extensive due to great number of sub-
stitutional nodes which can be exponential with respect to the original number
of cluster nodes.

Let us introduce another (nonlinear) model of the problem which is not so
extensive and which may be useful when heuristics are developed. Let a number
ki.i=1,2, ..., nbe given for each of n original nodes.

We assume k; > 0 to signify that i is a source and k; is a supply and k;, < 0 to
mean that / is a sink and |k, is a demand.

It obviously holds ) k; = 0 for our problem.

i=1

226



Now we find the shortest sequences y,, y,, ..., ¥, and x,, x,, ..., x,, where
yie{l, 2, ..., n} and x; is an integer subject to:

sign(x;) =sign(k,) for i=1, .., m 9)

O<lx|=slk,| for i=1,...,m (10)

0= Zx,.gK for s=1,2,....m (1)
i=1

Y x=k for j=1,...n (12)

iel;

where I, = {i|y, = j}.

In the second model the sequence { y;} determines the order in which nodes
have to be visited and x; determines the number of picked up (x; > 0) or dropped
(x; < 0) elements at the node y,; during the i-th visit of the vehicle.

Equations (9) state that the elements will be picked up at sources and dropped
at sinks. Inequalities (10) ensure that the supply of a source or the demand of
a sink will not be exceeded. Inequalities (11) assert that the vehicle capacity will
not be exceeded and equations (12) ensure that all demands will be met.

3 Reducibility of the problem

As far as the vehicle routing problem in a cluster is considered, the following
theorems hold.

Theorem 1. If a cluster has only one sink and k; £ K holds for each i from N *
then there is an optimal vehicle route which enters each source exactly once.

Proof. Assume that some optimal route of the vehicle enters source i with
supply k; r-times, where r = 2. Removing all the visits at node / from the route,
total number of visits will be reduced by r. The remaining k; of the demands can
be satisfied by adding one visit at source i and one at the sink (see Fig. 6a, b).

Fig. 6. Negative and positive numbers inside nodes represent original demands and supplies
respectively. Numbers at the arcs give load of the vehicle whose capacity is 5
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Thus the objective of the new feasible route will be reduced by r — 2 = 0 and
source i will be entered just once.

Repeating the procedure, an optimal route with claimed propeity will be
obtained.

Theorem 2. If a cluster has only one sink and k; = K holds for some source
i with supply k; then there is an optimal solution of the problem containing

| k;/K | transports from node i to the sink with fully loaded vehicle. ( [ x |
designates integer part of x.)

Proof. Consider an optimal solution of the problem with m visits at the
node i. On account of the solution being optimal, the visits must belong to m
different circuits of the route (see Fig. 7a). Removing all the visits from the
circuits and adding | k;/K | circuits of the type sink-source-sink, the total
number of visits in the new route will increase by 2. | k,/K] —m and
k;— K. | k;/K | elements will remain at the source i (see Fig. 7b).

Fig. 7. The numbers in the figure have the same meaning as in Fig. 6

The number of the remaining elements at the node i and the elements
transported by m1 original circuits mentioned above after removing will be less
than or equal to K (m — | k;/K]).

To transport them to the sink, the m — | k;/K | circuits will do. Besides,
transport of kK, — K. | k;/K | remaining elements from the source i can be
carried out during the first circuit (see Fig. 7c).

Number of visits at sources including the first visit at the node i will increase
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at most by m — | k,/K | and number of visits at the sink will be reduced by
Lki/K ]

By these changes we obtain a feasible route whose number of visits differs
from the original one at most by

2. |K/K] —m+m— |k/K] — |Lk/K] =0.
Corollary. A vehicle routing problem in a network cluster with one sink is
reducible to the problem where inequality £; < K holds for each source i.
Note that a vehicle routing problem in a network cluster with more sinks and
more sources is not generally reducible without loss of optimal solution.
Assuming the vehicle capacity K is equal to 13, the situation shown in Fig. 8

is a good example of this. The arcs in the figure represent an optimal route with
19 visits.

Fig. 8. The numbers in the figure have the same meaning as in Fig. 6

If 13 elements were picked up at the node with supply 24 and dropped at the
node with demand of 19, two visits would be necessary and the reduced problem
(see Fig. 9) would be obtained.

Fig. 9

An optimal solution of the reduced problem shown in the Fig. 9 has 18 visits.
Considering two former visits necessary for the reduction, an objective function
of any feasible solution using reduction must be greater or equal to 20.
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4 Problem completeness

We shall prove that the vehicle routing problem in a network cluster is NP
complete. For this purpose it will be sufficient to prove that a bin packing
problem whose NP completeness has been proved [1] is reducible to our pro-
blem.

Definition of ““bin packing problem™ [1]:

Given a finite set U = 1, ..., t of items and a rational size s(/) = &, for each
item i€ U, find a partition of U into disjoint subsets U, ..., U, such that the sum
of the sizes of the items in each U, is no more than K and such that k is as small
as possible.

Theorem 3. The bin packing problem is equivalent to the vehicle routing
problem in a network cluster with one sink and with k; < K for each source
ieN™.

Proof follows from the theorem 1.

5 Heuristics

For a practical solving of the vehicle routing problem in network cluster, six
heuristics have been developed. Three of them are basic and the others have
been derived from them.

Pick-up-Drop Algorithm (PDA)

Do through the arbitrary ordered sequence of the sources and pick up the
maximum number of elements at each source until the vehicle capacity is fully
utilized.

Then go through sequence of the sinks and drop maximum demanded
number of elements at each sink until the vehicle is empty. Repeat the process
until all demands are satisfied (see Fig. 10a).

Efficient-Picking-up Algorithm (EPA)

Find a sink with the largest demand.

Then go through the sequence of the sources towards their decreasing capaci-
ties and pick up the maximum number of elements until the demand is covered
or until the vehicle is full. Satisfy the demand and repeat the process until all
demands are satisfied (see Fig. 10b).

Efficient-Dropping Algorithm (EDA)

Go through the sequence of the sources towards their increasing capacities
and pick up either whole capacity of the source or K elements.
If it is not possible to pick up anything yet, go through the sequence of the
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sinks towards increasing demands and drop maximum demanded number of
elements at each visited sink until the vehicle is empty.
Repeat the process until all demands are met (see Fig. 10c).

0 7

a)

b)

cl

Fig. 10. The graphs a, b, ¢ represent routes obtained by PDA, EPA, EDA respectively, when the
vehicle capacity K = 5 and the original sequence of the {k;} i = 1, ..., 5 is given by numbers inside
nodes in the order from the left to the right

The other three algorithms have been derived from the former by adding a
phase of reducing (see Section 3) before each of the heuristics mentioned above.

Reducing Algorithm ;

Go through an arbitrary ordered sequence of the sources and find the first
source with capacity greater or equal to K. Do the same for the sequence of the
sinks.

Pick up K elements at the found source and drop them at the found sink.

Repeat it until either source capacity or sink demand is less than K. Then find
another source or sink and repeat the procedure. If there is no source with
supply greater of equal to K or no sink with demand greater or equal to K, stop
the process. 2

The reducing algorithm causes that the original problem gets the form where

Ve @
@

Fig. 11. The arrows in a) denote the part of the route which is constructed by phase of reducing for
K = 5; b) shows the reduced problem
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either all sources have capacities less than K or all sinks have their demands less
than K (see Fig. l1a, b). The algorithms which have been derived from PDA,
EPA and EDA thus are denoted RPDA, REPA and REDA respectively.

6 Computational results

We coded the heuristics mentioned in Section 5 and tested them on the
randomly generated sets of problems. Differences between average results of
particular algorithms and lower bound d of optimal solution which was ob-
tained from (13) were compared.

d=¥ THIK] (13)

=1

where [ x7 denotes the smallest integer greater or equal to x. Tables I and 2
show values v in percentage determined by (14)

f—d
’ d U

where [ is the average number of visits of the solutions obtained by the tested
algorithm from the given set of problems and d is the average lower bound of
the optimal solutions.

The effect of H/K ratio on the value v was studied in the first series of tests,
where K was the vehicle capacity and uniform randomly generated source
capacities and sink demands were in range <0, H ). The number of sources was
approximatelly equal to the number of sinks and H = 20 for any problem of this
series. The set of problems with »n ranging from 10 to 100 by step 10 and with
20 problems for every n was generated for every K = 5, 10, ..., 50 (see Table 1).

The algorithm REPA proved to be the most effective. The effectiveness of the
reduction algorithm was proved for the value H/K > 1 too.

Table |
K 5 10 15" 20 25 30

Alg. 35 40 45 50

PDA 13.0 25.1 275 40.4 32.5 27.4 233 20.1 17.8 16.0
RPDA 8.8 225 24.5 40.4 325 274 233 20.1 17.8 16.0
EPA 8.9 11.4 11.4 11.8 6.5 38 2.1 1.5 1.3 0.9
REPA 25 6.1 6.8 11.8 6.5 38 2.1 1.5 1.3 0.9
EDA 12.1 21.2 23.7 25.1 22.6 18.1 14.5 11.7 10.8 9.2
REDA 5.8 14.7 16.1 25.1 22.6 18.1 14.5 11.7 10.8 9.2
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In the second series of tests the effect on algorithm effectivity of the ratio
(number of sources to the total number of nodes) was studied (see Table 2). The
capacity was equal to 5 for any problem of this series and the same number of
problems was generated for each value of the ratio as for the single capacity in
the first series.

Table 2

Ratio] g 0.2 0.3 0.4 0.5 0.6 07 | 08 0.9
Alg.
PDA 7.7 9.9 107 | 127 | 132 | 125 | 110 | 89 7.5
RPDA 5.0 6.4 7.3 8.8 8.8 8.5 72 | 60 5.1
EPA 6.7 7.1 77 8.2 8.9 8.8 87 | 78 7.1
REPA 2.4 23 1.9 2.1 22 33 4.1 46 47
EDA 738 9.6 104 | 117 | 125 | 120 97 | 83 7.1
REDA 47 5.5 5.7 6.3 6.0 5.3 44 | 36 2.9

Even in this series the algorithm REPA proved to be the best one.

Computational results were obtained on a computer EC 1045 (approximately
comparable to IBM 370) using FORTRAN H compiler. The Table 3 presents
the average CPU-time of one solution for particular methods and series in
milliseconds.

Table 3
Algorithm PDA RPDA EPA REPA EDA REDA
SERIES 1 17 13 21 21 21 21
SERIES 2 67 24 27 24 27 25
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SUHRN
ULOHA TRASOVANIA V MIKRORAJONOCH SIETE
JAROSLAV JANACEK, Zilina

V ¢lanku sa zaoberame ulohou trasovania v sieti, kde sa mnozina uzlov sklada zo zdrojov a
spotrebitelov a kde dopravné naklady medzi uzlami si zanedbatelné.

Ulohou je minimalizovat celkovy pocet navitev v uzloch. Je dokazana NP-obtiaznost alohy a
su dokazané vety o redukovatelnosti ulohy.

Na dosiahnutie priblizného rieSenia alohy bolo navrhnutych niekolko heuristik a bol skumany
vplyv pouzitia heuristiky na efektivnost rieSenia.

PE3IOME
3AZIAYN MAPIIPYTU3ALIMM B MUKPOPAMOHAX CETHU
SAPOCJIAB AHAYEK, Xunuua

B ctatbe dopMynupyeTcs 3afaya MapLIpyTH3alMH B MHKPOpailiOHE CETH, Ile MHOXECTBO
BEPIUMH COCTOMT M3 HCTOYHMKOB M MOTpeOMTENICH U rie paccTOSHUA MEXIy BEpIIMHAMM 3amyc-
KaeMbie.

MuHKManH3MpoBaTh Hano obllee YHCIIO MOCELEHHH BepIUMH. B cTaThe naHO NOKa3aTenbCTBO
NP-TpynHocTH 3ala44 M AOKa3aTeNIbCTBA TEOPeM 00 peayLMpOBAaHHH 3aJayH.

Jns npuOAM3HTENbHOrO pellieHHs 3a8a4n ObUIH co31aHbl TPHOJIMKEHHbBIE aITOPHTMBI U ObLTa
onpezesieHa 3aBHCHMOCTb MEXIy MCNOJIb30BaHHBIM AJITOPUTMOM U 3PHEKTHBHOCTBIO pellieHHS.
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