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ON THE EXPECTED VALUE OF VECTOR LATTICE —
VALUED RANDOM VARIABLES

MARTA KELEMENOVA, Bratislava

The purpose of the paper is to generalize some statements which hold for real
random variables and to prove these for random elements with values in
partially ordered spaces. These statements were generalized for regular vector
lattices by Kantorovitch and Potocky respectively (see [2] or [3]). The
need for generalization stems from the fact that regular vector lattices form a
very special class of vector lattices and their properties are similar to those of
real numbers.

It can be shown that a vector lattice E is regular if and only if the following
conditions hold:

1. E has o-property,

2. (0) — convergence in E is equivalent to the convergence with a regulator.

It is obvious that the second mentioned condition is very restrictive. Qur aim
is to extend results of Kantorovitch for vector lattices, having only the
first property. In other words, we are trying to generalize these results by
substituing the diagonal property with much weaker assumption, namely with
o-property. Recall that this class contains all Banach vector lattices.

The first part of the paper contains some basic notions, which are used in the
text. The other notions (e.g. (0) — convergence, (r) — convergence etc.) can be
found in [1] or [6].

In the second part the definition of random variable with values in the vector
lattice can be found. In the following part the notion of the expected value is
presented, its correctness and some of its properties are proved.

Finally the Lebesgue theorem for random variables with values in a vector
lattice is proved.

Definition 1.1. A vector lattice E has the o-property if for evety sequence (x,),
of elements from E there exists 1 > 0, 1€ E, that |x,| < K,1, K,eN.

From now on, let (Z, S, P) be a probability space and E be a o-complete
vector lattice with o-property.
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Definition 1.2. A sequence (f,) of functions from Z to E converges to a
function f almost uniformly if for every € > 0 there exists a set 4 € .S such that
P(A) < € and (f,) convergee relatively uniformly on Z — A4; i.e. there exists a
sequence (a,) of real numbers converging to 0 and an element re E such that
|£,(2) — f(2)| < a,r for each ze Z — A.

In the following part the notion of random variable is presented.

Definition 2.1. A function f: Z — E'is called a simple random variable if there
exists a sequence of mutually disjoint sets E,, E;€ S, | ] E,= S and a sequence
(x;)!_, of elements from E, such that f(z) = x; for every ze E,.

Consider the class of simple random variables. From this class we can obtain
the class of functions, which are the limits of sequenes of simple random
variables. The following definition is natural.

Definition 2.2. A non-negative function f:'Z — E is called a random variable
if there exists a non-decreasing sequence (f,), of non-negative simple random
variables such that (f,) converges to f almost uniformly.

Definition 2.3. A function f: Z — E is called a random variable if there exist
non-negative random variables f; and f, such that f(z) = f,(z) — f,(z) for
each z.

It can be shown that the space of random variables defined in the above
manner is a vector lattice, which is closed with respect to the almost uniform
convergence (see [4]).

In what follows the notion of the expected value is presented and its proper-
ties are discussed.

Definition 3.1. Let (Z, S, P) be a probability space, E be a vector lattice.

A simple random variable f: Z > E, f= ) xixe, X€E, E€S;EENE =0,i#],
i=1

|J E; = S has the expected valued Ef defined as follows:

Ef = Y x,P(E)
i=1

It is obvious, that this definition is correct. The integral defined on the set of
simple integrable functions can be viewed as a function. It is easy to show that
this function is linear and monotone. Besides, the following theorem holds.

Theorem 3.1. Let (f,), be a decreasing sequence of simple random variables
having the values in a g-complete vector lattice E with o-property such that
/10 almost uniformly. Then

(0) — limEf, = 0

Proof. See [5].
Definition 3.2. A non-negative random variable fis said to be integrable if all
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/. have the expected value Ef, and the sequence (Ef,) is bounded in E. Then the
expected value of the non-negative integrable random variable is defined as
follows:

Ef=(fdP=(0) —lim| f, dP

The existence of limit follows-directly from the definition. We now prove the
uniqueness of the definition. We shall prove that (o) — lim j' f,, dP does not
depend on the choice of the sequence (f,) which converges to f almost uni-
formly.

Let (f,) and (g,) be two nondecreasing sequences of random variables for
which the conditions of the definition 3.2. are satisfied.

Consider the random variable f; for a fixed i. Simice f,<f we have
Ji— (i~ g) =1 —1/2(f; + g, — |/, — g,|) for each n. From this it follows that
the sequence f; — (f; A g,) almost uniformly converges to 0 as n— oo and
consequently, by Theorem 3.1. that Ef, = (0) — lim E(f, A g,) < (0) — lim Eg,
for each i.

Definition 3.3. Let (Z, S, P) be a probability space, E be a o-complete vector
lattice with o-property. A random variable f: Z — E is said to be integrable if
there exist non-negative random variables f; and f, with expected values Ef, and
Ef, such that f(z) = f,(z) — f(z) for each z. Then the expected value of the
integrable random variable is defined as follows:

Ef = Ef, — Ef,

Correctness of this definition follows from the above construction.

Remark. It is clear from the above mentioned construction that for each
random variable f there exists a sequence (f,) of simple random variables such
that (f,) converges to f almost uniformly.

It can be verified easily from the definition that if f and g are integrable
random variables and c, d are any real numbers then also ¢f + dg is an integrable
random variable and

f(cf+dg)dP=c|fdP + dfgdpP
If /'and g are integrable random variables such that f(z) < g(z), then
[fdP<[gdP

Theorem 3.2. If f'is a random variable and if g is an integrable random
variable such that |f(z)| < g(z), then fis an integrable random variable.

Proof. Follows from Definition 3.2.

Our final aim is to prove Lebesgue theorem.

Theorem 3.3. Let (f,), be a sequence of integrable random variables which
converges almost uniformly to a random variable /. Let g be such an integrable
random variable, that for each n |f;| < g.
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Then the random variable f is integrable and
[fdP=(o)—lim(f,dP

Proof. The integrability of f follows from Theorem 3.2. Now, the only thing
left is to show that

[fdP = (o) —lim | f, dP

The existence of (0) — lim [ f, dP, where (f,), is the sequence of integrable
functions can be shown by repeating the proof of the existence of
(0) — lim j f, dP, where f, were simple random variables.

We have

Jf,,dP—-dePl=

Lf,,dP—LfdP‘-#

[

c
Aj A

f{f,,dP—fcfdPlg

4

< f o —f1dP +

f dPl
j
where (4,) is a sequence of sets from S such that P(4) | 0 and (f,), is a sequence

of integrable random variables converging relatively uniformly to f on every 4;.
From the above inequality it follows that

J‘ |f, —f1 dP < a,rP(A))

where a,]0, re E i.e. f |f, — f] dP converges to 0.
A

Since

A

J(frf)dPls'f m—~f|dPszf g dP

where g is an integrable random variable and P(4)) | 0,

fq(f,. - dP|

converges to 0 too. Consequently

[fdP = (0) — lim| £, dP
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Clanok zovseobeciiuje Kantorovi¢ove vysledky na pripad vektorovych zviizov, ktoré maji iba
o-vlastnost.

PE3IOME

MATEMATWUYECKOE OXUOAHUE O/ CIVUYANHBIX BEJUYUH
CO 3HAYEHUSIMWU B BEKTOPHOW PEMIETKE

MAPTA KEJIEMEHOBA, Bpatucnasa

Cratbs oboiaet pe3ynabrathl KaHTOPOBHYA Ha CllydaitHble BEJIHYMHBI CO 3HAYEHUSMH B BEK-
TOPHOMH peLIeTKe Y KOTOPO# TOJIBKO O-CBOMCTBO.
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