

Werk

Label: Article **Jahr:** 1990

PURL: https://resolver.sub.uni-goettingen.de/purl?312901348_56-57|log19

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

UNIVERSITAS COMENIANA ACTA MATHEMATICA UNIVERSITATIS COMENIANAE LVI—LVII

SUMS OF THE FORM $\frac{1}{N} \sum_{n=1}^{N} f_n(nx)$ AND UNIFORM DISTRIBUTION

VOJTECH LÁSZLÓ, Nitra-TIBOR ŠALÁT, Bratislava

1 Introduction

In the paper a theorem on the behavior of sums of the form $\frac{1}{N} \sum_{n=1}^{N} f_n(nx)$

(by $N \to \infty$) is proved. This theorem is a generalization of a result from [1] (p. 123—124). Some applications of this generalization are given.

In [2] (p. 96, Exercise 169, Solution on p. 275) the following problem of E. Steinitz is formulated:

Determine for real x the function f,

$$f(x) = \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} (\cos n\pi x)^{2n}$$

It is shown there that f is the so called Riemann function, i.e. f(x) = 0 for x irrational and $f(x) = \frac{1}{q}$ for $x = \frac{p}{q}$ (canonical form of the rational number x). The solution of the mentioned problem comes from G. Pólya.

In [1] (p. 123—124) a general result (see Theorem A in what follows) concerning sums of the mentioned type is introduced. The solution of the mentioned problem of E. Steinitz can be obtained also as a consequence of Theorem A.

Theorem A. Let $f_n: R \to R$ (n = 1, 2, ...) be periodic functions with the period 1, let $f_n|[0, 1]$ (n = 1, 2, ...) be Riemann integrable functions. Suppose that the following conditions are satisfied:

a) There exists a M > 0 such that for each $x \in R$ and each n = 1, 2, ... we have $0 \le f_n(x) \le M$

b) For each ε , $0 < \varepsilon < \frac{1}{2}$, each n = 1, 2, ... and $x \in [\varepsilon, 1 - \varepsilon]$ we have $f_n(x) \le f_n(\varepsilon)$ and

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^N f_n(\varepsilon)=0$$

Then for each uniformly distributed mod 1 sequence $\omega = (\omega(n))_{n=1}^{\infty}$ we have

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^N f_n(\omega(n))=0$$

In the second part of this paper we shall give a generalization of Theorem A.

2 The main result

The following theorem is a generalization of Theorem A. In what follows $\mu(M)$ denotes the Jordan measure of the set M.

Theorem 1. Let $f_n: R \to R$ (n = 1, 2, ...) be non-negative periodic functions with the period 1. Suppose that

- a) there exists an M > 0 such that for each n = 1, 2, ... and $x \in R$ we have $f_n(x) \le M$;
- b) for each $\varepsilon > 0$ there exists a set $H_{\varepsilon} \subset [0, 1)$ consisting of a finite number of non-overlapping intervals such that $\mu(H_{\varepsilon}) \leq \varepsilon$ and

(1)
$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} M_n^{\varepsilon} = 0$$

where

$$M_n^{\epsilon} = \sup_{x \in [0, 1) \setminus H_n} f_n(x)$$
 $(n = 1, 2, ...)$

Then for each uniformly distributed mod 1 sequence $\omega = (\omega(n))_{n=1}^{\infty}$ we have

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^N f_n(\omega(n))=0$$

Proof. Put for brevity

(2)
$$S_N = \sum_{n=1}^N f_n(\omega(n)) = S_N^{(1)} + S_N^{(2)}$$

where

$$S_N^{(1)} = \sum_{n \leq N; \{\omega(n)\} \in H_\varepsilon} f_n(\omega(n)),$$

$$S_N^{(2)} = \sum_{n \leq N; \{\omega(n)\} \in [0, 1) \setminus H_{\varepsilon}} f_n(\omega(n))$$

($\{t\}$ denotes the fractional part of the real number t).

Denote by $A(H; N, \omega)$ the number of all $n \le N$ such that $\{\omega(n)\}\in H(H \subset [0, 1))$. Let $\varepsilon > 0$. Then a simple estimation gives

$$(3) S_N^{(1)} \leq MA(H_{\epsilon}; N, \omega)$$

Since ω is uniformly distributed mod 1, we have

(4)
$$\lim_{N \to \infty} \sup \frac{A(H_{\varepsilon}; N, \omega)}{N} \leq \varepsilon$$

It follows from (3) and (4) that

(5)
$$\lim_{N \to \infty} \sup \frac{S_N^{(1)}}{N} \le M\varepsilon$$

Further, we have evidently

$$S_N^{(2)} \leq \sum_{n=1}^N M_n^{\varepsilon}$$

and therefore on account of (1)

(6)
$$\lim_{N \to \infty} \frac{S_N^{(2)}}{N} = 0$$

According to (5), (6) we get from (2)

$$\lim_{N\to\infty}\sup\frac{S_N}{N}\leq M\varepsilon$$

Since ε is an arbitrary positive number, the theorem follows. In the following example we shall illustrate the usefulness of Theorem 1. **Example 1.** Put

$$f_n(x) = \begin{cases} \{|\lg \pi x|\}^n & \text{if } x \neq \frac{2a+1}{2}, \ a \in \mathbb{Z} \\ 0 & \text{if } x = \frac{2a+1}{2} \text{ for } a \text{ suitable } a \in \mathbb{Z} \end{cases}$$

(Z is the set of all integers).

The function f_n (n = 1, 2, ...) is evidently non-negative and periodic with the period 1.

We shall show that each function f_n (n = 1, 2, ...) has an infinite number of discontinuity points in the interval [0, 1).

The function g, $g(x) = |\lg \pi x| \left(x \in [0, 1) \setminus \left\{ \frac{1}{2} \right\} \right)$ is increasing on $\left[0, \frac{1}{2} \right]$ and $\lim_{x \to \frac{1}{2}^{-}} g(x) = +\infty, \qquad \lim_{x \to 0^{+}} g(x) = g(0) = 0$

Denote by x_k such a point from $\left[0,\frac{1}{2}\right]$ for which $g(x_k)=k$ $(k=1,2,\ldots)$. Then we have evidently

(7)
$$0 < x_1 < x_2 < \dots, \lim_{k \to \infty} x_k = \frac{1}{2}$$

Further, $1 - x_k \in \left(\frac{1}{2}, 1\right)$ and

(8)
$$1 - x_1 > 1 - x_2 > \dots, \lim_{k \to \infty} (1 - x_k) = \frac{1}{2},$$

$$g(1-x_k)=k$$
 $(k=1, 2, ...)$

 $(1 - x_k) = k$ (k = 1, 2, ...). It is easy to see that the set of discontinuity points of f_n (n = 1, 2, ...) in [0, 1) coincides with the set

$$B = \left\{ \frac{1}{2}, x_1, 1 - x_1, x_2, 1 - x_2, \dots, x_k, 1 - x_k, \dots \right\}.$$

Let x be an irrational number, $x \in [0, 1)$. Let $\varepsilon > 0$. Choose an $\eta > 0$ such that the numbers $\frac{1}{2} - \frac{\eta}{2}$, $\frac{1}{2} + \frac{\eta}{2}$ do not belong to B and

$$\eta < \frac{\varepsilon}{2} \tag{9}$$

On account of (7), (8) only a finite number of elements of the set B lie outside the interval $J = \left(\frac{1}{2} - \frac{\eta}{2}, \frac{1}{2} + \frac{\eta}{2}\right)$. Denote by $x_1, x_2, ..., x_m, 1 - x_1, 1 - x_2, ...,$

 $1 - x_m$ the elements of B lying outside the interval J. Let us construct pairwise disjoint open intervals I_k , I'_k (k = 1, 2, ..., m) such that $x_k \in I_k$, $1 - x_k \in I'_k$ (k = 1, 2, ..., m)2, ..., m), $I_k \cap J = I'_k \cap J = \emptyset$ (k = 1, 2, ..., m) and moreover, if η_k and η'_k denotes the length of I_k and I'_k respectively, then

(10)
$$\sum_{k=1}^{m} (\eta_k + \eta'_k) < \frac{\varepsilon}{2}$$

Put

$$H_{\varepsilon} = J \cup \bigcup_{k=1}^{m} (I_k \cup I'_k)$$

Let us consider that $\lim_{r \to x_1 - g} g(x) = 1$. Therefore we can choose the left end-point a_1 of I_1 in such a way that $a_1 < x_1$ and

$$g(a_1) = \sup_{x \in [0, 1) \setminus H_{\varepsilon}} \{g(x)\}$$

But then using the notation of Theorem 1 we get from the definition of f_n

$$M_n^{\varepsilon} = \sup_{x \in [0, 1) \setminus H_{\varepsilon}} f_n(x) = g^n(a_1) = |\operatorname{tg} \pi a_1|^n \to 0 \qquad (n \to \infty)$$

Hence the condition (1) in Theorem 1 is satisfied.

Further, according to (9) and (10) we get

$$\mu(H_{\varepsilon}) = \eta + \sum_{k=1}^{m} (\eta_k + \eta'_k) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Thus the assumption b) in Theorem 1 holds. Also the assumption a) holds (it suffices to put M = 1).

Since the sequence $(nx)_{n=1}^{\infty}$ is for x irrational uniformly distributed mod 1 ([1], p. 10), we get according to Theorem 1 (for x irrational)

$$F(x) = \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} f_n(nx) = 0$$

Now let x be a rational number, $x \in [0, 1)$, $x = \frac{p}{q}$ (the canonical form of x, i.e. q > 0, (p, q) = 1). Then for each positive integer n there exist integers m, r such that

$$np = mq + r, \qquad 0 \le r < q$$

Using a simple estimation we get

(11)
$$S_{N} = \sum_{n=1}^{N} f_{n}\left(n\frac{p}{q}\right) = \sum_{r=1}^{q-1} \sum_{n \leq N; \ np \equiv r \pmod{q}} f_{n}\left(\frac{r}{q}\right) \leq \left(q-1\right) \sum_{n=1}^{\infty} \max\left\{f_{n}\left(\frac{1}{q}\right), f_{n}\left(\frac{2}{q}\right), \dots, f_{n}\left(\frac{q-1}{q}\right)\right\}$$

It follows from the definition of the function f_n that there exists a $d \in [0, 1)$ such that for each n = 1, 2, ... we have

$$\max\left\{f_n\left(\frac{1}{q}\right), f_n\left(\frac{2}{q}\right), ..., f_n\left(\frac{q-1}{q}\right)\right\} = \{g(d)\}^n$$

Since $0 \le \{g(d)\}\$ < 1, the series on the right — hand side of (11) converges and so

$$\lim_{N \to \infty} \frac{S_N}{N} = 0,$$

$$F\left(\frac{p}{q}\right) = \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} f_n\left(n\frac{p}{q}\right) = \lim_{N \to \infty} \frac{S_N}{N} = 0$$

Hence the sequence $(F_N)_{N=1}^{\infty}$,

$$F_N(x) = \frac{1}{N} \sum_{n=1}^{N} f_n(nx)$$
 $(N = 1, 2, ...),$

pointwise converges to the function F which is identically equal to 0.

3 An analogue of the problem of E. Steinitz

In connection with the problem of E. Steinitz mentioned at the beginning of this paper the following question arises:

Determine the behavior of sums

$$\frac{1}{N}\sum_{n=1}^{N}(\sin n\pi x)^{2n} \qquad (N=1, 2, ...)$$

by $N \to \infty$.

The following theorem gives the answer to the foregoing question.

Theorem 2. The sequence $(F_N)_{N=1}^{\infty}$,

$$F_N(x) = \frac{1}{N} \sum_{n=1}^{N} (\sin n\pi x)^{2n} \qquad (x \in R, \ N = 1, 2, \ldots)$$

converges pointwise on R to the function F, where F(x) = 0 if x is irrational or x is a rational number, $x = \frac{p}{q}$ (the canonical form), where q is an odd number,

further $F(x) = \frac{1}{q}$, if x is a rational number, $x = \frac{p}{q}$ (the canonical form), where q is an even number.

Proof. Let $0 < \varepsilon < \frac{1}{2}$. By the notation used in Theorem 1 we put

$$H_{\varepsilon} = \left(\frac{1}{2} - \frac{\varepsilon}{2}, \frac{1}{2} + \frac{\varepsilon}{2}\right)$$
. Then $\mu(H_{\varepsilon}) = \varepsilon$ and

$$M_n^{\varepsilon} = \sup_{x \in [0, 1) \setminus H_{\varepsilon}} (\sin \pi x)^{2n} = \left(\sin \pi \left(\frac{1}{2} - \frac{\varepsilon}{2} \right) \right)^{2n} \qquad (n = 1, 2, \ldots).$$

Hence $\lim_{N\to\infty} M_n^{\varepsilon} = 0$ and (1) holds. Thus the condition b) in Theorem 1 is satisfied.

Also the condition a) is satisfied (it suffices to put M = 1).

Since the sequence $(nx)_{n=1}^{\infty}$ for x irrational is uniformly distributed mod 1, according to Theorem 1 we have

$$F(x) = \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} (\sin n\pi x)^{2n} = 0$$

for x irrational.

Let x be a rational number, $x \in [0, 1)$, $x = \frac{p}{q}$ (the canonical form) then for each n = 1, 2, ... there exist integers m, r such that

$$np = mq + r, \qquad 0 \le r < q.$$

Then we have

$$\left(\sin n\pi \frac{p}{q}\right)^{2n} = \left(\sin \pi \frac{r}{q}\right)^{2n}$$

and so we get

$$S_N = \sum_{n=1}^N \left(\sin n\pi \frac{p}{q} \right)^{2n} = \sum_{r=1}^{q-1} \sum_{n \le N; \ np \equiv r \pmod{q}} \left(\sin \pi \frac{r}{q} \right)^{2n}$$

We have the following two possibilities:

- (a) The number q (denominator of x) is even,
- (b) The number q is odd.
- (a) In this case the number r (depending on n) takes on the value $\frac{q}{2}$, too. For

$$r = \frac{q}{2}$$
 we have $\sin \frac{r}{q} = 1$.

Put

$$S_N^{(1)} = \sum_{n \leq N; \ np \equiv \frac{q}{2} \pmod{q}} \left(\sin \pi \frac{\left(\frac{q}{2}\right)}{q} \right)^{2n} = \sum_{n \leq N; \ np \equiv \frac{q}{2} \pmod{q}} 1,$$

$$S_N^{(2)} = \sum_{n \le N: np \equiv r \pmod{q}} \left(\sin \frac{r}{q} \right)^{2n}, \qquad r \ne \frac{q}{2}, \ 0 \le r < q$$

Then we have

$$(12) S_N = S_N^{(1)} + S_N^{(2)}$$

All positive integers np, $1 \le n \le N$, can be partitioned into blocks of the form

(13)
$$(1 + kq)p, (2 + kq)p, ..., (q + kq)p$$

(the last block need not be complete), here k is a non-negative integer. Since (p,q)=1, the block (13) is a complete residue system (mod q). Therefore in each block of the form (13) (k is fixed) lies exactly one number which is congruent to $\frac{q}{2} \pmod{q}$. The number of all blocks (13) is equal to k_0+1 , where k_0 is the greatest integer with

$$(q + k_0 q) p \leq Np$$

Hence $1 + k_0 = \left[\frac{N}{q}\right]$. Since the last block need not be complete, we have

$$S_N^{(1)} = \left\lceil \frac{N}{a} \right\rceil$$
 or $S_N^{(1)} = \left\lceil \frac{N}{a} \right\rceil + 1$

In both cases we get

(14)
$$\lim_{N \to \infty} \frac{S_N^{(1)}}{N} = \frac{1}{q}$$

Further, a simple estimation yields

$$S_N^{(2)} = \sum_{\substack{1 \le r \le q - 1 \\ r \ne \frac{q}{2}}} \sum_{n \le N: np \equiv r \pmod{q}} \left(\sin \pi \frac{r}{q} \right)^{2n} \le (q - 2) \sum_{n=1}^{\infty} \left(\sin \pi \frac{q - 1}{2q} \right)^{2n} \quad r \ne \frac{q}{2}$$

The geometric series on the right — hand side converges because of

$$0 \le \left(\sin \pi \, \frac{q-1}{2q}\right)^2 < 1$$

Therefore

(15)
$$\lim_{N \to \infty} \frac{S_N^{(2)}}{N} = 0$$

On account of (14), (15) we get from (12)

$$F\left(\frac{p}{q}\right) = \lim_{N \to \infty} \frac{S_N}{N} = \frac{1}{q}$$

(b) A simple estimation yields

$$\left(\sin \frac{r}{q}\right)^{2n} \le \left(\sin \frac{q+1}{2q}\right)^{2n}$$

for each r = 1, 2, ..., q - 1. Using the previous notation we get

$$S_N \le (q-1) \sum_{n=1}^{\infty} \left(\sin \pi \frac{q+1}{2q} \right)^{2n} = 0 (1),$$

since

$$\left(\sin \pi \frac{q+1}{2q}\right)^2 < 1.$$

Thus we get

$$F\left(\frac{p}{q}\right) = \lim_{N \to \infty} \frac{S_N}{N} = 0$$

The proof is finished.

Remark 1. The solution of the problem of Steinitz led to the Riemann function while the solution of an analogous problem given in Theorem 2 led to a function that is similar to the Riemann function. Each of these functions has an infinite number of discontinuity points. The functions F_N ,

$$F_N(x) = \frac{1}{N} \sum_{n=1}^{N} f_n(nx) \qquad (N = 1, 2, ...)$$

$$(f_n(x) = (\cos \pi x)^{2n} \quad \text{or} \quad f_n(x) = (\sin \pi x)^{2n} \quad (n = 1, 2, ...))$$

are continuous on R and therefore the limit function $F = \lim_{N \to \infty} F_N$ is a function in the first Baire class. It is well — known that the set of discontinuity points of a function in the first Baire class is a set of the first Baire category (cf. [3], p. 182). Hence the set of continuity points of such function is dense in R. If we omit the assumption of continuity of the functions f_n (n = 1, 2, ...), then the limit function

$$F=\lim_{N\to\infty}f_N$$

 $\left(F_N(x) = \frac{1}{N} \sum_{n=1}^N f_n(nx), N = 1, 2, \ldots\right)$ can be discontinuous everywhere. This is shown in the following example.

Example 2. Let

(16)
$$r_1, r_2, ..., r_n, ...$$

be a one — to — one sequence of all rational numbers of the interval [0, 1). Define the function $f_n: [0, 1) \to R$ (n = 1, 2, ...) in the following way:

$$f_n(x) = 0$$
 for x irrational,
 $f_n(r_k) = 1$ for $k \le n$,
 $f_n(r_k) = 0$ for $k > n$

We can extend the function f_n periodically (with the period 1) onto whole real line. Then f_n (n = 1, 2, ...) has only a finite number of discontinuity points in [0, 1) (it is discontinuous only at $r_1, ..., r_n$). Put for $x \in R$:

$$F_N(x) = \frac{1}{N} \sum_{n=1}^{N} f_n(nx)$$
 $(N = 1, 2, ...).$

It follows from the foregoing that F_N has only a finite number of discontinuity points in [0, 1).

For x irrational we have evidently

$$F(x) = \lim_{N \to \infty} F_N(x) = 0$$

Let x be a rational number, $x \in [0, 1)$, $x = \frac{p}{q}$ (the canonical form). Then for each n = 1, 2, ... we have np = mq + r with integers $m, r, 0 \le r < q$. So we get

$$f_n(nx) = f_n\left(m + \frac{r}{q}\right) = f_n\left(\frac{r}{q}\right)$$

The rational numbers

$$\frac{0}{q}, \frac{1}{q}, ..., \frac{q-1}{q}$$

are situated in the sequence (16) with the indices (say) $m_0, m_1, ..., m_{q-1}$. Put

$$m = \max\{m_0, m_1, ..., m_{a-1}\}\$$

Then according to the definition of f_n for n > m we have $f_n\left(\frac{r}{q}\right) = 1$ for each $r \in \{0, 1, ..., q - 1\}$. But then N - m summands in the sum $\sum_{n=1}^{N} f_n\left(\frac{r}{q}\right)$ are equal

to 1 provided that N > m. Therefore

$$\frac{1}{N} \sum_{n=1}^{N} f_n \left(n \frac{p}{q} \right) \to 1 \qquad (N \to \infty)$$

and so

$$F\left(\frac{p}{q}\right) = \lim_{N \to \infty} F_N\left(\frac{p}{q}\right) = 1$$

Hence the limit function F is the well-known Dirichlet function which is discontinuous everywhere.

REFERENCES

- 1. Hlavka, E.: Theorie der Gleichverteilung. Bibliographisches Institut Mannheim Wien Zürich, 1979.
- Pólya, G.—Szegő, G.: Aufgaben und Lehrsätze aus der Analysis I. (Russian translation). Nauka, Moskva 1978.
- 3. Sikorski, R.: Funkcje rzeczywiste I. PWN, Warszawa 1958.

Author's addresses:

Vojtech László Katedra matematiky Pedagogická fakulta Saratovská 19 949 74 Nitra

Tibor Šalát Katedra algebry a teórie čísel MFF UK Mlynská dolina 842 15 Bratislava

SÚHRN

SÚČTY TVARU $\frac{1}{N} \sum_{n=1}^{N} f_n(nx)$ A ROVNOMERNÉ ROZDELENIE mod 1

VOJTECH LÁSZLÓ, Nitra—TIBOR ŠALÁT, Bratislava

V práci je dokázané jedno zovšeobecnené tvrdenie o súčtoch tvaru $\frac{1}{N}\sum_{n=1}^{N}f_n(nx)$, na základe ktorého je určená funkcia $F(x)=\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^{N}f_n(nx)$, pre niektoré funkcie f_n a sú zostrojené nespojité funkcie f_n , pre ktoré F je všade nespojitá.

РЕЗЮМЕ

СУММЫ ВИДА $\frac{1}{N}\sum_{n=1}^{N}f_{n}(nx)$ И РАВНОМЕРНОЕ РАСПРЕДЕЛЕНИЕ mod 1

ВОЙТЕХ ЛАСЛО, Нитра-ТИБОР ШАЛАТ, Братислава

В работе содержится локазательство одного обобщенного утверждения о суммах вида $\frac{1}{N}\sum_{n=1}^{N}f_n(nx)$ на основании которого определена функция $F(x)=\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^{N}f_n(nx)$ для некоторых функций, f_n и построены разрывные функции f_n , для которых F всюду разрывная функция.