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ANOTHER VIEW OF DISTANCE SETS AND RATIO SETS

JAROSLAV CERVENANSKY, Bratislava

1 Introduction

If (X, o) is a metric space, then for every 4 — X we can define the set

D(4) ={o(x, y); x,ye A},

which is termed the distance set of the set A.
Analogously, for every 4 = (0, + o), we define

R(A)={f; x,yeA}.
y

The set R(A) is called the ratio set of A.

Many results concerning distance sets and ratio sets, which have already
become classical, can be found e.g. in [1], [2], [3], [4], [5], [7] or in more recent
papers [8] and [9].

The present paper deals with the following aspect of the mentioned topic. Let
(X, 0) be a metric space. Then to every subset 4 of X there corresponds
D(A4) = [0, + ). Thus we may consider the distance set as a value of a set-
valued function mapping the subsets of the metric space (X, o) into the subsets
of the interval [0, + c0). Some interesting propositions in this context can be
found in [6]:

Theorem 1.1. Let (X, o) be a metric space. There exists exactly one function
F defined on 2* with range in 21> **) and having the following properties:

(1) For every § # A c X we have 0e F(A) and F(0) = 0.

(2) For every A, B < X with A = B we have F(4) c F(B).

(3) For every A ¢ X we have d(F(A4)) = d(4).

4) If {0,a} = F(4), then for some compact set K< A we have
F(K) ={0, a}.

(5) For every two-point set {x, y} < X, the set F({x, y}) is closed.

The function described by the above properties is exactly D(A).

213



Remark. In (3), the notation d(M) means the usually defined diameter of a
set M in (X, o).

Proof of this theorem can be found in the above-mentioned paper [6], where
it is also shown that the properties (1) through (5) are not independent. More-
over, the following theorem holds.

Theorem 1.2.

a) Let F(A) have the properties (1) through (4). Then it also has the follow-
ing property, stronger than (5):

(5*) Image of any two-point set is a two-point set.

b) Properties (1) through (4) are independent.

2 Distance sets in quasi-metric spaces

It seems natural to study distance sets also in quasi-metric spaces.
Definition 2.1. Let X be a nonempty set. then a nonnegative function
0: X x X - [0, +o0) satisfying

) Vx,yeX: o(x,y) =0sx =y
and
2) Vx, y,zeX: o(x, z) < o(x, ¥) + o(y, 2)

will be called a quasi-metric and the pair (X, o) will be referred to as a quasi-
metric space. ‘

Remark. The notion of a quasi-metric space is not new. As far as the author
knows, it was introduced for the first time in [10]. Other papers dealing with
quasi-metric spaces are [11], [12] and [13]. Let us mention that the term oriented
metric space used in [12] and [13] is equivalent with the quasi-metric space.
However, none of the above papers deals with distance sets. They treat only
some topological properties of quasi-metric spaces, the topology being in some
sense derived from the quasi-metric.

In the present paper, topology is used only in connection with compactness.
The reader will see that this is really a formal matter. In fact, a two-point set is
compact in any topology.

Definition 2.2. Let (X, o) be a quasi-metric space and let A < X. Then the set

D(A) = {o(x, y); x,ye A}

will be termed the distance set of A.
Now, similarly as in the preceding section, let us try to consider D(A4) as a
set-valued function mapping the subsets of X into the subsets of [0, 4 00).
Note that, given M < X, we shall use the notation d(M) = sup{eo(x, y);
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x, y€ M} for the diameter of M in the quasi-metric space (X, ¢). The following
assertion holds.

Theorem 2.1. Let (X, 0) be a quasi-metric space. There exists exactly
one function F defined on 2* with range in 21 **) and having the following
properties:

(1) For every 0 # A = X we have 0e F(A4) and F(0) = 0.

(2) For every A, B < X with 4 = B we have F(A4) c F(B).

(3") For every 4 « X we have d(F(4)) = d(A).

(4) If {0, a} = F(A), then for some compact set K = 4 and some number b
we have F(K) = {0, a, b}.

(5) For every two-point set {x, y} = X, the set F({x, y}) is closed.

(6") If x, ye A satisfy a = o(x, y) e F(A4), then also o(y, x)e F(A).

The above properties characterize the function D.

Proof. First of all we show that the function D enjoys all the properties (1)
through (6'). As (1’) and (2’) are evident, we show that D has property (3'). If
A =0, then D(A4) = 0 and (3’) holds. Suppose that 4 # 0. Since 0e D(A4) and
D(A) = [0, +0), we get d(D(A)) =supD(A)=sup {o(x,r); X, yeA} =
= d(4). Now we verify (4'). Let {0, a} = D(A4). Therefore there exists at least
one pair of points x, ye 4 with o(x, y) = a. It suffices to put b = g(y, x) and
K ={x,y} in order to obtain D(K)= D({x, y}) = {0, a, b}. The remaining
properties (5’) and (6") follow immediately from the definition of D.

Now we are going to show that every function F with properties (1°) through
(6") equals D.

Suppose that a function F has the properties (1") through (6"). We show that
D(A) = F(A)forevery A « X.Letae D(A).If a = 0, then clearly ae F(a). Thus
it is sufficient to consider a # 0, ae D(A). Since ae D(A), there exist points
X, y€ A with x # y and a = g(x, y). Examine the two-point set {x, y}. By (3'),
the diameter d(F({x, y})) = d({x, y}) equals either o(x, y) or o(y, x). By (5),
however, F({x, y}) is a closed subset of [0, +00) containing 0. Therefore
d(F({x, y})) = sup F({x, y}) € F({x, y}). Hence o(x, ) or o(y, x) is in F({x, y}).
Now (6) implies that both a = o(x, y) and g( y, x) belong to F({x, y}).

It remains to prove the converse inclusion, i.e. that F(4) = D(A) for every
A< X. Leta # 0, ae F(A). Then also {0, a} = F(A4). However, (4') guarantees
the existence of a compact K = A and a number b with F(K) = {0, a, b}. In view
of (3’) we have

d({0, g, b}) = d(F(K)) = d(K) = o(x, y), )

for some points x, y from the compact K. On the other hand, the diameter of
the set on the right-hand side of (1) is equal to a or to b, therefore o(x, y) = a
or o(x,y) =b.

If o(x, y) = a, then it immediately follows that ae D(A). If o(x, y) = b, then
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a = o(x, y), which again is an element of D(A4). The proof of the theorem is
complete. B

It can be seen that axioms (1") through (6') stated in the preceding theorem
are not independent, but the following theorem is true.

Theorem 2.2. a) Properties (1°), (3") and (4’) imply (5") and even its following
stronger formulation

(5'*) If x, ye X, then F({x, y}) has at most three points.

b) Properties (1°), (2'), (3°), (4’) and (6’) are independent.

Proof. a) Let x, yeX. By (1’) we have O0e F({x, y}). If x =y, then (3")
obviously implies that F({x, y}) = {0}.

Now suppose that x # y. Hence d({x, y}) > 0, which by (3") implies that there
exists a point a # 0 with {0, a} < F({x, y}). Then by (4’) there exist a number b
and a compact K < {x, y} with F(K) = {0, a, b}. Since (3’) excludes both
K ={x} and K= {y}, we obtain K= {x, y} and hence F(K)= F({x, y}) =
= {0, a, b}.

b) The following example demonstrates that (6”) is indpendent of the remain-
ing properties.

Put X = {x, y}, define the quasimetric g by

ox,x)=0(y,y) =0, ox,y)=1, o(y,x)=2
and the function F by
, z}.

It is easy to see that F has the properties (1”) through (4'), but not (6).

To prove the indpendence of the remaining properties (1°) through (4), it is
- sufficient to consider the corresponding examples form [6], which show the
independence of the respective properties in a metric space. Since every metric
space is at the same time a quasi-metric space and (6) is automatically fulfilled
in every metric space, those examples whow the independence of our properties
(1) through (4’) as well. B

To conclude this section, let us consider another relation between metrics and
quasi-metrics.

Theorem 1.1 offers an axiomatic characterization of the distance set in metric
spaces. Theorem 2.1 does the same in quasi-metric spaces. When comparing the
two theorems, we see that the difference between a metric and a quasi-metric
reduces essentially to the difference between the axioms (4) and (4') in the
theorems. We can even state the following assertion.

Theorem 2.3. A quasi-metric @ is a metric if and only if the distance set can
be unambiguously characterized by properties (1) through (5) from Theo-
rem 1.1.
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Proof. One implication in our assertion is equivalent with theorem 1.1. Thus
it is sufficient to prove the converse implication.

Let o be a quasi-metric. We are going to show that if (1) through (5)
unambiguoously characterize the distance set D, then g is a metric. Suppose the
contrary, namely that if F is the function determined by properties (1) through
(5) from Theorem 1.1, then F(A) is identical with the distance set D(A) for every
set A4, but g is not a metric. Hence there exists a pair of distinct points x, ye X
with

o(x,y)=a#b=o0(y,x).

Put 4 = {x, y}. Then F(4) = D(A) = {0, a, b}. In paticular, {0, a} = F(A) and
by (4) there is a compact K = A4 with D(K) = F(K) = {0, a}. Since K < A, one
of the following three cases can arise: K = {x}, K = {y}, or K = {x, y}. On the
other hand, D({x}) = D({y}) = {0} and D({x, y}) = {0, a, b}, which contradicts
the way K has been chosen. The theorem is proved. m

3 Some analogies for ratio sets

As we have already mentioned in the introduction, questions concerning
ratio sets R(A4) of sets 4 = (0, + oo0) were studied simultaneously with those
concerning distance sets.

Let us have a look at the operation R from another viewpoint. Again, R(A)
can be understood as a value of a set-valued function defined on the family of
all subsets of the interval (0, + 00), whose range is a family of subsets of
(0, + 00). Therefore, we shall try to characterize the function R by some of its
properties. The following assertion is true.

Theorem 3.1. Let X = (0, + o0). There exists exactly one function F: 2¥ — 2¥
with the following properties:

V,: For every 0 # A = X we have 1€ F(A).
V,: F(0) = 0. If A c B, then F(4) c F(B).
Vi: Let AcX, m=sup4d < +o and n=inf4 > 0. Then d(F(A)) =

= (~+1)dca
m n
V,: If ae F(A), then leF(a).
a

Vs: If{l, 1, a}eF(A), then there is a subset K of 4 with F(K) = {—I-, 1, a}.
a

: If {x, y} X, then F({x, y}) is a compact set. The function described by
these properties is exactly the function R.
Proof. It is easy to see that R has all the properties V, through V. Only V,
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is worth verifying in more detail. From the assumptions of V, it follows that
d(A) = m — n. On the other hand. d(R(A4)) = M _ T This immediately implies
n m

that V; holds for R.

Conversely, suppose that a function F: 2¥ — 2% has the properties V, through
V,. First, we show that R(A4) < F(A4) for every A — X. Consider any ae R(A).
If a =1, then by V, we have a = 1€ F(4). Now let a # 1. Without loss in
generality we may assume that @ > 1. (For a < 1 we would proceed analogous-

ly.) Since ae R(A), there exist x, ye A with a = E, x>y. By V, we have
y
F({x, y}) = F(A), and V¢ implies that F({x, y}) is a compact set. Therefore we
may denote x, = min F({x, y}) and y, = max F({x, y}). From V; we infer that
0 <d(F({x,y}) = (l + —]->(x —y)=a-— l On the other hand, d(F({x, y})) =
x y a

= y, — X,. Therefore

yl—x,=a—l>0. 2)
a

From V, and from the definition of x, and y, it follows that x, = L , which after
34
substitution in (2) yields

f=tma—n ©)

The last equation reduces to

1
y%—(a——)y,—1=0.
a

From (2), (3) and from the positivity of the last equation’s discriminant it
follows that (3) has two distinct real solutions, only one of them being positive.
It is clear from the form of the equation (3) that the positive solution is y, = a.
Therefore ae F({x, y}) and hence ae F(A).

Now we prove the converse implication, namely that F(4) = R(A) for all
A c X. Assume ae F(A). If a =1, then evidently ae R(A4). If a # 1 (clearly

a > 0), V,implies that also le F(A). By V, we infer that 1 € F(A4) and by V, there
a

exists a nonempty set K < 4 with F(K) = {l, 1, a}. Since K # 0, from the
a

218



definition of the ratio set we get that either K is a one-point set (in that case
R(K) = {1}) or K contains at least two distinct points x # y, thatis, {x, y} = K.
Observe that, in virtue of V;. K cannot be a one-point set. In fact, K = {x} would

imply d(K) = 0. but d(F(K)) = > 0. Therefore there exist two distinct

1
a ——
a
points x # y with {x, y} = K. However, in this case from the definition of the

ratio set we infer that R(K) = { ; E, Z}. From what has already been proved

y X
we know that R(A4) < F(A) for every 4 — X. Hence {1, f, 2’_} c R(K) <
¥y X
< F(K) c {l 1, a}, and this implies a = Y or a =Z. Thus in either case we
a y X

have ae R(K) and hence ae R(4). &

Properties V, through V are not independent. We have listed them all just
for the sake of simplification of the theorem’s proof. Properties V, through V,
are sufficient to characterize the function R. In fact, the following assertion is
true.

Theorem 3.2. Suppose that a function F: 2% **) — 2 +%) hag the properties
V, through V. Then

a) F has also property V,;

b) Fhas property V; in the following stronger form: Image of any two-point
set is a three-point set;

c) Properties V, through V; are independent.

Proof.

a) Let 4 # 0. Hence there exists some x€ A. We show that F({x}) = {a}. If
it were a = 1, by V, we would have also leF({X}), and hence d(F({x})) > 0,
a

which is impossible. Therefore a = 1. However, by V, we have F(4) o F({x}) =
= {1}.

b) Let {x, y} = (0, + ), x # y. Then d({x, y}) > 0. On the other hand, V,
implies that d(F({x, y})) > 0. Therefore F({x}) contains, besides the point 1
(1e F({x, y}) by a)), at least one point a # 1. However, by V, we have

1 .. .
—e F({x, y}), hence F({x, y}) o {l, 1, a} . To complete the proof, it is sufficient
a a

to show that these two sets are equal.

Suppose the contrary. Let there exist be F({x, y}) with b¢ {l, 1, a}. By V,
a

we have also i—e F({x, y}). On the other hand, since {—l];, 1, b} < F({x, »}),
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V,implies that there is M < {x, y} with F(M) = {%, 1, b} . However, such a set

M cannot exist, because {x, y} has only four subsets, namely 0, {x}, {y}, and
{x, y}. their images are F(0) =0; F({x}) = F{y}) = {1} (owing to a)) and

F(x, y}) = {-1-, 1, a}. None of them equals {%, 1, b}, which proves that
a

F(x, y}) = {-‘1;, 1, a}.

¢) Mutual independence of properties V, through V; will be shown by the
following examples.
Example 3.1. Let A = (0, + ©), A # 0. Put m = sup 4, n = inf 4. Define

P {ﬂ, 1, ﬂ} if A is a nonempty compact set
F(A) = m n

R(A) otherwise.

Property V, is not satisfied, but V,, V, and V; hold. Since V, and V; are evident,

let us verify V, only. In fact, d(F(A4)) = moro <l + -1->(m —n)=
m

n n o m
= (l + l)d(A). Hence V; is true.
n m

Example 3.2. F(A) = {1} for all nonempty 4 < X and F(0) = 0. (We always
put X = (0, 4+ 00).)

It is easy to verify that the mapping F defined above has the properties V,,
V, and V, but not V,.

Example 3.3.Let A = X. Put F(Q) = 0. If A # 0, denote m = sup A, n = inf 4

and define

/ [1, <l+l>d(A)+ 1] if m<+ooandn>0
F(A) = n m
[1, +00) if m=+4+wworn=0.
For the function thus defined, the properties V,, V; and V; are fulfilled, but not
V4. :

Example 3.4. Let m, n have the same meaning as above. Put F(0) = 0 and,
for nonempty A, define
Fld) /[f_,ﬂ]’ if m<4owand n>0
= m n
AN .
0, +0), if m= 400 or n=0.
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This function F has the properties V,, V; nd V,, but V; is not fulfilled. In fact,
S 1 3 .4
it is sufficient to put 4 = {2, 4}, which gives F(4) = [5, 2]. Then {4_1’ 1, 3} c

. 3 4
< F(A), but no set M = A satisfies F(M) = {Z 1, 5}

The proof of the theorem is complete. B
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SUHRN

INY POHCAD NA MNOZINY VZDIALENOSTI A PODIELOVE MNOZINY
JAROSLAV CERVENANSKY, Bratislava
V praci je $tudovana problematika mnozin vzdialenosti v kvazimetrickych priestoroch. Je tu
ukazané, e mnozinu vzdialenosti D(4) mozno zaviest axiomaticky. Druha ¢ast tejto prace je

venovana moznosti axiomatického zavedenia podielovej mnoziny R(4), ako mnozinovej funkcie,
definovanej na intervale (0, + oc).

PE3IOME

JAPYTOM B3rjsJd HA MHOXECTBA PACCTOSHWM U MHOXECTBA JPOBEN
SAPOCJIAB YEPBEHAHCKMU, Bpatucnasa

B pa6oTe n3y4aroTCa MHOXECTBA PACCTOSIHHIA B KBa3UMETPHUYECKHX npocTpaHcTBax. [Tokasano,
YTO MHOXECTBO paccTOssHUH D(A) MOXHO BBECTH akcMoMaTH4ecku. Bo BTOpOii yacTi paboTel

o X
H3Yy4aeTCs BO3ZMOXKHOCTh AKCHOMATHYECKOr O BBEICHHSt MHOXeCTBa Apobeit R(A) = {—; X, )€ A}.
¥
A < (0. + =), kak GYHKLIUH MHOXKECTBA, ONpeae/IeHHOX Ha uHTepBaie (0, + ).
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