

Werk

Label: Article **Jahr:** 1990

PURL: https://resolver.sub.uni-goettingen.de/purl?312901348_56-57|log22

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

UNIVERSITAS COMENIANA ACTA MATHEMATICA UNIVERSITATIS COMENIANAE LVI—LVII

ON THE ASYMPTOTIC BEHAVIOUR OF SOLUTIONS OF FUNCTIONAL DIFFERENTIAL EQUATIONS WITH DEVIATING ARGUMENT

JÁN FUTÁK, Žilina

Let R^n denote the n — dimensional vector space with norm $|\cdot|$, $R_- = (-\infty, 0]$, $R_+ = [0, \infty)$ and $R = (-\infty, \infty)$. Let C be the Banach space of all continuous and bounded functions $g: R_- \to R^n$ with the sup-norm $\|\cdot\|$. Let $\psi: R_+ \to (0, \infty)$ be a nondecreasing continuous function.

Let D be the vector space of all continuous functions $g: \mathbb{R} \to \mathbb{R}^n$ which are bounded in \mathbb{R}_+ and ψ — bounded in \mathbb{R}_+ (i.e. $\psi(t)^{-1}|g(t)|$ is bounded on \mathbb{R}_+).

Let $\{I_k\}_{k=1}^{\infty}$ be a sequence of compact intervals such that $\bigcup_{k=1}^{\infty} I_k = R_+$, where $I_k = [0, k]$ and for every $k \in \mathbb{N}$ we have $I_k \subset I_{k+1} \subset R_+$.

Let F be a Fréchet space of all continuous functions $g: \mathbb{R}_+ \to \mathbb{R}^n$ with a locally convex topology defined by systems of seminorms

$$p_k(g) = \max_{t \in I_k} \psi^{-1}(t) |g(t)|, \qquad k \in \mathbb{N}.$$

Let F_1 be a Fréchet space of all continuous functions $g: R_+ \to R$ with a locally convex topology defined by systems of seminorms

$$p_{k_1}(g) = \max_{t \in I_k} |g(t)|_1, \qquad k \in \mathbb{N},$$

where $|\cdot|_1$ means the absolute value in R.

Let $\omega: \mathbb{R}_+ \to \mathbb{R}$ be a continuous function such that $\omega(0) = 0$ and $f: \mathbb{R}_+ \times \mathbb{C} \to \mathbb{R}^n$ be a continuous function.

If $h \in \mathbb{C}$, then denote $D_h = \{g \in D : g(t) = h(t), t \in \mathbb{R}_-\}$ with topology of locally uniformly convergence.

Denote $a^+ = \max\{a, 0\}$ for any $a \in \mathbb{R}$, $\operatorname{sgn} 0 = 0$ and $\operatorname{sgn} a = 1$ for a > 0.

If $g \in D$ and $u \in R$, then g_u is the function defined for $s \in R_-$ by $g_u(s) = g(u + s)$.

Let Q: $R \to R^{n \times n}$ be a continuous matrix function. Then Q_u denotes the matrix function defined by $Q_u(s) = Q(u+s)$ for $s \in R_-$ and $u \in R$. further, $Q_u g_u$, where $u \in R$, is defined by $Q_u(s) g_u(s) = Q(u+s) g(u+s)$ for $s \in R_-$. It is evident that for every $u \in R$, $g_u \in C$, $Q_u g_u \in C$. Let P: $R_+ \to R^{n \times n}$ be a continuous matrix function.

We consider the following initial problem

(1)
$$x'(t) = P(t)f(t, Q_{o(t)}x_{o(t)})$$

$$(2) x_0 = h,$$

where $h \in \mathbb{C}$ is uniformly continuous in \mathbb{R}_{-} .

By solution of (1), (2) we understand any function $x: \mathbb{R} \to \mathbb{R}^n$ which is continuous on \mathbb{R} , x(t) = h(t) for all $t \in \mathbb{R}_+$, x is differentiable on \mathbb{R}_+ and satisfies (1) everywhere on \mathbb{R}_+ .

Denote by X the set of all solutions of the initial problem (1), (2).

In the paper [1] an asymptotic properties of solutions of the equation (1) are studied in cases that (1) is a delay differential system. In the paper [2] an initial value problem for the functional differential equation with deviating argument $x'(t) = f(t, x_{\omega(t)})$ in Banach space is studied whereby the function f satisfies the Lipschitz condition. Further, the paper [2] deals with bounded solutions of an integral inequality with deviating argument.

The aim of this paper is to provide sufficient conditions for the existence of a solution $x \in X$ on \mathbb{R}_+ having some asymptotic properties. These results generalize the results of [1] and [2] where methods from [2] are applied.

We shall be employing the hypotheses:

(A₁)
$$\psi^{-1}(t) \int_0^t |P(s)f(s,0)| ds < K_1 < \infty \text{ for } t \in \mathbb{R}_+,$$

(A₂)
$$|P(t)[f(t, Qz_1) - f(t, Qz_2)]| \le \varphi(t, ||z_1 - z_2||)$$
 for $t \in \mathbb{R}_+$,

and for z_1 , $z_2 \in \mathbb{C}$, where $\varphi: \mathbb{R}_+ \times \mathbb{R}_+ \to \mathbb{R}_+$ is a locally integrable function on \mathbb{R}_+ for each fixed second argument and nondecreasing in the second argument for each fixed $t \in \mathbb{R}_+$,

(A₃)
$$\psi^{-1}(t) \int_0^t \varphi(s, c_1 + c_2 \operatorname{sgn} \omega^+(s) \psi[\omega^+(s)]) \, ds < K_2 < \infty,$$

for $t \in \mathbb{R}_+$ and any $c_1 \ge 0$, $c_2 \ge 0$,

$$(A_4) \qquad \int_0^t |P(s)f(s,0)| \, ds < \vec{K}_1 < \infty \quad \text{for} \quad t \in \mathbb{R}_+,$$

$$(\mathbf{A}_5) \qquad \int_0^t \varphi(s, c_1 + c_2 \operatorname{sgn} \omega^+(s) \, \psi[\omega^+(s)]) \, \mathrm{d}s < \mathbf{\vec{K}}_2 < \infty,$$

for $t \in \mathbb{R}_+$ and any $c_1 \ge 0$, $c_2 \ge 0$.

Remark 1. It is evident that from the assumption (A_4) follows the assumption (A_1) and from (A_5) follows (A_3) . If, moreover, the function ψ is bounded on R_+ then from (A_1) follows (A_4) and from (A_3) follows (A_5) .

Theorem 1. Let the assumptions (A_1) — (A_3) be satisfied. Then there exists a ψ —bounded solution $x \in X$ defined on R_{\perp} .

Proof. Let $\lambda \geqslant \psi^{-1}(0) ||h|| + K_1 + K_2$. Denote

$$M = \{g \in D_h: \psi^{-1}(t) | g(t) | \leq \lambda, \quad t \in R_+ \}.$$

It is evident that M is a convex closed set in D_h .

Define an operator T on M by

(3)
$$T(g)(t) = \begin{cases} h(t) & \text{for } t \in \mathbb{R}_{-} \\ h(0) + \int_{0}^{t} P(s)f(s, \mathbb{Q}_{\omega(s)}g_{\omega(s)}) ds, & \text{for } t \in \mathbb{R}_{+}. \end{cases}$$

We show that $TM \subset M$.

If $t \in \mathbb{R}_{-}$, then T(g)(t) = h(t).

If $t \in \mathbb{R}_+$, then with respect to $(A_1) - (A_3)$ we get

$$\begin{split} |\mathsf{T}(g)(t)| &\leqslant |h(0)| + \int_0^t |\mathsf{P}(s)f(s,\,\mathsf{Q}_{\omega(s)}g_{\omega(s)})| \,\,\mathrm{d}s \leqslant |h(0)| + \\ &+ \int_0^t |\mathsf{P}(s)f(s,\,0)| \,\,\mathrm{d}s + \int_0^t \varphi(s,\,\|g_{\omega(s)}\|) \,\,\mathrm{d}s \leqslant |h(0)| + \\ &+ \int_0^t |\mathsf{P}(s)f(s,\,0)| \,\,\mathrm{d}s + \int_0^t \varphi(s,\,\|h\| + \psi^{-1}(s)\,|g(s)| \,\,\mathrm{sgn}\,\omega^+(s)\,\psi[\omega^+(s)]) \,\,\mathrm{d}s \leqslant \\ &\leqslant |h(0)| + \int_0^t |\mathsf{P}(s)f(s,\,0)| \,\,\mathrm{d}s + \int_0^t \varphi(s,\,\lambda + \lambda\,\,\mathrm{sgn}\,\omega^+(s)\,\psi[\omega^+(s)]) \,\,\mathrm{d}s, \end{split}$$

from which it follows

$$|\psi^{-1}(t) T(g)(t)| \leq |\psi^{-1}(t) h(0)| + |\psi^{-1}(t)| \int_0^t |p(s)f(s,0)| ds + |\psi^{-1}(t)| \int_0^t |\varphi(s,\lambda+\lambda \operatorname{sgn} \omega^+(s) \psi[\omega^+(s)]) ds \leq \lambda.$$

Further, we show that T is continuous on M. Let $\{g^n\}_{n=1}^{\infty}$, $g^n \in M$, be a

sequence converging uniformly to $g \in M$ on every compact interval $I_k \subset R_+$. It is evident that with regard to the function ω , for every compact interval I_k there exists a compact interval I_l such that if $t \in I_k$, then $\omega(t) \in I_l$.

Let $\varepsilon > 0$ be an arbitrary number and I_k be a given compact interval. We show that on I_k we have

$$\psi^{-1}(t) \operatorname{T}(g^n)(t) \rightrightarrows \psi^{-1}(t) \operatorname{T}(g)(t).$$

Denote $m = \max_{t \in I_k} \psi^{-1}(t) = \psi^{-1}(0)$.

Let $g'' \rightrightarrows g$ for $t \in I_l$, where I_l is a compact interval corresponding to I_k . Since f is continuous and $g'' \rightrightarrows g$ on I_l , there exists a number $n_0 > 0$ such that for $n > n_0$ we have

$$(4) |P(t)[f(t, Q_{\omega(t)}g_{\omega(t)}^n) - f(t, Q_{\omega(t)}g_{\omega(t)})]| < \frac{\varepsilon}{m.k}, t \in I_k.$$

Using (3) and (4), for $t \in I_k$ and $n > n_0$ we obtain

$$|T(g^{n})(t) - T(g)(t)| \le \int_{0}^{t} |P(s)[f(s, Q_{\omega(s)}g_{\omega(s)}^{n}) - f(s, Q_{\omega(s)}g_{\omega(s)})]| ds < \frac{\varepsilon}{m \cdot k} \int_{0}^{t} ds < \frac{\varepsilon \cdot k}{m \cdot k} = \frac{\varepsilon}{m}.$$

From the last inequality for $t \in I_k$ it follows

$$p_k[T(g^n)(t) - T(g)(t)] < \frac{\varepsilon \cdot m}{m} = \varepsilon.$$

But this means that T is continuous on M.

We show that \overline{TM} is a compact set. Now, from the fact that $\overline{TM} \subset M$ it follows that, for the functions of \overline{TM} , the functions $\psi^{-1}(t) T(g)(t)$ are uniformly bounded on \mathbb{R}_+ .

If t_1 , $t_2 \in \mathbb{R}_+$, $t_1 < t_2$ are two arbitrary numbers, then we have the following estimate for T:

$$|\psi^{-1}(t_2) \operatorname{T}(g)(t_2) - \psi^{-1}(t_1) \operatorname{T}(g)(t_1)| \leq |[\psi^{-1}(t_2) - \psi^{-1}(t_1)] h(0)| +$$

$$+ \psi^{-1}(t_1) \int_{t_1}^{t_2} |P(s)f(s,0)| \, \mathrm{d}s + \psi^{-1}(t_1) \int_{t_1}^{t_2} \varphi(s,\lambda + \lambda \operatorname{sgn} \omega^+(s) \psi[\omega^+(s)]) \, \mathrm{d}s.$$

The right hand side of this inequality does not depend on g and therefore TM is a set of equicontinuous functions. Hence \overline{TM} is a compact set.

By Schauder—Tychonoff fixed point theorem, the operator T has a fixed point $g^* \in M$ and

$$g^{*}(t) = T(g^{*})(t) = \begin{cases} h(t) & \text{for } t \in \mathbb{R}_{-} \\ h(0) + \int_{0}^{t} P(s)f(s, Q_{\omega(s)}g_{\omega(s)}^{*}) ds & \text{for } t \in \mathbb{R}_{+}. \end{cases}$$

Hence $g^* \in X$ and is ψ — bounded. This completes the proof.

Theorem 2. Let the assumptions (A_2) , (A_4) , (A_5) be satisfied. Then the set of ψ — bounded solutions $x \in X$ defined on R_+ is non empty and for every such solution $x \in X$ there exists a constant vector $\alpha \in \mathbb{R}^n$ such that

(V)
$$\lim_{t \to \infty} \psi^{-1}(t) x(t) = \alpha.$$

Proof. Since the condition (A_4) implies the condition (A_1) and (A_5) implies (A_3) , from Theorem 1 we obtain that there exists a ψ — bounded solution $x \in X$ on R_+ .

We show that (V) holds. Let $x \in X$ be a ψ —bounded solution defined on \mathbb{R}_+ . Then from (3) we get

(5)
$$\psi^{-1}(t) x(t) = \psi^{-1}(t) h(0) + \psi^{-1}(t) \int_0^t P(s) f(s, Q_{\omega(s)} x_{\omega(s)}) ds, \quad t \in \mathbb{R}_+$$

Monotonicity of the function ψ on R_+ implies the existence of the limit

(6)
$$\lim_{t\to\infty}\psi^{-1}(t)h(0),$$

and the condition (A₄) implies the existence of the limit

(7)
$$\lim_{t \to \infty} \psi^{-1}(t) \int_0^t \mathsf{P}(s) f(s,0) \, \mathrm{d}s.$$

Similarly, from the condition (A_5) it follows that there exists the limit

(8)
$$\lim_{t \to \infty} \psi^{-1}(t) \int_0^t \varphi(s, \lambda + \lambda \operatorname{sgn} \omega^+(s) \psi[\omega^+(s)]) \, \mathrm{d}s.$$

From the existence of limits (6), (7) and (8) it follows the existence of the limit

$$\lim_{t\to\infty}\psi^{-1}(t)\int_0^t \mathsf{P}(s)f(s,\,\mathsf{Q}_{\omega(s)}x_{\omega(s)})\;\mathsf{d}s.$$

Then from (5) we obtain that there exists $\lim_{t \to \infty} \psi^{-1}(t) x(t)$. Hence there exists $\alpha \in \mathbb{R}^n$ such that (V) is true. Thus the theorem is proved.

Theorem 3. Let 0 < q < 1 and $p \in \mathbb{R}_+$ be arbitrary numbers. Let the function $\varrho \colon \mathbb{R}_+ \times \mathbb{R}_+ \to \mathbb{R}_+$ be locally integrable in the first argument and nondecreasing in the second argument and let for each $t \in \mathbb{R}_+$ and any $r \in \mathbb{R}_+$

(9)
$$\int_0^t \varrho(s,r) \, \mathrm{d}s \leqslant qr + p.$$

Let $c \ge 0$ be a real number.

If $u(t) \ge 0$ is a real continuous solution of the inequality

(10)
$$u(t) \leqslant c + \int_0^t \varrho(s, u[\omega^+(s)]) \, \mathrm{d}s, \qquad t \in \mathbb{R}_+,$$

then there exists a real continuous solution v = v(t, c) of the equation

(11)
$$v(t) = c + \int_0^t \varrho(s, v[\omega^+(s)]) \, ds, \qquad t \in \mathbb{R}_+,$$

such that

$$(12) u(t) \leqslant v(t,c)$$

is true for $t \in \mathbb{R}_{+}$.

Proof. Consider the Fréchet space F₁. Let

$$\{T_1^m u(t)\}_{m=1}^{\infty}$$

be a sequence on F₁, where

(14)
$$T_1^m u(t) = c + \int_0^t \varrho(s, T_1^{m-1} u[\omega^+(s)]) ds, \qquad t \in \mathbb{R}_+.$$

We show that the operator T_1 is continuous on F_1 . Let $\{u^n\}_{n=1}^{\infty}$, $u^n \in F_1$ be a sequence and $v \in F_1$ such that

$$(15) u^n \rightrightarrows v \quad \text{as} \quad n \to \infty,$$

on every compact interval $I_k \subset R_+$. Let $\varepsilon > 0$ be an arbitrary number and I_k be a given compact interval. Let I_i be a compact interval such that if $t \in I_k$ then $\omega(t) \in I_i$. Let (15) hold on I_i . Since ϱ is a continuous function and (15) hold on I_i , there exists a number $n_0 > 0$ such that for any $n > n_0$ we have

$$|\varrho(t,\mathsf{T}_1u^n[\omega^-(t)])-\varrho(t,\mathsf{T}_1v[\omega^+(t)])|_1<\frac{\varepsilon}{k},\qquad t\!\in\!\mathsf{I}_k.$$

Then for $t \in I_k$ and $n > n_0$ we obtain

$$|\mathsf{T}_1 u''(t) - \mathsf{T}_1 v(t)|_1 \leqslant \int_0^t [|\varrho(s, \mathsf{T}_1 u''[\omega^+(s)]) - \varrho(s, \mathsf{T}_1 v[\omega^+(s)])|_1] \, \mathrm{d}s < \frac{\varepsilon \cdot k}{k} = \varepsilon.$$

From the last inequality for $t \in I_k$ it follows

$$p_{k_1}[T_1u^n(t) - T_1v(t)] \to 0$$
 as $n \to \infty$.

Hence the operator T_1 is continuous on F_1 .

Let I_1 be a compact interval coresponding to the interval I_k in the sense as above. Since u is a continuous function on R_+ , there exists a number $c_0 \in R_+$ such that on I_l the inequality

$$|u[\omega^+(t)]|_1 \leq c_0$$

is true.

Then from (14) with regard to (9) we get

$$|T_1^m u(t)|_1 \le c + \int_0^t \varrho(s, |T_1^{m-1} u[\omega^+(s)]|_1) \, ds \le c + \int_0^t \varrho(s, c_{m-1}) \, ds \le c$$

$$\le c_m = a + qc_{m-1}$$

for any $t \in I_k$ and any $m \in \mathbb{N}$, where a = c + p.

By using the principle of mathematical induction we can prove that

(16)
$$c_m = a + aq + aq^2 + \dots + aq^{m-1} + c_0 q^m.$$

From (16) one can see that

$$s_m = a + aq + aq^2 + ... + aq^{m-1}$$

is the m-th partial sum of the geometric series

$$\sum_{m=1}^{\infty} aq^{m-1}$$

with the quotient 0 < q < 1. Hence the series (17) converges to the sum $\frac{a}{1-q}$.

Then from (16) we get the following estimate

$$|c_m|_1 \leqslant \frac{a}{1-q} + c_0,$$

which implies that

$$|T_1^m u(t)|_1 \leqslant \frac{a}{1-q} + c_0.$$

But this means that the sequence (13) is uniformly bounded on every compact interval I_k .

Let $t_1, t_2 \in \mathbb{R}_+$, $t_1 < t_2$ be two arbitrary numbers. Then we obtain the following estimate

$$|T_1^m u(t_2) - T_1^m u(t_1)|_1 \leq \int_{t_1}^{t_2} \varrho(s, |T_1^{m-1} u[\omega^+(s)]|_1) \, \mathrm{d}s \leq \int_{t_1}^{t_2} \varrho(s, K) \, \mathrm{d}s,$$

where
$$K = \frac{a}{1-q} + c_0$$
.

The right hand side of this inequality does not depend on u and therefore the sequence (13) is a set of equicontinuous functions on I_k . Hence the sequence (13) is a compact set on every compact interval I_k .

In view of monotonicity of T₁ on F₁, the inequality (10) implies that

$$u(t) \leqslant T_1 u(t) \leqslant T_1^2 u(t) \leqslant \ldots \leqslant T_1^m u(t) \leqslant \ldots$$

The compactness and monotonicity of the sequence (13) implies that the sequence (13) converges uniformly on every compact subinterval of R_+ to some continuous function v(t) and hence converges in the space F_1 to the element $v \in F_1$. From the continuity of the operator T_1 it follows that the function v(t) = v(t, c) is a solution of the equation (11), hence (12) is true. This completes the proof.

If

(18)
$$\varrho(t,s) = n(t) \, \nu(s)$$

then Theorem 3 implies the following corollary.

Corollary 1. Let 0 < q < 1 and $p \in \mathbb{R}_+$ be arbitrary numbers. Let $n: \mathbb{R}_+ \to \mathbb{R}_+$ be a locally integrable function on \mathbb{R}_+ such that the function

$$\int_0^t n(s) \, \mathrm{d}s$$

is bounded on R_+ . Let $v: R_+ \to R_+$ be a continuous and nondecreasing function such that for $r \in R_+$

$$v(r) \leq qr + p$$
.

Let $c \ge 0$ be a real number.

If $u(t) \ge 0$ is a real continuous solution of the inequality (10) (where ϱ is given in (18)), then there exists a real continuous solution v = v(t, c) of the equation (11) on R_- such that (12) is true.

Remark 2. If $\varrho(t, s) = n(t)s$ then Theorem 3 is a special case of Lemma 3 in [2].

Denote $x \in X$ by x(...h).

Theorem 4. Assume that for the function $\varrho: \mathbb{R}_+ \times \mathbb{R}_+ \to \mathbb{R}_+$ the conditions

 (A_2) , (9) hold. Then for any $h_1, h_2 \in \mathbb{C}$, h_1, h_2 are uniformly continuous on \mathbb{R}_- and $h_1(0) = h_2(0) = 0$ and for the solution x is true

(19)
$$||x_t(., h_2) - x_t(., h_1)|| \le v(t, ||h_2 - h_1||) || for t \in \mathbb{R}_+,$$

where $v(t, ||h_2 - h_1||)$ is the real continuous solution of (11) for $c = ||h_2 - h_1||$. **Proof.** Denote

$$u(t) = \sup_{-\infty < s \le t} |x(s, h_2) - x(s, h_1)| = ||x_t(., h_2) - x_t(., h_1)||, \qquad t \in \mathbb{R}_+.$$

By (A_2) it follows that

$$|x(t, h_2) - x(t, h_1)| \leq |h_2(0) - h_1(0)| + \int_0^t \varrho(s, ||x_{\varrho(s)}(., h_2) - x_{\varrho(s)}(., h_1)||) ds,$$

for $t \in \mathbb{R}_+$, which we have

$$u(t) \leq ||h_2 - h_1|| + \int_0^t \varrho(s, u[\omega^+(s)]) ds, \quad t \in \mathbb{R}_+.$$

Thus u(t) satisfies (10) with $c = ||h_2 - h_1||$. It is evident that u(t) is a continuous function. The inequality (19) follows from Theorem 3. This completes the proof. Next we shall consider the initial problem

(20)
$$y'(t) = A(t)y(t) + f(t, y_{o(t)})$$

$$(21) y_{+} = h,$$

where $A: \mathbb{R}_+ \to \mathbb{R}^{n \times n}$ is a continuous matrix function, and f, h have the same meaning as above.

Let Y be the set of all solutions of the initial problem (20), (21). Let U(t) be a fundamental matrix for the system

$$(22) u'(t) = A(t)u(t)$$

such that U(0) = I denotes the identity matrix and $U^{-1}(t)$ is the inverse matrix to U(t) on R_{+} .

Denote

$$P(t) = U^{-1}(t) \quad \text{and} \quad Q(t) = \begin{cases} U(t) & \text{for } t \in \mathbb{R}_+, \\ I & \text{for } t \in \mathbb{R}_-. \end{cases}$$

Theorem 5. Assume that for the matrices P, Q and the function f from (20) the hypotheses of Theorem 2 hold. Then the set of the solutions $y \in Y$ defined on R_+ is non empty and for every such solution $y \in Y$ there exists a constant vector $\alpha \in \mathbb{R}^n$ such that

(23)
$$y(t) = Q(t)x(t)$$
 and $\lim_{t \to \infty} \psi^{-1}(t)x(t) = \alpha$.

Proof. By the substitution

$$(24) y(t) = Q(t)x(t)$$

we can transform every initial problem (20), (21) to the initial problem (1), (2), where $y_0 = x_0$. Relationship between sets X, Y is determined by (24).

From Theorem 1 and from (24) it follows that there exists a solution $y \in Y$ defined on \mathbb{R}_+ . From Theorem 2 moreover it follows that there exists a constant vector $\alpha \in \mathbb{R}^n$ such that (23) holds.

The above assertions imply the following corollaries.

Corollary 2. Assume that the hyptheses of Theorem 5 are satisfied and, furthermore, let $\lim_{t\to\infty} U(t)$ be a constant matrix. Then the set of ψ — bounded solutions $y\in Y$ defined on R_+ is non empty and for every such solution $y\in Y$ it is true

(V')
$$\lim_{t \to \infty} \psi^{-1}(t) y(t) = \tilde{\alpha}, \qquad \tilde{\alpha} \in \mathbb{R}^n.$$

Corollary 3. Assume that the hypotheses of Theorem 5 are satisfied and let all solutions of the system (22) be bounded on R_+ . Let the function ψ be bounded on R_- . Then for each solution $y \in Y$ defined on R_+ there exists a solution u(t) of (22) on R_+ such that

(25)
$$|y(t) - u(t)| \to 0 \quad \text{as} \quad t \to \infty.$$

Proof. Since all solutions u(t) of (22) are bounded on R_+ , there exists a number r > 0 such that

$$|U(t)| \le r$$
 for $t \in \mathbb{R}_+$.

We know that if $a \in \mathbb{R}^n$ is a constant vector then the function u(t) = U(t)a is a solution of (22).

Let $y \in Y$ be a solution defined on \mathbb{R}_+ . Theorem 5 implies that for the solution y there exists a constant vector $\alpha \in \mathbb{R}^n$ such that for $t \in \mathbb{R}_+$ (23) holds. Consider the solution u(t) of (22) in the form $u(t) = U(t) \alpha$. Then we get

$$|y(t)-u(t)|=|\mathrm{U}(t)x(t)-\mathrm{U}(t)\alpha|\leqslant |\mathrm{U}(t)||x(t)-\alpha|\leqslant r|x(t)-\alpha|\to 0,$$

as $t \to \infty$, which is (25).

REFERENCES

- 1. Futák, J.: On the asymptotic behaviour of the solutions of nonlinear delay differential systems. Math. Slovaca 31, 1981, N₃, 233—242.
- 2. Šeda, V.: Functional differential equations with deviating argument. Proceedings of the International conference on differential equations. Brno, 1985, p. 161—170.

Author's adress:

Received: 1. 6. 1988

Ján Futák Katedra matematiky VŠDS Marxa a Engelsa 25 010 26 Žilina

SÚHRN

O ASYMPTOTICKOM CHOVANÍ RIEŠENÍ FUNKCIONÁLNO-DIFERENCIÁLNYCH ROVNÍC S POSUNUTÝM ARGUMENTOM

JÁN FUTÁK, Žilina

V práci sú uvedené postačujúce podmienky pre to, aby existovalo ψ — ohraničené riešenie funkcionálno-diferenciálnej rovnice s posunutým argumentom tvaru $x'(t) = P(t) f(t, Q_{\omega(t)} x_{\omega(t)})$ a naviac, aby toto riešenie malo isté asymptotické vlastnosti.

РЕЗЮМЕ

ОБ АСИМПТОТИЧЕСКОМ ПОВЕДЕНИИ РЕШЕНИЙ ФУНКЦИОНАЛЬНО-ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ОТКЛОНЯЮЩИМСЯ АРГУМЕНТОМ

ЯН ФУТАК, Жилина

В работе приведены достаточные условия для того, чтобы существовало ψ — ограниченное решение функционально-дифференциального уравнения с отклоняющимся аргументом $x'(t) = P(t) f(t, Q_{\omega(t)} x_{\omega(t)})$ и, кроме того, чтобы это решение имело какие-то асимптотические свойства.