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ON THE ASYMPTOTIC BEHAVIOUR OF SOLUTIONS
OF FUNCTIONAL DIFFERENTIAL EQUATIONS
WITH DEVIATING ARGUMENT

JAN FUTAK, Zilina

Let R" denote the n — dimensional vector space with norm ||,
R_=(—00,0],R, =[0, ©)and R = (— o0, o). Let C be the Banach space of
all continuous and bounded functions g: R_ — R” with the sup-norm || - ||. Let
v: R, — (0, o0) be a nondecreasing continuous function.

Let D be the vector space of all continuous functions g: R — R” which are
bounded in R_ and y — bounded in R, (i.e. w(¢)~"|g(¢)| is bounded on R ).

Let {I,};"_ | be a sequence of compact intervals such that ( ) I, = R, where
k=1

I, = [0, k] and for every ke N we have I, < I, ,, < R,.
Let F be a Fréchet space of all continuous functions g: R, — R” with a
locally convex topology defined by systems of seminorms

Pi(g) = max v '()Ig()l, keN.
el

Let F, be a Fréchet space of all continuous functions g: R, - R with a
locally convex topology defined by systems of seminorms

P, (@) =max [g()),,  keN,

where |-|, means the absolute value in R.

Let w: R, >R be a continuous function such that ®(0) =0 and
f: R, x C— R" be a continuous function.

If he C, then denote D, = {ge D: g(¢) = h(t), te R_} with topology of locally
uniformly convergence.

Denote a* = max {a, 0} for any aeR, sgn0 = 0 and sgna = 1 for a > 0.

If geD and ueR, then g, is the function defined for seR_ by
8.(s) = g(u + s).
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Let Q: R - R"*” be a continuous matrix function. Then Q, denotes the
matrix function defined by Q,(s) = Q(u + s) for se R_ and ueR. further, Q,g,,
where ue R, is defined by Q,(s) g,(s) = Q(u + s) g(u + s) for se R_. It is evident
that for every ue R, g,€C, Q,g,€C. Let P: R, - R"*" be a continuous matrix
function.

We consider the following initial problem

) x'(2) = P(O)f(t, Qo Xaxn)
(2) xo = hs

where € C is uniformly continuous in R _.

By solution of (1), (2) we understand any function x: R — R” which is
continuous on R, x(¢) = A(¢) for all re R_, x is differentiable on R, and satisfies
(1) everywhere on R, .

Denote by X the set of all solutions of the initial problem (1), (2).

In the paper [1] an asymptotic properties of solutions of the equation (1) are
studied in cases that (1) is a delay differential system. In the paper [2] an initial
value problem for the functional differential equation with deviating argument
x’(t) = f(t, x,) in Banach space is studied whereby the function f satisfies the
Lipschitz condition. Further, the paper [2] deals with bounded solutions of an
integral inequality with deviating argument.

The aim of this paper is to provide sufficient conditions for the existence of
a solution xe X on R, having some asymptotic properties. These results
generalize the results of [1] and [2] where methods from [2] are applied.

We shall be employing the hypotheses:

(A) y/"(t)jllP(s)f(s, 0)ds<K,<oo for teR,,
0

(Ay) PO Qz) — f(2, sz)jl <ot llzy — z)) for reR,,

and for z,, z,eC, where ¢: R, x R, — R is a locally integrable function on
R, for each fixed second argument and nondecreasing in the second argument
for each fixed teR,,

A) oy j P(s, ¢, + ¢ sgn 0+ (s) ylo* (5)]) ds < K, < o,
0

for teR, and any ¢, > 0, ¢, = 0,

(Ay) J- [P(s)f(s,0)| ds < K, <00 for teR,,
0
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(Ay) J (s, ¢, + ¢, sgn*(5) wlo* ) ds < &, < oo,

for reR, and any ¢, > 0, ¢, > 0.

Remark 1. It is evident that from the assumption (A,) follows the assumption
(A,) and from (Aj;) follows (A,). If, moreover, the function y is bounded on R,
then from (A)) follows (A,) and from (A,) follows (Aj;).

Theorem 1. Let the assumptions (A,)—(A;) be satisfied. Then there exists a
y — bounded solution xe X defined on R, .

Proof. Let 1 > y~'(0) |4| + K, + K,. Denote

M={geD,: vy '(1)|g(t)| < 4, teR,}.

It is evident that M is a convex closed set in D,.
Define an operator T on M by

h(t) for reR_

II(O) + J' P(S)f(S, Qm(s)gm(x)) dS, fOI' te R+'

0

3 T(g)(1) =

We show that TM < M.
If teR_, then T(g)(¢z) = h(2).
If rte R, then with respect to (A,) — (A;) we get

T(&)(0)] < 1h(O)] + f IP(S)£ (5, Quenars)] ds < (O] +
0
+ j IP(s) £ (s, 0)] ds + j 05, gucs ) ds < JA(O)] +
0 0
+ J P(s) (s, 0)] ds + f o(s. 1] + v='() g(s)] sgn w*(s) o™ ()]) ds <
0 0

< Ih(O)] + f 'IP(s)/ (s, 0)] ds + L 0(s, A + A sgn0*(s) wlw* (5)]) ds,
0

from which it follows

W= OTEWI < 1w="O)hO) + v-'() f 1p(5)/(s, 0)] ds +

+ v/"(t)J” o, A+ Asgno*(s) Yo" (s)]) ds < A.
0

Further, we show that T is continuous on M. Let {g"}*_,, g"€M, be a

n=1»
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sequence converging uniformly to ge M on every compact interval I, =« R, . It
is evident that with regard to the function @, for every compact interval I, there
exists a compact interval I, such that if z€I,, then w()€l,.

Let £ > 0 be an arbitrary number and I, be a given compact interval. We
show that on I, we have

v~ ()T 3w ' (1) T(g)(0).
Denote m = max v '(t) = w1 (0).

Let g" 33 g for tel,, where ], is a compact interval corresponding to I,. Since f
is continuous and g” 3 g on I,, there exists a number n, > 0 such that for n > n,
we have

4) IP(OLS (1, Quin&lxey) — (1 Quinoi)]l < ﬁ tel,.

Using (3) and (4), for tel; and n > n, we obtain

IT(g")(r) — T(g)()] < L [P()LS (5, Quin8ars) — S (5: Qugo&ax)]l ds <

0 m.k

€
m.k m

From the last inequality for €1, it follows

pT(E™ (1) — T(g)(1)] < 87'" =

But this means that T is continuous on M.

We show that TM is a compact set. Now, from the fact that TM < M it
follows that, for the functions of TM, the functions y~'(z) T(g)(¢) are uniformly
bounded on R, .

If t;, LeR,, t, < t, are two arbitrary numbers, then we have the following
estimate for T:

W) T(g) (1) — v~ ) T@)W) < Iy (1) — v~ ()1 A(O)] +
+ @) j IPs)f (s, ) ds + v (2) j "p(s, A + A sgno*(s) plo* (s)]) ds.

The right hand side of this inequality does not depend on g and therefore TM
is a set of equicontinuous functions. Hence TM is a compact set.
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By Schauder—Tychonoff fixed point theorem, the operator T has a fixed
point g*eM and

h(t) for teR_

140 = T(e™)) = h(O)+J,P(S)f(saQamg?&s») ds for reR..

0

Hence g*e X and is y — bounded. This completes the proof.

Theorem 2. Let the assumptions (A,), (A,), (A;) be satisfied. Then the set of
w — bounded solutions x € X defined on R, is non empty and for every such
solution x € X there exists a constant vector @€ R" such that

V) lim v~ (1) x(1) = a.

Proof. Since the condition (A,) implies the condition (A,) ar;d (As) implies
(A,), from Theorem 1 we obtain that there exists a ¥ — bounded solution xe X
onR,.

We show that (V) holds. Let xe X be a y— bounded solution defined on R .
Then from (3) we get

) v ') x(t) =y () h(O) + W"(I)J P(s)f (s, QunXan) ds.  1€R,.

0

Monotonicity of the function y on R implies the existence of the limit

(6) lim y~'(2) h(0),
and the condition (A,) implies the existence of the limit
(7 lim w"(z)f P(s)f (s, 0) ds.

fi=> % 0

Similarly, from the condition (A;) it follows that there exists the limit

(8) | lim y/—'(t)j' @(s, A+ Asgno(s) ylo® (s)]) ds.
0

1= L

From the existence of limits (6), (7) and (8) it follows the existence of the limit
im ') || PS5 Q) .
11— % 0

Then from (5) we obtain that there exists lim v~ '(¢) x(r). Hence there exists

ae R" such that (V) is true. Thus the theorem is proved.
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Theorem 3. Let 0 < g < 1 and pe R, be arbitrary numbers. Let the function
o: R, x R, —» R, belocally integrable in the first argument and nondecreasing
in the second argument and let for each te R, and any reR

) J o(s, r)ds < gr + p.
0

Let ¢ > 0 be a real number.

If u(t) > 0 is a real continuous solution of the inequality

rt

(10) u(t) < c+ | ofs, ufw™(s)]) ds,
’ 0

o

teR,,

then there exists a real continuous solution v = v(t, ¢) of the equation

~!

(1D v(t)=c+ | ofs, v[w*(s)]) ds,
JO

such that

(12) u(t) < u(t, ¢)

is true for te R, .
Proof. Consider the Fréchet space F,. Let

(13) {Tiu(n)},

m=1

be a sequence on F,, where

!

(14) T{'u(t) =c + J o(s, T"~ 'u[w™* (5)]) ds,

0

teR,,

teR,.

We show that the operator T, is continuous on F,. Let {u"}”_,, u"€F, be a

sequence and v € F, such that

(15) u"33r as n-—o o,

Sn=1s

on every compact interval I, « R, . Let £ > 0 be an arbitrary number and I, be
a given compact interval. Let I, be a compact interval such that if 7el, then
w(t)el,. Let (15) hold on I,. Since g is a continuous function and (15) hold on
I,. there exists a number 7, > 0 such that for any n > n, we have

lo(r. To"[0™ (1)) — o(r. Tyr[@™ (D)), < f

Then for rel, and n > n, we obtain

tel,.

ek

[Tyu"(t) = Tye()], < J llots. Tu"[w~(s)]) — o(s. T v[o™ (s)D],] ds < ey =
0
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From the last inequality for rel, it follows
pi [T () = Tov()] >0 as n— oo.
Hence the operator T, is continuous on F,.
Let I, be a compact interval coresponding to the interval I, in the sense as

above. Since u is a continuous function on R, there exists a number ¢,eR |
such that on I, the inequality

luf@™ (D], < ¢

is true.
Then from (14) with regard to (9) we get

1

TV w0l < c + j o(s, [TV~ 'u[w* ()]l)) ds < ¢ + f o(s, ¢, 1) ds <
X :

( 0

S(‘rlrza_+‘q(‘rrr—|

for any tel, and any meN, where a = ¢ + p..
By using the principle of mathematical induction we can prove that

(16) Chn=a+aq+aq’+ ... +aq" "' + c,q".
From (16) one can see that

m—1

s,,,=a+aq+aq2+...+aq

is the m-th partial sum of the geometric series

(]7) Z aqm—l

with the quotient 0 < ¢ < 1. Hence the series (17) converges to the sum ] .
—q
Then from (16) we get the following estimate

a
|lel = Co»
l—g¢
which implies that

a
ITTu()) < T

But this means that the sequence (13) is uniformly bounded on every compact
interval I,.
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Let,,t,e R, 1, < t,be two arbitrary numbers. Then we obtain the following
estimate

I

Tru(y) — TPu(n))s < f ols, TP~ "ufw* (s)],) ds < J " ol K) ds,

n

where K = —%— + ¢.
l—gq
The right hand side of this inequality does not depend on u and therefore the
sequence (13) is a set of equicontinuous functions on I,. Hence the sequence (13)
is a compact set on every compact interval I,.
In view of monotonicity of T, on F,, the inequality (10) implies that

u) <Tu@®) <T@ < ... <T'u(t) < ...

The compactness and monotonicity of the sequence (13) implies that the
sequence (13) converges uniformly on every compact subinterval of R, to some
continuous function v(¢) and hence converges in the space F, to the element
veF,. From the continuity of the operator T, it follows that the function
v(t) = v(t, ¢)is a solution of the equation (11). hence (12) is true. This completes
the proof.

If

(18) o(t, s) = n(1) V(s)

then Theorem 3 implies the following corollary.
Corollary 1. Let 0 < ¢ < 1 and pe R | be arbitrary numbers. Letn: R, - R
be a locally integrable function on R, such that the function

J",n(s) ds
0

is bounded on R _. Let v: R_ —» R _ be a continuous and nondecreasing func-
tion such that for reR._

v(r) < gr + p.

Let ¢ = 0 be a real number.

If u(r) = 01is a real continuous solution of the inequality (10) (where gis given
in (18)). then there exists a real continuous solution v = t(t, ¢) of the equation
(11) on R_ such that (12) is true.

Remark 2. If o(r. s) = n(r)s then Theorem 3 is a special case of Lemma 3
in [2].

Denote xe X by x(.. h).

Theorem 4. Assume that for the function o: R_ x R_ — R the conditions
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(A,), (9) hold. Then for any h,, h,€ C, h,, h, are uniformly continuous on R _ and
h,(0) = h,(0) = 0 and for the solution x is true

(19) Ix(.5 ) — X, AN < o(t, |, — hyf]) for teR,,

where v(z, | h, — h,||) is the real continuous solution of (11) for ¢ = ||h, — h,||.
Proof. Dencte

u(t) = Sup |X(S, hZ) - X(S, hl)l = HX,(., hZ) - xl(" hl)”s IER+.

—L<$El

By (A,) it follows that

t

Ix(t, hy) — x(1, bl < |hy(0) — Ay (0)] + J O, Xy (- + 1) — xuq(-, A1) ds,

0

for rte R, which we have

u(t) < Iy — by + f ‘os, ul@* () ds,  teR,.

0

Thus u(r) satisfies (10) with ¢ = ||h, — h,||. It is evident that u(#) is a continuous
function. The inequality (19) follows from Theorem 3. This completes the proof.
Next we shall consider the initial problem

(20) y'(@) =A@ y(1) + 11, Yoxry)
@1 Yi=h,

where 4: R, - R"*" is a continuous matrix function, and f, h have the same
+
meaning as above.

Let Y be the set of all solutions of the initial problem (20), (21). Let U(z) be
a fundamental matrix for the system

(22) u'(t) = A(t) u(r)
such that U(0) = I denotes the identity matrix and U~'(¢) is the inverse matrix

to U(r) on R,.
Denote

i U(t) for teR,,
@ (6 and Q) {l for teR_.

Theorem 5. Assume that for the matrices P, Q and the function f from (20)
the hypotheses of Theorem 2 hold. Then the set of the solutions y€ Y defined
on R, is non empty and for every such solution ye Y there exists a constant
vector a€ R" such that

(23) y(t) = Q(t)x(t) and Iim v '()x() = a
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Proof. By the substitution
(24) y(1) = Q(1) x(1)

we can transform every initial problem (20), (21) to the initial problem (1), (2),
where y,.= x,. Relationship between sets X, Y is determined by (24).

From Theorem 1 and from (24) it follows that there exists a solution ye Y
defined on R, . From Theorem 2 moreover it follows that there exists a constant
vector ae R" such that (23) holds.

The above assertions imply the following corollaries.

Corollary 2. Assume that the hyptheses of Theorem 5 are satisfied and,
furthermore, let Iim U(r) be a constant matrix. Then the set of y — bounded
solutions y € Y defined on R, is non empty and for every such solution ye Y it
is true
(V) lim v (D y(t) = a, aeR".

Corollary 3. Assume that the hypotheses of Theorem 5 are satisfied and let
all solutions of the system (22) be bounded on R,. Let the function y be
bounded on R_. Then for each solution ye Y defined on R, there exists a
solution u(t) of (22) on R _ such that

(25) | v(r) —u(t) >0 as t— oo.

Proof. Since all solutions u(r) of (22) are bounded on R, there exists a
number » > 0 such that

[U(t)<r for teR,.

We know that if «e R" is a constant vector then the function u(¢) = U(t)a is a
solution of (22).

Let ve Y be a solution defined on R, . Theorem S implies that for the solution
) there exists a constant vector € R" such that for re R, (23) holds. Consider
the solution u(r) of (22) in the form u(z) = U(¢) a. Then we get

|¥() = w(n)] = [U(1) x(e) = U(t) a] < [U()]1x(1) — @l < rlx(r) — a] >0,

as t — % . which is (295).
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SUHRN

O ASYMPTOTICKOM CHOVANI RIESENI
FUNKCIONALNO-DIFERENCIALNYCH ROVNIiC
S POSUNUTYM ARGUMENTOM

JAN FUTAK, Zilina

V préci si uvedené postadujiice podmienky pre to. aby existovalo y — ohrani¢ené riesenie
funkcionalno-diferencialnej rovnice s posunutym argumentom tvaru x'(t) = P(1) f(f. Qu) Xin) @
naviac, aby toto riesenie malo isté asymptotické vlastnosti.

PE3IOME

OB ACUMIITOTUYECKOM MOBEJEHWUU PEWIEHUN
®YHKUUOHAJIbHO-AUPPEPEHUUAJIbHLIX YPABHEHUN
C OTKJIOHAKIWMUMCA APFTYMEHTOM

AH ®VTAK, Xununa

B paboTe npuBencHbl 1OCTATOYHBIE YCIOBHS AJI TOTO, 4TOObI CYLLECTBOBAJIO Y — OrPAHHYEH-
HOe pereHre QyHKUMOHANbHO-AH((EePEHLIHATLHOTO YPAaBHEHHS C OTKJIOHSIOIIMMCS apryMEHTOM
X'(1) = P(2) f(t. Qu1)Xexr)) Hs KPOME TOFO, YTOOBI ITO PEILCHHE HMENIO KAKHE-TO ACHMATOTHYECKHE
CBOHCTBA. :
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