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OSCILLATION CRITERIA AND GROWTH OF
NONOSCILLATORY SOLUTIONS OF NONLINEAR
DIFFERENTIAL EQUATIONS

DUSAN SUKENIK, Bratislava

Consider the differential equation
(E) L,y®+ f(t, y(1) =0,
where n > 1 and L, is an n'™ order disconjugate operator defined by
L,y(t) = a,()(a,_,()(... (@ (D) (a0 y(1)) ...))".
The expressions
Lyy() = ay(1) y(1),
L;y(®) = a(t)(L;_, y(t)), i=1,2, uns

are called the “quasi-derivates” of y at the point 7. We denote by D(L,) a set of
real valued functions y defined on (z,, o0) for which L, y(7) exists for every
tet,, o).

The specific assumptions that we make are:

(Al) a,, i=0, 1, ..., n, are real valued, positive and continuous functions
defined on <0, c0) and

J a”'(r)dr = o, i=1,2,...,n—1,
0
(A2) fisreal valued, continuous function defined on {0, c0) x R and nonde-
creasing in y for fixed ¢, satisfying yf(z, y) > 0, for y # 0.
Define functions
Iy, 5) =1,
Lty 8, gy b5 oons ) = J‘ ai;l(") o N1 (A A SRS P R f[) dr,

where0<t<w,0s<owandk=1,2,....n—1.
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For simplicity we put
Ji(t, ) =ay() I(¢, s, 1, 2, ..., 0),
Ji(n) = Ji(1, 0),
K(t,s) =wa,)I(t,s,n—1,n—2, ..., n—1),
Ki(1) = Ki(1, 0),
Hy(t, 5) = fllk_,(t, i+ 1, .., k—1a ()

L (trom—1,n—=2, ... k+1)dr,
H, (1) = Hy(1,0),

where 0 St <o, 0Ss<wand0igk <.
It is useful to note that

(]) Ik(t, S, ik’ i‘\_ IERREEE) Il) = (—l)klk(s, t, il’ iz, o oy, ik)’

from which it follows that

(2) Ik(t’ S, ik’ ik—l’ ceey l]) =J‘ al_l(r)lk_](t, r, ik, ik-—l9 e 12) dr

and the generalized Taylor’s formula

k
Ly =3 (=1 Ly®L_{s t,j,j—=1, .. i+ 1)+
3)
+(—l)""’*'J Lo _(ryt,k, k=1, ... i+ Dagl (r) L., y(r)dr,

where 0 Zt<x,0s<x0,05i<k=<n-—1and yeD(L,,,).

To obtain the main results we need following lemmas. The first is adapted
from the papers of Canturija [1], Svec [10] and Elias [2].

Lemma 1. Let ye D(L,) be such that y(z) 20 and L,y(7) <0 on (z,, o0).
Then there exists a T = ¢, and an integer k, 0 < k < n, such that

4) n+k is odd,

(5) (=1 'y Ly(t)>0, i=k+1,k+2,..,n—1, for t>T,

(6) lin_‘nLiy(l)=O, i=k+1,k+2,...,n—1,
@) y(®)L;y(t) >0, i=0,1,..k for t>T,
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(8) lim Ly() = 0, i=0,1,...k—1,

9) lim L.y(t)=c, ce {0, o),

(10) Li+|y(t) é Lly(t) , 7= 0’ l, s k — l,
Li I, T)  LiJi(t, T)

The following two lemmas are standard comparison theorems cited from [7].
Lemma 2. Let E be an open set in R x R and g a continuous, real valued
function defined on E. Suppose that <t,, t, + a) is the largest interval in which
the maximal solution r of scalar differential equation with an initial condition

ll/ = g(ta ll), u(t()) = Uy,

exists. Let me C((ty, t, + a), R), (t, m(t)) e E for te {t,, t, + a), m(ty) < u,, and
for a fixed Dini derivative,

Dm(1) < g(¢, m(2)),
tety, ty + a) — S, where S is a set of measure zero. Then,
m(t) = r(t),  telly ty+ a).

Lemma 3. Let fe C(J x R", R"), f(¢, x) be monotonic nondecreasing in x
for each r and

(0 2 3y J 05, %09) 4,

where xe C(J, R"). Suppose that r is the minimal solution of
ul =f(t, u), u(to) = xO,
existing on {t,, o0). Then,
x(t) = r(t), for t=t¢,.

Our results on the behavior of the solution of (£) will involve the first-order
scalar differential equations

(llk) u, = Hlk(t’ a)f(ts u)a
- , Ji(1)
12ik = H, )
( 1 ) v rk(t’ a)f(t + tO’ Li_ ‘ Jk(t) U),
(13k) z' = —f(t, Hy(t, a) 2).

Throughout this paper (¢, a, u,) will denote the minimal (maximal) solution
of (11k) with u(a) = u, if uy > 0 (4, < 0). In a similar fashion, z,(t, a, z,) will
denote maximal (minimal) solution of (13 k) with z(a) = z, if z, > 0 (z, < 0).
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Definition 1. Let ge C(R?, R) be such that yg(t, y) > 0 when y # 0 and let
(o, yo) € R%. Let x,(¢) and x,(¢) be the maximal and the minimal solutions of

(14) x' =gt x),  x(t) =y

respectively. We say that solution x;(¢) of (14) is of finite escape time, or o.f.e.t.
for short, if there exists 7, < t; < oo such that

lim |x5(t)] = o0.

If for every (t,, y,) € R? there exists #,< t, < t, < oo such that

lim |x,(1)] = lim [x,(1)] = o,
1= =1

then every solution of (14) is o.f.e.t. and we say that (14) is o.f.e.t.

Definition 2. We say that y is a solution of (E) if y(¢) satisfies (E) in the
interval {t,, o) for some 7, = 0 and ye D(L,).

A solution of (E), not identically zero, is said to be oscillatory if it has
arbitrarily large zeros. Otherwise a solution is called nonoscillatory.

The equation (E) is called oscillatory if all solutions of (E) are oscillatory.

A solution of (E) is said to be of order k if there exists an integer k,
1 < k < n— 1, such that (4), (5), (7) hold.

Remark 1. Without loss of generality we shall assume that functions q,, a, are
identically equal to one on <0, c0). Moreover all proofs will be carried out only
for positive functions y (solutions of (E)). Proofs for negative ones are similar.

Lemma 4. Let 0 < k < n is an integer number and let ye D(L, , ) be such
that for every te(a, b), 0 < a < b £ 0, hold: '

(15) yOLy®)>0, i=0,1,..,k
(16) Y() Ly, ¥(2) < 0.
Then for every te(a, b) is satisfied the inequality

¢
ly()l = Z ILiy (Ol (2, a).

Proof. Let y be positive on (a, b). It implies L, , , y is negative on (a, b). Let
te(a, b) be fixed. After integration from a to ¢ we have

Ly() < Lyy(a).

Now we shall repeat this and after k integration from a to ¢ we get

k
y() < Y Liy(a)J(t, a).

i=0
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Theorem 1. Let y be a function satisfying (E) in (a,56), 0 < a < b < . Then
there exists no finite point ¢, €(a, b) for which
lim L,y(t) =00 or lim L;y(t) = —o0
l—OIl l—*ll
forany 0 < i< n.
Proof. Suppose there exists some 0 < i < n and ¢, € (a, b) for which
(17) lim L;y(t) = oo.

r=n

Let Z;={t,a<t<band L;y(t) = 0}. If ¢, is an accumulation point of Z;
then by Role’s Theorem ¢, is an accumulation point of Z; , , too, and therefore
of Z,. Because of (E) and the properties of f, ¢, is an accumulation point of
Z, as well, and so it is an accumulation point for Z,, for every 0 < k < n,
in particular for Z;, which is a contradiction to (17). Therefore there are 1,,
a< t<t,and an integer number k, 0 < k < n, such that (15), (16) hold for
every te(t,, t;). By Lemma 4 we get

k
YOI £ Y 1Ly It 1),
i=0

for every te(1,, t,).
Then | y| is bounded from above. On the other hand, by the Mean Value
Theorem limsup L, , , y(t) = o0, and if i + 1 < n then L, ,y is monotonic on

[ dtf]

(t5, t;), which implies lim L, , y(¢) = o0, and therefore limsup L, y(t) = co. By
t=1

t—1

the continuity of f, limsup y(z) = — oo as well, in contradiction to the fact that

=

| | is bounded from above. If we suppose that lim L, y(¢) = — oo we get the
t=1

contradiction by the same way.

Remark 2. By Lemma 1 every nonoscillatory solution of (E) is of order k for
some 0 < k < n — 1. Let N, be the set of all nonoscillatory solutions of order k
of (E). Then we have

N=N,UN,UN,U...UN, _,
for n odd,
N=NuUN;UN;U...UN,
for n even,
where N is the set of all nonoscillatory solutions of (E). It is clear that if N, = 0

forevery i=0, 1, ..., n — 1, then equation (E) is oscillatory.

183



Lemma S. Let ye Ni,0 < k < n,and let T = ¢, be such that y(t) is positive for
every t 2 T. Then

(18) Li_,y() 2 L, y(t) + Hy(t, t)(L, - y(1) — ¢) — J Hy(r, 1) L, y(r) dr,

foreveryt 21, 2T,1 <i<k, where c = lim L,_, y(¢).
11— 0

Proof. y e N, implies that there exists T 2 ¢, such that (4), (5) and (7) hold.
By the generalized Taylor’s formula we have

(19) L,_,y(t) 2 L,_,y(t;) +I Li_(t,ryiyi+ 1, .., k—1)a;'(r) L, y(r) dr,

forevery t 2 t, 2 T, and

5

ka(r)g —J In—kAl(Ta r,n— 19 n'—z’ & iy k+ 1)l‘ny(‘r) dT’

for every s = r = t,, which yields

oC

200 Ly@r)= -—J L_,_ (t,r,n—1,n-2,..,k+ 1)L, y(7)dr,

r

for every r = t,. Combining (19) with (20) we get

4
L_,y(t)=L,_,y() "f L_(t,rii+ 1, .., k—1a '(r)-

4]

f L __ (yrrm—1,n—=2, .. k+1)L,y(r)dr=L,_,y(,) —

t T >
—J (J L_(t,rii+ 1, ... k—Da '), _._ (7, r,n—1,
n \Je

n—2, .., k+1) dr)L,,y(r) dr—j (j Li_t,r i+ 1, .., k—1a'(r)
A __(oron—1,n-2, .., k+ 1)L, y(7) dr) dt=>L,_ (1)) —
- [ Huw 1) Ly de = Hute 1) [y ar=
f t
=L;_y(t)) + Hy(¢t, t,)(L,_,y(t) — ¢) — I Hy(t, t)) L, y(7) dr,
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for every t =26, 27T, 1 i<k, where c=lim L,_,y(t) and by Lemma I

ce<0, o0).
Theorem 2. Let ye N, where k is an integer 0 < k < n. Then there exists
ty 2 t, such that

(21) YOl 2 lw (2, 1y, y(1,))]
forevery t > ¢, 2 ¢,
(22) IL, 1 y(D] S le + 2, 1y, L, _, y(8)l

foreveryt=t, > t),, where c=0ifk#n—1land c20ifk=n— 1.

Proof. We shall assume that y is positive for all ¢ = #,. The case when y is
eventually negative is similar and will be omitted. By Lemma 5 we have that (18)
holds. From (E) we get

(23) L,y(@®) = —f(1, y(1)).
The assumption (A2) implies that L, y(z) < 0 and therefore
Hy(t, )L, y(t) —c)>0 forevery 12t 2t,
where ¢ = lim L, _,y(¢) and, by Lemma 1, c=0 if k#n—1 and ¢ =0 if

k =n — 1. Now we can write
Y(0) 2 () + f Ho(r, ), y() dr for every (2 6,2 1
’1

and by Lemma 3 we get

y() 2 w(t, 1, y(1,)) forevery 121t 21,
The expression

1
- f H(r,t) L, y(r) dr forevery t21t,2 t,
£

is positive too. From (18), (A2) and (23) we have
L,y(t)=(L,_,y(t) —c) = —f(t, Hy(t, L)(L,_, y(t) — ¢))
for every t 2 t, = t,. By Lemma 2 we get
L, \y@)=c+z(, t, L,_,y(t) forevery t=1t,2t,

Theorem 3. Let ye N,, with k an integer, 0 <k <n, and let ¥, and Q, be
nonnegative functions defined on <0, c0) with the property that

(24) uy > Y,(a) implies u, (¢, a, u,) has finite escape time,
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(25) 2z, < Q,(a) implies there exists ¢ = a so'that z,(t, a, z,) < 0.
Then there exists #, = ¢, such that

(26) y(t) = Y(0),

27) L,_,y@®) 2z Q.1),

for every t = t,.

Proof. By Theorem 2 there exists ¢, = ¢, so that (21), (22) hold. Suppose there
exists s 2 t, such that y(s) > Y,(s). Then by (21), (24) y is o.f.e.t. which is a
contradiction to Theorem 1.

Now if, for some s> 1, L,_,y(s) < Qi(s), by (25) we must have
L,_,y(s,) £c, for some s, = s. L,_,y is, however, a decreasing function and

lim L, _,y(t) = c. Therefore L,_,y(s,) > c. This contradiction completes the
- 0 !

proof.
Theorem 4. Let k be an integer, 0 < k < n, n + k be odd. Then N, = 0 if any
one of the following condition is valid:
(i) for each'a > 0 (11k) is o.e.e.t.,
(ii) for each a > 0 and z, # 0 there exists ¢ = a so that z,(¢, a, z,) =0,
(iii) for each a > 0 and u, > 0, (¢, a, +u,) exists on {a, c0) and for some
&£> 0 it holds

wa(t, u(t, a, tuy)) dt = + 0.

Proof. Suppose y e N, is positive.
(i) By Theorem 2 we obtain that there exists ¢, > ¢, for which

(28) y(O) Z w1, 1, (1))

foreach t = ¢, = t,.
Therefore y is o.f.e.t. which is a contradiction to Theorem 1.
(i) From Definition 2 follows that there exists #, = ¢, such that

(29) L,_,y(t)>0

for each t = ¢,. ‘ )
Denote Q,(t) = L,_,y(t) + 1. From Theorem 3 we have

L,_,y®)2 L, y(1)+1

for each ¢ = t,, which is a contradiction.
(iii) We showed that there exists #, = ¢, for which (28), (29) hold. From (E),
(28) and (A2) we obtain
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L,y(t)=(L,_,y@) = _f(t’ w (1, Lo, .V(lo))

for each t = t,. After an integration from ¢, to ¢ we get
1
Loy S L y(@) = [ £05, 65t 300 .
fo
It implies
lim Ln—-ly(t) = —o00,

which is a contradiction to (28).
Now we shall suppose

f@t, x)=p@)x

and we shall consider an equation

L,y(1) + p(t)y(1) =0,
where n = 2.

Theorem 5. Let p be positive and continuous on {0, o) and k be an integer,
0<k<n n+kodd.
(i) If ye N, there exists a = ¢, such that

[yl 2 | y(a)l exp f H(r, a) p(r) dr

for each t = a.
(i) N, =0 if for each a > 0 it is

J p(t) expf H,(r,a)p(r) dr dt = .
Proof. The equation (11Kk) is
u' =Hy(t a)p(t,u), u(a)=u,.

The solution of this equation exists on <{a, c0) and holds

i) = g Exp f Hiu(s, a)p(s) ds

and the results follow immediately from Theorem 2 and Theorem 4.
Theorem 6. Consider the equation

. ; Ji(2)
B(k, - H, L/ UNEAY
(k, 1) v k(t)f(t + 1 L_.J.0 v)
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(i) Letn =2 2beeven,1 <k <n— 1,n+ kbeodd, and let i vary one the odd
integers between 1 and k inclusive. If at least on of the (k 4 1)/2 equations
B(k, i) is o.f.e.t. for every ¢, = 0, then N, = 0.

(ii)) Letn = 3beodd,2 <k <n— 1,n + kbeodd, and let i vary one the even
integers between 2 and & inclusive. If at least one of the k/2 equations B(k, i) is
o.fe.t. for every ¢, 2 0, then N, = 0.

Proof. Let ye N, be positive for every ¢t = t, = t,. Denote s = — t, and
x(s) = y(¢), and conclude that x(s) satisfies

L,x(s) + f(s + t5, x(s)) = 0.

Rewriting # and y for s and x, with 1 < i < k being such that i + n is odd, by
Lemma 5 we obtain

Li_y@®)=L;_,y0)+ j Hy(r)f(r + &, y(r)) dr.
0
From Lemma 1 we get

y(t) 2 Mjk(t), for every = 0.
L Ji(1)

It follows that

Ji(r)

L\ y®) 2 L_,y0) + L Hi)f (’ T o

Li_ ly(r)> dr,

for every ¢t = 0. By Lemma 3 we have
Li_,y(t) 2 s(0),

where s is a minimal solution of B(k, i} with the initial condition
vo=L,_,y(0).

Let B(k, 1) is o.f.e.t. for every #, = 0. There exists £, & (0, c0) such that

lim L,_,y(t) = o

l—-‘ll
and it is a contradiction with Theorem 1.

Now we shall define a property (A) and a minimal and a maximal solution

in N, of (E). We shall form conditions which ensure that (E) has property (A).
We shall need the following lemmas, which appear in [3], and give conditions
which are necessary and sufficient for the existence of the maximal and the
minimal solutions of order k for (E).
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Definition 3. We say that (E) has property (A) iff
(1) N;=0 foreveryi, 1 £i<n,

(if) ye N, implies lim y(z) = 0.

Remark 3. If n is even then (E) is oscillatory iff (E) has the property (A).
Definition 4. Consider N, for 0 < k < n. For any ye N, the limits

lim L, y(t) = ¢, (finite)
lim L, _,y(t) = ¢ _, (finite or infinite but not zero)

exist (Lemma 1). A ye N, is called a maximal solution in N, if ¢, is nonzero and
a minimal solution in N, if ¢, _, is finite. A maximal solution y in N, is a solution
in N, such that

lim L, y(1) = ¢ (# 0, finite).

Lemma 6.Let 0 < k < n. A necessary and sufficient condition for (E) to have
a maximal solution in N, is that

J K, (D1 (2, cA (1)) df < o0

for some @ and ¢ # 0.
Lemma 7. Let 0 < k < n. A necessary and sufficient condition for (E) to have
a minimal solution in N, is that

j Ky (OIf (1 ey ()] dif < o0

for some a and ¢ # 0.
Theorem 7. Let the equations

(30k) v = H () f(t + 1, 0),
(31) v =H, () f(t + 1, v),

are o.f.e.t. forevery 1, 2 0 and 1 < k < n, n + k odd. Then (E) has the proper-
ty (A).

Proof. Let n be an even integer and let 0 < k < n be odd. The equation B(k, 1)
is equivalent to (30 k), therefore B(k, 1) is o.fe.t. for every t, 2 0. By Theorem 6
we get that (E) has the property (A).

Let n be an odd integer and let 0 < k < n be even. Let ye N, be positive. By
Lemma S we have
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20> (0) + J Hu()f(r + o, (7)) dr

and by Lemma 3 we get that y has finite escape time which is in contradiction
to Theorem 1.

Let £ = 0. We now wish to show that lim y(z) = 0 for every ye N,. Assume

that y € N, is positive and lim y(¢) # 0. It implies y is a maximal solution in N,.
1= x

By Lemma 6 there exists some a and ¢ # 0 such that

J‘I K, (DIf(t+1,c)dt < o0.

We now claim that for every ¢ # 0

x

(32) (sgn c)j K,_ () f(t+ 1, c)dt = 0.

0

Let us suppose there is a ¢ > 0 satisfying

len_,(t)f(t+ ty, ¢) dt < 0
0

and consider an equation

u(t)=c— 'r K, _(r)f(r+ ty, u(r)) dr.

Let us choose a > 0 such that

jZK,,-,(t)f(t + 1, c)dt<ec.

Define the sequence

ul(t) = C9
l 3 (1) = €= f " K (O + 1o, up(P)) dr

for every t = a. The sequence is well defined, since it follows by induction that
0= u,(t) < cforeverym > 1and 1t = a. It is possible to show that there exists
two functions w, and w,, such that

".I(t) = hm uZn(t)9

n=s2x
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wy(t) = "li'n;lo Uy 4 1(0),

where w,(t) = w,(¢) for every ¢t = a and both w, and w, are monotonic nonde-
creasing and bounded above by ¢. By the Monotonic Convergence Theorem it
follows that

Wy () = e — f K, (DS + 1o, wi(r)) dr,
(33) '

wy(t) =c — 'ro K,_(r)f(r+ ty, w,(r)) dr.

By differentiating the first equation of (33) we obtain
wi(t) 2 K, _(0) (1 + to, wy(2)).

K, _ (1) = H,,(¢) for every t = 0. Thus w, is bounded from below by a function
which is o.f.e.t., being a solution of (33). This is a contradiction to the bounded-
ness of w,. The existence of a ¢ < 0 which contradicts (32) leads to a similar
contradiction. Thus we have proved that any solution of order k = 0 tends
monotonically to zero and it implies (E) has property (A).

Theorem 8. Let g be a positive and continuous function defined on R\ {0}
such that

(1) g(x)f(t, x) is monotonic nondecreasing for any x # 0,

—&

(ii) J g(x)dx < oo and f g(x) dx < o0 for some £ > 0.

Then: -
1. Let n = 2 be an integer, then (E) has property (A) if

(34) | (sgne) f " Hu(Of(t, ¢) di = 0

forevery c # 0,0 <k <n,n+ k odd and for k = 1.

2. The condition (34) holds for every ¢ # 0, k = 1, if (E) has property (A).

Proof.

1. Let (34) be satisfied for every ¢ # 0,0 < k < n, n + k odd and for k = 1.
We show that equations (30k), (31) are o.f.e.t. forevery 1, = 0,0 <k <n,n + k
odd and for k = 1, and the results follow by Theorem 7. In order to show this,
we multiply (30 k), (31) by v, and recalling the properties of f we conclude that
[v(2)| = |v(0)| for every ¢ = 0. Define

Gv)=1+ J g(2) dt,

©(0)
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hence, G is monotonic increasing and lim G(v) = G(c0) < 0c0. Assuming
r—

v(0) > 0, multiplying (30k), (31) by g, integrating from 0 to ¢, and using the
properties of g yields

(35) Gw@®) 21+ g'(v(O))_[ Hy () f(r + 1, v(0)) dr.
0

As t — oo, the right hand side of (35) diverges to + oo, so there exists
0 = t, < o for which G(v(z))) = G(o0). Since G is monotonic, it follows that
lim v(t) = co. A similar conclusion follows by assuming v(0) < 0. Now consider

= I )
the case v(0) = 0. If v is not identically zero, then there exists ¢, > 0 such that
v(t,) # 0. After the transformation s = ¢ — t,, it is seen that v is bounded from
below by a solution with nonzero initial values, which has finite escape time. It
implies that v has finite escape time.

2. Let there exists ¢ # 0 such that (34) be not satisfied for Kk = 1. From
Lemma 7 it follows that there exists a minimal solution in N,, therefore (E) has
not the property (A) and that completes the proof.

Now we shall assume that a,(r) =1, 0 < i < n, t 2 0. Then equation B(k, 1)
is

v o=cpt" T+ 1, £ D),
.where
3 (k—i+ 1)
k'n—k =1 (n—i)

C ik

Theorem 9. Let B(n — 1, 1) be o.f.e.t. Then the equation

(E1) y) + £, (1) =0
has property (A).
Proof. Let i be an integer, 0 < i < n. Then

Cin—1 é Cyi-

Therefore B(i, 1) is o.f.e.t. for every 1, = 0. Theorem 6 implies that (E1) has
property (A). ,
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SUHRN

KRITERIA OSCILACIE A RAST NEOSCILATORICKYCH RIESENI
NELINEARNYCH DIFERENCIALNYCH ROVNIC

D. SUKENIK, Bratislava

V préci sa skama nelinearna, homogénna diferencialna rovnica typu L,y + f(z. y) = 0, kde L,
je diskonjugovany linearny operator na intervale 0. oc) a yf(t. ») > 0. K danej rovnici priradime
systém obyc¢ajnych diferencidlnych rovnic prvého radu a z vlastnosti tohto systému urcujeme
spravanie sa rieSeni danej rovnice.

PE3IOME

KPUTEPUSA S OCUWIALMNA U POCT HEOCUMWJIALMOHHDBIX PEWIEHUN
HEJIMHENHbIX JAW®®EPEHLIMAJIBHBIX YPABHEHUHA

. CYKEHHUK, Bpatucnasa

B paGote wuccneayercs HenuHedHoe nudpepeHUMAaNbHOE ONHOPOLHOE YpPaBHEHHWE BHAA
L,y +f(t.») =0. rae L, HeocuM/IIALIMOHHBIH JHHeHHbIH onepaTop Ha (0, oc) u yf (1. 1) > 0. K
ITOMY YPABHEHHIO COMOCTABJISETCA CHCTEMA OOBIKHOBEHHBIX AH(dEPEHHAIBHBIX YPABHEHHI nep-
BOro MOPSAAKA W M3 MOBEAEHHS 3TOH CHCTEMBbI MbI OMpElENieM MOBEACHHE PELICHHH AAHHOTO
ypABHEHHA.
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