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SUMS OF THE FORM ]N Y. f,(nx) AND UNIFORM DISTRIBUTION

n=1

mod 1

VOIJTECH LASZLO, Nitra-—TIBOR SALAT. Bratislava

1 Introduction
1y
In the paper a theorem on the behavior of sums of the form — Y. finx)
n=1
(by N — o0) is proved. This theorem is a generalization of a result from [1]
(p. 123—124). Some applications of this generalization are given.
In [2] (p. 96, Exercise 169, Solution on p. 275) the following problem of E.
Steinitz is formulated:
Determine for real x the function £,

1Y o
f(x) = A!Er:( e Y (cosnmx)

n=1

It is shown there that f is the so called Riemann function, i.e. f(x) =0 for x

irrational and f(x) = 1 forx =2 (canonical form of the rational number x). The
q q :
solution of the mentioned problem comes from G. Polya.

In[1] (p. 123—124) a general result (see Theorem A in what follows) concern-
ing sums of the mentioned type is introduced. The solution of the mentioned
problem of E. Steinitz can be obtained also as a consequence of Theo-
remA.

Theorem A. Let f,: R> R (n=1, 2, ...) be periodic functions with the
period 1, let £,[[0, 1] (n = 1, 2, ...) be Riemann integrable functions. Suppose
that the following conditions are satisfied:

a) There exists a M > 0 such that for each xe R and each n = 1,2, ... we
have 0 < f,(x) = M
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b) For each ¢, 0<s<l, each n=1, 2,

Ja(x) = f,(¢) and

. and xelg, 1 — €] we have

-
lim — =0
dim — 2, Ji(®)

n=1

Then for each uniformly distributed mod 1 sequence w = (w(n))"_ , we have

Y. fu(o(n) =0

n=1

.1

lim —

Noowx N

In the second part of this paper we shall give a generalization of Theorem A.

2 The main result
The following theorem is a generalization of Theorem A. In what follows
U(M) denotes the Jordan measure of the set M.

Theorem 1. Let f,: R— R (n =1, 2, ...) be non-negative periodic functions
with the period 1. Suppose that

a) there exists an M > 0 such that for each n =1, 2, ... and xe R we have
Si(x) = M;

b) for each &£ > 0 there exists a set H, < [0, 1) consisting of a finite number
of non-overlapping intervals such that u(H,) < ¢ and

N

(1) lim — Y M;=0

where

M= sup f(x) (m=1,2,..)

xe[0. D\H,
Then for each uniformly distributed mod 1 sequence @ = (w(n))y , we have

iim L3 /@) =0

n=1

Proof. Put for brevity

03]

N
Sv= Y, Ji@(m) = S + S
n=1
where

SV= Y  flon),

nS N {on)eH,
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SY = > Jo(@(n))

n< N; {o(n)}el0, D\H,

({t} denotes the fractional part of the real number ¢).
Denote by A(H; N, w) the number of all n < N such that {w(n)}e
e H(H < [0, 1)). Let £ > 0. Then a simple estimation gives

(3) Sy’ < MA(H,; N, o)
Since @ is uniformly distributed mod 1, we have

@) fim supM <e¢

N-ox

It follows from (3) and (4) that

. S
(5 lim sup—= < Me
N-x N
Further, we have evidently
N
SV Y M;

and therefore on account of (1)

@
(6) lim . 0
N- o N

According to (5), (6) we get from (2)

. S
lim sup =% < Me
Since ¢ is an arbitrary positive number, the theorem follows.

In the following example we shall illustrate the usefulness of Theorem 1.
Example 1. Put

{Itg mx|}" if x#za; 1, aeZ

Jo(x) = -
0 if x= a;— for a suitable aeZ

(Z is the set of all integers).

The function f, (n = 1, 2, ...) is evidently non-negative and periodic with the
period 1. :
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We shall show that each function f, (n = 1, 2, ...) has an infinite number of
discontinuity points in the interval [0, 1).

The function g, g(x) = |tg mx| <xe[0, l)\{%}) is increasing on [0, %) and

lim g(x) = + oo, lim g(x) =g(0)=0
x—=0+

Xz —

Denote by x, such a point from [0, %) for which g(x,) =k (k=1, 2, ...).

Then we have evidently

(7N DX <X oeny klim xk=%
Further, 1 — xke(%. l) and

®) ] ==ty 3] = 0 B s klim(l—~xk)=%,
gl—x)=k (k=1,2,..).

It is easy to see that the set of discontinuity points of f, (n =1, 2, ...) in
[0, 1) coincides with the set

B = {%, X1, 1 — X, X, 1 T Xy eees Xpo I~ Xk }

Let x be an irrational number, x€[0, 1). Let € > 0. Choose an 1 > 0 such that

the numbersl—ﬂ,l+ﬂdo not belong to B and
2 22 2 ,
€
<= 9
=5 ©)

On account of (7), (8) only a finite number of elements of the set B lie outside
the interval J = (1 — ﬂ, ! + —'Z). Denote by x,, x;, ..., x,,, | — x;, | — x5, ...,
2 22 2/
1 — x,, the elements of B lying outside the interval J. Let us construct pairwise
disjoint openintervals I,, I; (k =1,2,...,m)suchthat x,el,,1 — x, el (k =1,
2, ....m), nJ=I,nJ=0(k=1, 2, ..., m) and moreover, if 7, and 7,
denotes the lenght of I, and I, respectively, then

(10) Y (i + %) <§

k=1
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Put
H.=Ju U I, uly)

k=1

Let us consider that lim g(x) = 1. Therefore we can choose the left end-

r—’.\'l -

-point a, of I, in such a way that a, < x, and

gla) = sup {g(x)}
xel0. DVH,

But then using the notation of Theorem 1 we get from the definition of f,

M;= sup f(x)=¢g"(@a)=tgra|'>0 (n—0)
xel0. D\ H,
Hence the condition (1) in Theorem 1 is satisfied.
Further, according to (9) and (10) we get

n

, £ €
u(H,) =n+ Z(Uk+77k)<£+5=8
k=1

Thus the assumption b) in Theorem 1 holds. Also the assumption a) holds (it
suffices to put M = 1).

Since the sequence (nx);_, is for x irrational uniformly distributed mod 1
([11, p. 10), we get according to Theorem 1 (for x irrational)

2 fulnx) =0

n=1

o= o L

Now let x be a rational number, x€[0, 1), x = P (the canonical form of x, i.e.

g > 0,(p, g) = 1). Then for each positive integer n there exist integers m, r such
that

np =mq +r, 0=r<g
Using a simple estimation we get

sN=§f,,(n§)=qi' > A(Y)

n=1 r=1 n<N;np=r(modq) q

00 f mfo(8) 42 (5]

It follows from the definition of the function f, that there exists a de[0, 1) such
that for each n = 1, 2, ... we have

lIA

(11
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max {f;<é)’.ﬁ,(§), ,f,,(%)} = {g(d)}"

Since 0 < {g(d)} < 1, the series on the right — hand side of (11) converges
and so

lim &=0,
N—-x N
N
F(E)_ fim, — y f;,(n£> = fin 2=
q N-ow N = q N-ow N

Hence the sequence (Fy)x -,

v .
Y fi(nx) N=1,2 ..,

1
Fy(x) =—
v Nn=l

pointwise converges to the function F which is identically equal to 0.

3 An analogue of the problem of E. Steinitz

In connection with the problem of E. Steinitz mentioned at the begin-
ning of this paper the following question arises:
Determine the behavior of sums

N
1 Y. (sinnmx)™ N=1,2,..)
N n=1
by N — 0.
The following theorem gives the answer to the foregoing question.
Theorem 2. The sequence (Fy)v_,,

N
Fy(x) =% Y (sinnnx)™  (xeR, N=1,2,..)
n=1

converges pointwise on R to the function F, where F(x) = 0 if x is irrational or

x is a rational number, x = P (the canonical form), where ¢ is an odd number,
q

further F(x) = l, if x is a rational number, x = 4 (the canonical form), where
q
q is an even number.

Proof. Let 0 < e<%. By the notation used in Theorem 1 we put
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H.= <l—f,l+f>. Then u(H,) = € and
2 22 2
, S (1 |\
M;= sup (sinmx)”={(sinnm|-—— n=1,2,..).
xef0, D\H, 2 2

Hence lim M; =0 and (1) holds. Thus the condition b) in Theorem 1 is

N—-x
satisfied.
Also the condition a) is satisfied (it suffices to put M = 1).
Since the sequence (nx);_, for x irrational is uniformly distributed mod 1,
according to Theorem 1 we have
N

: 1 . m
IJI_I.I;IC = Y. (sinnmx)” =0

F(x) =

n=1

for x irrational.

Let x be a rational number, x€]0, 1), x =§ (the canonical form) then for

each n =1, 2, ... there exist integers m, r such that

np=mgq+r, 0=r<ay.

2n 2n
(sin nﬂe) = (sin n'£>
q q
and so we get

Su= i (Si“ "”2)2" = qil y (sin ﬂl)z"

n=1 q r=1n<N:;np=r(modg)

We have the following two possibilities:
(a) The number g (denominator of x) is even,
(b) The number q is odd.

Then we have

(a) In this case the number r (depending on n) takes on the value 4 , too. For

r= 1 we have sinni = 1.
2 q
Put

(g) 2n
1y _ . 2
S = Y sing— | = Y 1,

n§N;npsq(modq) q n=<N: an‘-’(modq)
2 2
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2n
SQ = Y (sinn'£> , r#%,oé"<q

n< Ninp = r(modg) q
Then we have
(12) Sy=S8y"+ 8P
All positive integers np, | < n < N, can be partitioned into blocks of the form

(13) (I +kq)p, Q+kg)p, .... (g +kq)p

(the last block need not be complete), here k is a non-negative integer. Since
(p, q) = 1, the block (13) is a complete residue system (mod ¢). Therefore in
each block of the form (13) (k is fixed) lies exactly one number which is

congruent tog (mod gq). The number of all blocks (13) is equal to k, + 1, where
k, is the greatest integer with

(9 + koq)p < Np

Hence | + k, = [djl Since the last block need not be complete, we have
q
St = [ﬁ:l or SY= IZE] + 1
q q

(14) lim +\=l

In both cases we get

Further, a simple estimation yields

sV= ) Y (sin ni) <(@-2 Z (sin = 1)- r#d
1Sr<¢~1 nSNinp=rimodg) q n=1 2(] 2
red

The geometric series on the right — hand side converges because of

Og(sinnq_ ]>'<l

2q
Therefore
S(?)
(15) lim =X =0
No v N
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On account of (14), (15) we get from (12)

F(’-’):limﬂ=l
q/ N=* N ¢

(b) A simple estimation yields )

2n 2n
(sin 7r£> < (sin Irq ds 1)
q 2q

for each r =1, 2, ..., ¢ — 1. Using the previous notation we get

% 2n
Sy<@g—-1 Y <sinnq2+ 1) =0(1),
n=1 q

2
(sinnq+ 1) < 1.
2q
F(’-’) — lim ¥ —¢
q N> x N
The proof is finished.

Remark 1. The solution of the problem of Steinitz led to the Riemann
function while the solution of an analogous problem given in Theorem 2 led to
a function that is similar to the Riemann function. Each of these functions has
an infinite number of discontinuity points. The functions Fj,

since

Thus we get

F@=— 3 L) (N=1.2,.)

n=1

(f.(x) = (cos mx)*" or f,(x)=Ginax)" (n=1,2,..))

are continuous on R and therefore the limit function F = lim F is a function
N—-x

in the first Baire class. It is well — known that the set of discontinuity points
of a function in the first Baire class is a set of the first Baire category (cf. [3],
p. 182). Hence the set of continuity points of such function is dense in R. If we
omit the assumption of continuity of the functions f, (n = 1, 2, ...), then the limit
function

F= lim f

N-x

1 &, . .
<FN(x) = r Y fnx), N=1,2, ) can be discontinuous everywhere. This is

n=1

shown in the following example.
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Example 2. Let
16 Fis Tay coey Pry oee =
( 2

be a one — to — one sequence of all rational numbers of the interval [0, 1).
Define the function f,: [0, 1) > R (n =1, 2, ...) in the following way:

f.(x) =0 for x irrational,
fird=1 for k<n,
f(r)=0 for k>n

We can extend the function f, periodically (with the period 1) onto whole real
line. Then f, (n = 1, 2, ...) has only a finite number of discontinuity points in
[0, 1) (it is discontinuous only at ry, ..., r,).

Put for xe R:

Y filnx)  (N=1,2,..).

1
Fy(x) = —
N Nn=|

It follows from the foregoing that Fy has only a finite number of discontinuity
points in [0, 1).
For x irrational we have evidently

F(x) = lim F(x) =0

Let x be a rational number, x€[0, 1), x = P (the canonical form). Then for

eachn =1, 2, ... we have np = mq + r with integers m, r, 0 < r < q. So we get

finx) =1, (m + 2) =fn(§)

The rational numbers

DL g1
99 4
are situated in the sequence (16) with the indices (say) m,, m,, ..., m, _,. Put
m = max {my, my, ..., m,_}

Then according to the definition of f, for n > m we have f, (5) =1 for each
q

N
re{0. 1..... ¢ — 1}. But then N — m summands in the sum Z f,,<£> are equal
q

n=1
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to 1 provided that N > m. Therefore

I X p) .
— ~-)—=1 N—-
N";fn(nq (N = o0)

F<£> = lim FN(E> =1
q/ No= q

Hence the limit function F is the well-known Dirichlet function which is
discontinuous everywhere.

and so
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SUHRN

N
SUCTY TVARU 1 Y. f,(nx) A ROVNOMERNE ROZDELENIE mod 1

n=1

VOJTECH LASZLO, Nitra—TIBOR SALAT. Bratislava

V préci je dokazané jedno zovieobecnené tvrdenie o suétoch tvaru — Y f(nx), na ziklade

n=1
N

ktorého je uréena funkcia F(x) = h}lm — ¥ f,(nx), pre niektoré funkcie £, a st zostrojené nespojité
- X N

n=1

funkcie f,. pre ktoré F je viade nespojita.
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PE3IOME

"
CYMMbI BUIA 1 Y. f,(nx) 1 PABHOMEPHOE PACIIPEJEJIEHUE mod 1

n=1

BOViTEX JIACJI0O. Hurpa—THUBOP IAJIAT, Bparuciasa

B paboTte coaepXuTCs 10Ka3aTEIbCTBO OAHOTO 0GOGILEHHOrO YTBEPXKIAECHHA O CyMMax BHAA
N

A N
— Y f(nx) Ha OCHOBaHHM KOTOpOrOo onpenesicHa ¢yHkuus F (.\')=[3im 1 Y. fnx) ana
.’V n=| L. 8 N

HEKOTOPBIX (YHKUMHA f, U MOCTPOEHBI Pa3pbiBHbIE QYHKUUHM f,, NS KOTOPBIX F BCIOAY pa3pbiBHasA
dyHKUHA.

n=|
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