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LVI—LVII

ON A VECTOR N-POINT BOUNDARY VALUE PROBLEM

EVA SIMALCIKOVA, Bratislava

In the paper an n-point linear boundary value problem for the n-th order
nonlinear differential systems is studied. The method of solving this problem is
closely related to that in the paper [4] where De la Valée Poussin problem is
investigated. The properties of the Green function for the corresponding scalar
problem are here derived in details and it is shown that there exists a path of
regularity for this function.

The folloving vector n-point boundary value problem

x“,) =.f(t’ 'x’ ’x/9 R x(n_ l)) (l)

Ufx) = Y, aPx"=Ya) =a, i=1,2,...,n )

j=1
will be considered where
feC(D,RY), D=<a,a,>*xR‘x...x R, d>1, a"eR, -
n-times

a€eR, AeR’, i=1,2,...n j=1,2,...,n a<a<..<a

ns

n

Y e >0, i=1,2,..,n

J=1

I The Green function for the scalar problem

First we consider scalar differential equation of the n-th order with homoge-
neous boundary conditions

)7(") = 0 (]//)
U(y) =0, i=12,..,n. 2"
For that problem the folloving lemma is true.
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Lemma 1. The homogeneous boundary value problem (1”), (2”) has only the
trivial solution iff the determinant

_Is (k—‘)!ama;»—.,-‘
= k—pr

1.2, ....n
P 2einy i

ko=
is different from zero.

Proof. If y(r) is a solution of (1”), (2”), then it has the form
y(t)=co+ et + ...+ ¢, "', where ¢,eR, k=0, 1, ..., n — 1, satisfy the
system

n

: n—1 (j—1)
5 a}-”[ 5 cm]

i=1 F=0

=0, i=12 ..n 3)

i

I=a
By an easy calculation we get
n

Kl — 1y
Y G i) (—I‘———D—'a,-‘”ai"'"-’zO, i=1,2, .., 0.
k=1 i=1 (k —j)!

A is the determinant of system (3) and this system has only the trivial solution
iff A is different from zero. Hence, the solution y(z) of the problem (1”), (2") is
trivial iff A # 0.

Remark 1. Troughout the paper the inequality A # 0 will be assumed.

The following lemma will be derived by using Theorems 1 and 2 from [1],
p. 50—52.

Lemma 2. The following statements are true.

a) For k=1, 2. ..., n—1 there exist particular Green functions
G, = G (1, 5): <a,, a,) x(a, a, . ) = R with the following properties:

1. éi‘e(—‘)l= 0,1,...n—2k= 1;2, ...,n — 1, are continuous functions
tl
of variable ¢ in <qa,, a,) for each fixed se(q,, 4 , ).
n—1 ;
2. i—qi‘(—l—sl, k=1, 2, ..., n—1, is continuous in the variable ¢ in
(Jt"*'

{ay, $)u (s.a,y and at the point ¢ =5, it is discontinuous with a jump of
discontinuity which is equal to one, i.e.

Aan— 1 n—1
lim G, (1, 5) — lim
f=s A =

- at"_IG,\.(t,s):l, @ <Ss<a.,,.

3. The functions G,(., s), k =1, 2, ..., n — 1, are solutions of the problem
(17), (2") in {a,, s) U (s, a,y for each se(q;, a, , ).

4. The functions G (¢, s), k = 1,2, ..., n — 1 are uniquely determined by the
properties 1, 2, 3.
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b) The functions %Gk(t, s, k=1,2, ..., n—1,i=0,1, ..., n—2, are
t'

continuous functions of both variables ¢, s in the rectangle <{qa,, a,> x(a;, a; . ),

n— 1

whereas

G.(t, s) is continuous in the variables z, s in the triangles

l”_l
a,<t<s,s<i<a,forse(a,a.,).
¢) If reC(<{ay, a,)) then the function

n—1 P

(i)=Y, G,(t, 5)r(s) ds, a,<t<a,,

k=1 Ja

is the solution of the problem

y(n) — r(t) R (l,,)
Uy)=0, i=12..,n 2"

Proof. Statement a) has been proved in [1] p. 51.

In the proof of b) we make use of the proof of a). Let y,, y,, ..., », be the
fundamental system of solutions of the equation (1”). We shall show that the
Green function G,(¢, s) is continuous in the variable se(q,, q, , ) for a fixed
point te{a,, a,).

The function G,(t, s) has the form

Y d(s) (o), a, <t<s
G, (t,s) = ’T" -
Y bs)y(n), s<t<a,

i=1

where d|(s), b(s),j = 1,2, ..., n are for fixed se (4, a;, ) convenient constants
independent of ¢.
Denote

¢=—d+b, j=12 ..,n (%)

by the properties 1 and 2 of the Green function G,( ., s) it follows that ¢, j = 1,
2, ..., n, are solutions of the system

n

Zq)f}”(s):(), i=0,1,....,n—2

j=1
, (6)
Yoy s) = 1.

i=1
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Since the determinant of this system is the Wronskian w of the fundamental
system of solutions at the point se (g, a, , ,) and this is different from zero, the
functions ¢; = ¢,(s), are uniquely determined and they are continuous, because

wi(s . . o :
¢ = —'% where w; is the determinant which is constructed in a usual way.
w(s

The boundary conditions
U(y)=0, =12, ..o H, 2"

are satisfied by G,(t, s). After some calculations we obtain the equations

n

Y bU(y) =Y Uy, i=1,2, ..k,
j= =

" (7)
Y bU(y) =0, i=k+1,.., n.
j=1

Since y), ..., », form a fundamental system of solutions and the problem (1),

(2") has only the trivial solution, the determinant of the system (7) is differen

from zero and independent of s. ‘

The coefficients b, j = 1, 2, ..., n which we obtain from the system (7) depend
linearly on ¢,(s), j = 1, 2, ..., n and therefore the functions b, j = 1, 2, ..., n are
continuous in the variable se(q,, g, , ;). By the conditions (5) the continuity of
coefficients d(s), j =1, 2, ..., n in the variable se(q,, g, . ,) follows.

With respect to (4) the Green function G, is continuous in variables ¢, s in the
setsa, <t < s, 5 <t<a,forse(q, a,.)as the sum of products. With respect
to property I this implies that G, is continuous in the set {a,, a,) x(a,, a; . ,),
k=1,2,....,n—1.

The statements for —éa—_Gk(t, s),i=1,2, ....n—1,k=1,...,n—1 can be
tl

proved similarly.
The statement c) has been proved in [1], theorem 2. p. 52.
Remark 2. Let fe C(D, R’) and consider the problem (1), (2). Denote

n—1 L]

b3 G.(t,8) f(s, x, X/, ..., x" " D)yds =

k=1 Ja,

n—1 41 .
= ( Gkt s) 5, %, X'y oo 270 ds) i=1,2 ....,d
k=1 Ja
Let (1), ¢: {a,, a,> » R“be the solution of (1), (2) for f = 0. Then according
.to Lemma 2 the problem (1), (2) is equivalent to the problem of finding a
solution from C"~' of the equation

n—1 pdry

x(n=o()+ Y G.(t, 5) (s, x(s), X'(s), ..., x"~V(s)) ds.

k=1 Ja
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With respect to the statements 1 to 4 of lemma 2 we shall find the form of the
function G,(t,s), k=1, 2, ..., n — 1. Denote

l)n + k

( (k) A .
gl()— (S a)" l=1,2,...,n—l
;I (n — k)!
A, = (—1)*/D;, where D, is the subdeterminant of A corresponding to the

element in the i-th row and the j-th colomn.
Then the following lemma is true.
Lemma 3. The functions G,(z, s), k = 1, 2, ..., n — 1 have the form

k (t_s)n-l

Z Z gl(s)A j—1 —_ a]gtss
i=1j=1 (n —_ 1)!
G(t,5) =

for se(a, a; . )
The function ¢(¢) is determined by the relation

(p(t)=i Yy, YA AP, tela,, a,y.
i=1j=1

Proof. According to (4) and with respect to the form of (17)

n
Y di/! a<t<s
i=1

Gk(t, S) =
Y b/~ s<t<a,
i=1
se(a, a ).

Asin()weputc,=b—d,j=1,2,...,n
In the system (6) where

yo=v"' j=12..n @)

the Wronskian w(s) of the fundamental system y;, j =1, ..., n is equal to

1 s s* .. s"!
0 1 25 ... (n—1)s"? L
w(s) = = ] k! ©)
k=
00 0 (n — 1!
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whereas the function

1 s .. si—2 0 gt Rl
0 1...3G0=2)s"%0 (+Ds ...(n—=1)s""?
wi(s) = =
0 0 .. 0 1 0 eee (n=1)
1 s s2 ... 77 s sttt !
1 .
2!
=(_I)i+" (1'—2)' 5 =
ils :
0 i+ Ds
i+ ! .
(n—1)'s
n—1
iy i k!
=(_l)l+nl—_ n—1 (_1),‘," £

[Tk!TTkts=

(n—=10)! x=0 k=i (n—l)' (t—l)'
Then the solution (c,, ¢,, ..., ¢,) of the system (6) in the special case of the
equation (1”) is given by relations
_wl(s) _ (=D)trsmd
S = NG= DY

Consider the system (7).
If we denote

i=1,2, .., n.

ji=12, ..., n -~ (10)

n

8= Z ‘f;Ui(J’,‘)

i=1

where y(1) = t’ ', then on the basxs of (2) and (10)

=1y, = (k)(.] )
8s) = ch(z )= /; E G

= ® 5 Dt =D
2" Jzk(n G- Gk

_ (k)( 1)"+k c (n—k)! n—ji—k —
E.a (n—k)! = Z( (n—j)!(j-—k)!s @
—A; (k)((n _):):(s a)y " (11)
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Since (b, ..., b,) is the solution of the system (7), with respect to (2) and (8)
the i-th component b; we get as % where the determinant A is determined in
Lemma 1 and A4, is the determinant which we get from the determinant A

replacing the elements of the i-th column by the column (g, g5, ..., £, 0, ..., 0)".
With respect to the meaning of 4 it is true that

Zgl(s)__L l=1. 2, sesy 1
= |

Then for s <t < aq,
G(t,5) = Z bjt.i—l _ Z g,(.s) Z Ay
i=1 = =
Since according to (5) d;=b,— ¢, j=1,2, ...,n,fora, <t<s

Git,s)= ) bt'™' — Z T

Jj=1 J=1

But (10) implies that

th"' S (= 1yt A A

j= = (n—D(Gi—1)!
_ (= ) i - 1y-! (n—1)! n—jpi—1 _
" AT oot
GV PR () o
(n—1)! (n—1)!

_ ey -1
and hence G,(t, 5) = Z g'[(:) Z A~ — (—(——521—)‘— for te<a, s), se(a, a; . ).
i= n — :

The function ¢ is the solutlon of (1), (2) for f = 0. Therefore ¢ has the form
@ =p, +pt + ... + p,t" " where the vectors p,e R? satisfy the system

S pO- =, i=12,..m

ji=1

Similarly as in the scalar case we get that p, = ijl where Z we get from the

determinant A when (4,, 4,, ..., 4,)" is in the j-th colomn.
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Hence

l n
pi=— 4;A
A ;gl
and

o) = Z Z A/Aut,—l

l—l/-l

11 Properties of the Green function

n—1
Let the function G: <a,, a,> x | ) (&, @, ) = R be defined by the relation
k=1
G(t, s) = G,(1, 5) for a, < t < a,, a, <5 < a,,,. Then the folloving lemma is
true.

P
Lemma 4. The function %G(t,s), p=0,1, ..., n—2, tela,,a,),
t

n—1
se |J (&, a; ,,) can be continuously extended on <ay, a,> x<a,, 4, iff a” =0
k=1
n—1

for all i=2, 3, ..., n— 1. The function ——IG(I’ s) can be continuously

extended on the tnangles a, <t<s s<t<a,wherea <s<a,iff ¢/ =0or
A,=0foralli=23,....,n—1

Proof. The case p = 0 By Lemma 3 it follows that the functions
G.(t, s)eC(Ka,, a,) x(ay, aH.)) and they can be continuously extended on
{a,, a,> x{a;, a, , Y.k = 1,2,...,n — 1. The continuity of G on the line segment
s=a,i=2,..,n—1,a <t< a,will be shown if it holds

lim G,_,(t,s) = lim G(t,s)

for all te<a,, a,).

The last equality according to Lemma 3 is equivalent to the equalities

i-1

Z gk(a) ZA YR (t _ai)"_l=

K=1 j=1 n—1! 12)
i gk(ai) : 1 (t—a)!
= Agpl—1 ¥ B
21 A ,,-; ! (n —1)!
for te{a,, a)),
kz' gk(a) z A tj—l Z gkgz) ZlAklt/—l (l3)
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for te(a;, a,), and

i—1 n i n n—1
g(a) i—1 &(a;) -1 (a—a)
=t Agqal” ' = ==X Agalm ——————| 14
kgl A jgl Y kgl A jgl # (n—1) (19

for t = a,.

The relations (12), (13), (14) are true iff g(a¢;) = ™ =0,i=2,3, ..., n— 1.
Futher statements can be proved in a similar way.

A part of Lemma 1 from [3] will be stated here as Lemma 5. Its statements
follow from the analyticity of the function G in the variable ¢ as well as in the
variable s.

Lemma 5. Let pe{0, 1, ..., n — 1}, t,e<a,, a,), so€<€a,, a,).

P
a) If—:—pG(zO, s) =0forallse{a, b) = {a,, a,, then foreach k, ke{1, 2, ...,
t

n-— 1} such that (ak’ A 4 I)m(aa b) % 0’ and t0¢(aka ak+l)

P

& G, 5y =0 forall seday, >

or?

If toe(ak’ Ay + l), (a’ b) @ (aka to) ¥ 03 ((a, b) N (th A+ l) 7&@), then
P

a—G(to, s)=0 forall sela,ty)
or?

o°

(—G(to, s)=0 forall sedt,a. ,)>.
or’?

r
b) Ifga—pG(t, s,) = 0 for all ¢ from a subinterval {a’, b’) ={a,, a,), then in
t

case (a’, b') N (ay, 50) # 0 (@', b7) N (50, a,) # 0)

P
2 Gtis)=0 forell telay, s
or’

P
(a—G(t, &) =0 forall Fels; a,,)).
or?

Further properties of the Green function are given in the following lemma.
Lemma 6. For each pe{0, 1, ..., n — 1} and ie{l, 2, ..., n}

/4
%G(a,-, s)=0 is true forall se<a,, a,> (15)
t

ifa”=0forallj=1,2,..,n,j#p+1.
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Proof. Let pe{0, 1, ..., n — 1}, ie{l, 2, ..., n — 1} and (15) be true. (15) is
equivalent to the equalities

P
%G,‘.(a,, s)=0 forall k=1,2,..,i—1, sela,a >,
t

(16)
4
%Gk(a,, s)=0 forall k=i i+1,...,n—1, sela.a;, ).
t
According to Lemma 3 (16) are true iff
n ;o ' .
gl\(s) (j l) ai/—lf/zAijO‘ (17/)
A j<p1(j—1—=p)!
k=1,2..i—=1
' n P 1 ) - !
g,(S) (.] 1) a{—l—pAiiz(ai_s);l—l -, ()’I l) (18)
A j=pv1(j—1-p)! Ot = L = p)i
n '_ ' .
gk(s) (J 1) ai/AI-pAkj:O' (17")

A4 j=p+1(j—1-p)!
k=i+1,i+2,...,n—1.
(18) is equivalent to the equality
&(s)
(ai'“s)n_l_p
and this holds iff ¢/?*" #0and ¢/ =0forj=1,2,....,n,j#p+ 1.

If af”=0forallj=1,2,..,n,j#p+ 1, then according to Lemma 1 the
elements c; of the i-th row in the determinant A have the form

= const # 0

0, Jj=L2 .,p
Cij: (.]'—1)' aj—l~pai(p+l),
G=1-p)!
The remaining elements of the determinant A are without change. Consider

the determinant A which we get from the determinant A replacing the elements
of the i-th row. Then its expansion by the k-th row has the form

j=p+1, .., n

ap+r y UZDl_gminy — 4
j=p+1 (j—1-=p)! '

As the elements in the k-th and i-th row are the same, A = 0. This implies that
(17, (17”) hold.
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The statement for j = n can be proved in a similar way.

Another approach to solve the problem (1), (2) has been taken up from [4]
and is based on the following estimates for scalar functions.

There exist positive constants C, , > 0, k=0, 1, ..., n — 1 such that

XD < C,p- max [x"(2)] (19)
apsi<a,

for any function xe C"({a,, a,», R) which satisfies homogeneous boundary
conditions (2").

The meaning of the constants C, ., k =0, 1, ..., n — 1, is explained in the
following theorem

Theorem 1. Let for all (¢, uy, u,, ..., u,_,), (¢, vy, vy, ..., v, _,) € D the function
[ satisfy the Lipschitz condition

n-1 s

| £t ug, gy ooy 1) = J(E 05y Op5 ooy U, )| S Z Ly, — vy (20)
k=0
where L, e M, , are nonnegative matrices.
Let C,,, k=0,1,...,n— 1 be the constants from estimates (19) and let the

n—1
spectral radius g of the matrix ) L,-C,, satisfy
k=0

n—1

Q( » ch,,_k) <l
k=0

Then there exists a unique solution to (1), (2) for all 4,eR% i=1,2, ..., n.

The proof of Theorem 1 can proceed in a similar way as the proof of
Theorem 1 in [4].

III Admissible system of functions and associated system of constants

Futher we introduce the notion of an admissible system with respect to the
Green function G analogically as in [4].

We remind that if G is the Green function for the scalar problem (1”), (2"),
then the functions

i
—,_G(t, s)| ds, a<t<a, j=0,1,...,n—1 (21)
t.

a,
n a
a 10
are continuous in {a,, a, ).

Definition 1. The system of nonnegative continuous scalar functions ¢; in
{aj,a,y, j=0,1, ..., n— 1, is called admissible (with respect to the Green
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function G) if there exist positive constants k;, j =0, 1, ..., n — 1, such that
D) < k1) 22)

a<t<a, j=0,1,..,n—1

With respect to the boundedness of the functions ¢,
j=0,1, ..., n— 1, there exist positive constants &,, "
m,j=0,1, ..., n— 1, such that

I
fora, <t<a,,mj=0,1,...,n—1.
Letk, ; = inf/?,,,__,, m,j=0,1,...,n — 1. Then (23) is also true for k,, ;,, m,j = 0,
m.j

J
Y G, s)

: (pm(s) ds S Em;(p/(t)’ (23)
at.l s

1, ..., n—1.
Denote

K,=max{k,,j=0,1,...,n—1}, m=0,1,..,n—1 (24)

ay
J‘lll

a<t<a, mj=0,1,..,n—1.

Hence
j
% 6t.s)

o Pn(s) ds < K, 0,(1) (25)

By the definition of K, for constants K, < K, the inequality (25) cannot
hold forallte<a,, a,),j=0,1,...,n — 1. Theconstants K,,,m = 0,1,...,.n — 1,
will be called the associated system of constants to the admissible system ¢,
j=0,1, ..., n— 1. Hence, the following definition will be of use.

Definition 2. The system of the smallest constants K,,, m =0, 1, ..., n — 1,
such that (25) are true for all te {a,, a,),m,j =0, 1, ..., n — 1, will be called the
associated system of constants to the admissible system @,j=0,...,n—1

Its meaning is explained in the following theorem.

Theorem 2. Let ¢, j =0, 1, ..., n — 1 be an admissible system and K}, j = 0,
1, ..., n — 1, the associated system of constants to such system. Let the function
[ satisfy Lipschitz condition (20) with nonnegative matrices L, e M,, ,k =0, 1,
e, n—1.

Then for any 4,e R?, i =1, 2, ..., n, there exists a unique solution to (1), (2)
provided that '

Q(ni KkLk> <1 (26)
k=0

The proof of this theorem would proceed in a similar way as the proof of
Theorem 2 in [4].
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Corollary 1. Let the function f satisfy Lipschitz condition (20) with non-
negative matrices L,e M, ,, k=0, 1, ..., n— 1. Let

k

an
C,x = max G(t, s)
' a) SISH" a at

ds, k=0,1,...,n—1. (27)

k

Then for any 4,e R, i =1, 2, ..., n, there exists a unique sulution of (1), (2)
provided that

n—1
Q< ) cn.kLk> <L
k=0

The proof is analogous to the proof of Corollary 1 in [4].

Since the functions @;, determined by (21) form an admissible system of
functions, the set of all admissible systems of functions is not empty and in view
of Theorem 2 the problem arises what are the best (smallest) constants K|,
k=0,1, ..., n—1, for this set. The answer to this question can be given by
applying the theory of positive linear operators. Consider the Banach space
E = C({a,, a,), R) with the sup-norm, partially ordered by the relation x < y
iff x(¢) < y(¢) for all te{qa,, a,>. Then (E, <) is an ordered Banach space with
positive cone '

P={xeE; x(t1)>0,a <t<a,.

Pisnormal, i.e. every order interval (x, y) = {z€e E; x < z < y} is bounded, and
P is reproducing, i.e. E= P — P.

Letke{0,1,...,n — 1} and let G be the Green function for the scalar problem
(1), (2"). Define the operator 4,: E — E by

qa A

0
—G(t, s
ot . 8)

n

x(s)ds, a <t<a, xeE. (28)

Ax(t) = J‘

ay

A, is a positive linear operator and by using the Ascolli lemma can be easily
prove that it is completely continuous.

Futher some of the properties of the operator 4, will be shown. But first we
prove Lemma 7.

Lemma 7. Let A =det(a,),i=1,2, ...,n,j=1,2, .., n be different from
zero and let je{l, 2, ..., n}. Then

A4,=0 forall i=1,2,...,n—1 (29)
iff
a,=0 forall k=1,2,....,n k#j. (30)
Proof. It is obvious that the equalities (30) form a sufficient condition for the
equalities (29).
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By contradiction we show that they are also necessary. Suppose that (29) are
valid and at the same time there exists a k # j such that a,, # 0. We will suppose
that k < j. The case k > j would be proved analogically.

We show that 4,, = 0 which together with (29) implies that A = 0, but this
contradicts the assumption. Denote by D/ the subdeterminant of the deter-
minant D, in the i-th row and the k-th column. Then

n—1

D, = 3 (=1)"*a;D} (31)

1=
and for 1 <i<n

i—1

D:I = Z ( I)Hl - A ml\ Dmk + Z ( l ),” R l mA DmA (32)

m=1 m=i+1

Choose an arbitrary number i, 1 </ < n, and let k have the meaning from

_ n+ i
above. After multiplying the last row in 4, by the number S—)— and the k-th
ank
. . ( . 1 )n +i
column of that determinant by a; we obtain ————a; A,. Let us add to that
Ay

determinant the number (— 1) **a, D}. Using (32) we obtain

. .
{— 1)”“*”‘4‘/'*‘ ("1)’“0,'/\- W=
anl«'

n
_ i+m+k alk k—1 (l
== Z ( )n N " — DmA ¥ Z ( )" Fim Ak Dr;:/\ +

nm=1 a,, m=i+1 a,,/\

i—1

’ i a;. ”
+(___l)l+ka”\ n/_ 2 (_])I'+’+m+l\—"\'amleli/lk_f_

m=1 (293

n—1

+ Y =1y (33)

m=i+1 Ay

because D/, = D).
Then according to (31), (29) and (33) we obtain

n—1 n—1

Dni=Dn/+ Z( ])"‘iiik'Dii= Z [( )I+I\(11ADHI+(—'l)u-‘—igi&Dﬁ]=

i=1 (llll\ i=1 a”k
(34)
n=1 i—1 n—1
— Z [ Z ( 1 )u —f—m=-k (II/\ amA D”A + Z ( l )n +i+m+hk—1 arA amk :I
m mA
=1 m=1 . m=i+1 a,.
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Let 1 < p <r<n— 1. Then in the sum (34) there occurs just one summand

. - b VBB pal .
if i = p, m=r, and thisis (—1)"*7*"*¥=122% priand just one summand for
Ay

. . ok Ok i . ,
i =r, m=pand this is (—1)"*"*7* ¥~ DI Recause D} = D,;, the sum
ank

aakark[D,{;\'/(_l)n-Fp+r+k—| g D[:;;(__l)n+r+p+k] =0
Ak

and hence D,,=0=(—1)"*'D, = A,.
Lemma 8. Let pe{0, 1, ..., n — 1} and let xe P, x # 0 in {q,. a,).
Let

a” =0, i=1,2,...,n (395)

and for all ke{2, 3, ..., n — 1} there exist at most kK — | mutually different
numbers {j,, ..., j, _,} <11, 2, ..., n — 1} for which

b o¢: 1% o
Z (.]m ]) ai(r)a’_/m_’ = 0 (36)
r=1 (.]m - r)'
is true foreachm = 1,2, ...,k — 1l and foreachi=k + 1, k + 2, ..., n. Futher
let for each ke{2, 3, ..., n — 1} there exist at most k — 1 mutually different

numbers {/, ..., j, _,} = {1, 2, ..., n — 1} for which (36) is true for each m = 1,
2, ..., k — 1 and for each

i=1,2,..k. (37)

Then A,x(7) = 0 cannot hold in any subinterval {a, b) < {qa,, a,).
Proof. Proof is analogous as the proof of Theorem 1 in [3]. To prove this
statement let us suppose that there is an interval <{a, b) < <{ay, @,» in which

P
A,x(t) = 0. As the functions x(s), %G(z, s)
t

are nonnegative, it follows that
aor

for each 1€ (a, b) suppx(s) = S, = {se {ay,, a,); a—;G(ro, s) = 0}.
t

P
Hence there is an interval {a’, ') such that %G(lo. s) =0 for each
t

tyea, by, sela’, b’). In virtue of Lemma 5 there exists an interval {a,. a, . ).
ke{l, 2, ..., n— 1} such that

r
éa—-—G(t,s)=0 for g, <s<a,,, s<t<aq, (38)
tl’
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or

4
éa—pG(t,s)=0 for a,<s<a.,,, a <t<s. (39)
t

Consider only the case (38). The other one can be investigated in a similar
way.

Let us choose a sufficiently small £ > 0. Two cases may happen. Either 1.
k > 1 or 2. k = 1. We shall consider only the first case, the second one would
be treated in a similar way (instead of {(q,, a; + €) we would have the interval
{ay ;1 — & @, 1) (38) implies that for each function ye C"({a,, a,), R) satisfy-
ing the boundary conditions (2”) and such that supp y” < {a,, a; + &)

“n or e o’
Iy(rr)(t)l < J ——G(t, S) ly‘"’(s)l ds = J __G(,, s) |y(n)(s)| ds =0,
« |OtP @ ot’
for all ¢, @, + € < 1 < a, and hence,
y?2() =0 for a+e<t<a,. (40)

Now we shall construct a function yeC"(<a,a,y, R), with supp
»" < La, a, + €), satisfying (2”) and for which (40) is not true. Let

( P(t), a, <t<a,
i ,n—=1)
y(a;) + L‘;—?‘k—)(? = @) = o )(—(;;)(I —a) '+
! n—1)!
=< R 1)
o h(s)ds, g, <t<a,+¢
g (n — 1)'

\ P,_(), a,+e<t1<a,

where the polynomial P(7) is such that its degree is at most n — 1 and P(¢)
satisfies the boundary conditions (2”) in an interval {a,,a,>-P,_,(t) is the
polynomial of degree n — 1 and satisfies the boundary conditions (2”) in an
interval {a;, _,. a,).

The function /(r) will be determined in such a way that yeC" 'c
< {ay, a,). R). Then

0, ay <t < q,
) =< h(t), a<t<a + e,
0, a+e<t<a,

and hence. y € C"({a,. a,). R), supp»"”’ < {a. a; + &) and y satisfies the boun-
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dary conditions (2”). Since y(7) is a polynomial of degree n — 1 in {a, + ¢, a,),
it cannot satisfy (40) and this contradiction shows that the statement is true.

Continuity of y(¢) and its derivatives up to order n — 1 at the point q;, a; + €
can be checked in a similar way as in Theorem 1 from [3].

Now we shall show that there exists the polynomial P, _(¢),a, + €<t < a,.
Denote P,_,(t) = ¢, + ¢;t + ... + ¢,t"~'. Because the polynomial P,_, must
satisfy homogeneous boundary conditions (2”) in an interval {a, + ¢, a,), the
coefficients ¢;, i = 1, ..., n, must satisfy

« (m—=1! . .,
Cn* aila,'m ’ =0, m=1,2,...,n
,i; (m —))! (42)

i =k+1, .., n.

It is necessary to show that there exists a solution (¢, ..., ¢,) of system (42)
such that ¢, # 0.

On the basis of (35) there exists @;(j) # 0 for some je{l, ..., n — 1} for each
i=1, 2, ..., n. The rows of the matrix system (42) are identical with the last
n — k rows of determinant A. Because 4 # 0 any row of matrix system (42) is
not zero. If some row, for example i-th, were zero but for the last element, from
the form of these elements of this matrix it follows that a! = 0 for each j = 1,
2, ..., n — 1, which together with (35) gives that a!” = 0 for j = 1, 2, ..., n which

contradicts the following assumption Y |a| > 0.
j=)

Hence for each k we get the system of n — k equations in n variables. On the
basis on (36), in the matrix of the system there are at least n — k + 1 nonzero
columns and hence at least one parameter is optional. We choose ¢, arbitrary
but different from zero and others ¢;,, i =1, 2, ..., n — 1 we get as the solution
of system (42) for the chosen c,.

Assumption (37) is used if we proceed from the statement (39).

By this the proof is completed.

We also need the definition of a u,-positive operator ([4], p. 85).

If (E, <) is an ordered Banach space with positive cone P, 4: E—> Eis a
linear positive operator, and u,€ P, u, # 0, then we say that 4 is u,-positive, if
for each nonzero element x € P there exist constants a(x) > 0, b(x) > 0 such that

a(x)uy < Ax < b(x) u,.

In other words, 4 is u,-bounded from below as well as u,-bounded from
above.

The following lemma is true.
Lemma 9. Let the assumptions of Lemma 8 be satisfied. Then the operator
A, defined by (28) is @, positive, where &, are defined by (16).
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Proof. The operator A, is linear, positive and completely continuous and it
is @,-bounded from above, because for any xe P, x # 0, there exists a constant
¢ = ¢(x) > 0 such that

«a,

Ak.\‘(l) = J

According to [2], p. 59, 4, will be @, bounded from below if to any function
xe P, x # 0, there exists a constant a(x) > 0 such that

AZx(1) < a(x) D (1), a, <t<a,, ' 43)

n

ak
—G(t, s
—7G(69)

x(s) ds < < max x(t))-(Dk(t).

ay<r<a,

where A7 means the second iterate of 4,.

Because the assumptions of Lemma 8 are satisfied, 4,x(¢z) = 0 cannot hold in
any subinterval <(a’,b’) = <a,,a,) and hence, putting A,x(t)= p(1),
a, <t < a, we get that ye P, y(r) # 0 on any subinterval <a’, b’) < <{a,, a,>
and (43) reduces to the inequality

A y(t) < alx) (1), a<t<a, (43")

In the proof (43") we utilize the properties of the Green function given in
Lemmas 5 and 6. From this it follows that
k

é—TG(t’ s)=0 forall se<a,a,
1t

is true only in the points ¢;, i=1, 2, ..., n, when @’ =0 forallj=1, 2, ..., n,

and j different from k + 1.
A
It follows from this that éa—IG(t, 5s) =0 for all sea,,a,y i=1,2, ..., n
t

cannot hold simultaneously for two or more k, k€ {0, 1, ..., n — 1}, because then

a/”=0forallj=1,2,....nand forie{l, 2, ..., n}. In view of that for arbitrary
se{a,, a,) there exists 7(s), a; < 7(s) < t such that

o o ot ! (t—a)

—G(t,s) =—0G(a;, s) + G(a;, s =4+ ...+

or* or* ) ork+! e ) 1!

n-1 — n—1
+o+ L Glrs), 9= s
or ! (n—1)!

for ke{0,1, ..., n — 1} and for all @, i€{l, 2, ..., n}.
It follows from this that for «;, ie{l, 2, ..., n}

lim A, y(1)/®,(t) =

—a
i
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ay,

= lim ds

t—a’ Ja;
1

ak 4 k
—G(t, s —G(t, s
76 9) 76, 9)

"o
() d
»(s) v/f :

exists and it is different from zero. Similarly it would be shown that lim A, y(¢)/

1= a .
i

| D,(1) there exists and it is different from zero which, in view of (43’), proves the
statement of the lemma.

Futher we define a path of regularity as in 9.10 from [2] p. 72.

Definition 3. A finite sequence of points (1,, £,), (&2, t3), ... (tfx _ . 1), (D)
where 1,, ,, ..., f, are the inner points of Q will be called a path of regularity
for the kernel H(t,s): Q x Q — R of the operator A4

Ax(t) =J H(t, s) x(s) ds ) (44)
Q

where Q is the closure of a bounded region in a finitely dimensional Euclidean
space, if the kernel H(z, s) at all of these points is continuous and different from
zZero.

Remark 3. The path of regularity certainly exists if the function H(z, s) is
continuous at the point (¢, t)) and H(z,, t,) # 0, t,e Q, or if it is continuous at
the points (¢, s,), (So, 2,) and H(z,, s5) # 0 # H(s,, t,).

Lemma 10 will give the existence of the path of regularity to the kernel of the
integral operator A4, which is defined by (28).

Lemma 10. Let 4,, k =0, 1, ..., n — | be the operator defined by (28). The
following statements are true.

k
a) For the kernel %G(l, s), k=0, 1, ..., n — 2, there exists a path of
t

regularity.
b) Let
4,#0 (45)
and let there exist a
Je{l,2,...,n—1} suchthat a #0. (46)

n—1

Then there exists a two-point path of regularity for kernel G(t, s).

t"_ 1
k
Proof. a) Let k{0, 1, ..., n — 2} be fixed number. Since %G(z, s),k=0,1,
{

..., 1 — 2, is a continuous function on {a,, a,) x{a,, a,) with exeption of points
of the set {(¢,a,,,); te<a,a,>, r=1, 2, ..., n — 2}, it suffices to show that
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n—1
56——6(1 s) = 0 cannot hold for all re U (a,, a,,,). On the basis of Lemma 3
gt

r=1

o ey g < = =
—G(t,1)=0for te a,a,,,) iff == —=—— /"' "k A; =0 for
o U( A ,;H(J—l——k)'

n—1

i=1,2,...,n—1and re | ) (a,a.,).
r=1
n—1

Since g/(t) = O for all re | J (a,, a,, ,) cannot arise because it is equivalent to
r=1

=0forj=k + 1, ....,nj=1,2, .., n— 1. But this implies, accordmg to
Lemma 7, that A 0 and this contradicts the assumption. So aa—G(t 1) =

n—1
cannot hold for all re ( J (a,, a,, ).

r=1
n—1

b) Consider aa IG(t, s) for se(a,, a,). By Lemma 3 and 4 we obtain
pro

’

( &%(n—- A, — 1

an— 1 an— 1
609 = = Gilt ) =

for g, <t<s

‘%(n —1)'A,,

\ for s<t<a,,

for se(a,, a,).
n—1

According to (45) g
or"~!

G(1, s) = 0 cannot hold for all se(a,, a,),a, <t <s

and with respect to (46) and to the definition of g,(s), g,(s) # const for se (q,, a,)

n— 1

and thus, so

-2 G(t, s) = 0 cannot hold for all se(q,, a,), a, < t < s. Denote

M= lsl’gl(sl)—o}u{sb ;2)( -n'a, -1 =O}.

Then for arbitrary two points p, ge(a,, a,) — M the couple (p, ¢), (¢, p) is a

n—1

= G(1, s).

two-point path of regularity for the kernel 66
Example 1. Consider the scalar problem
y"=0 (47)
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y(a) =0, i=12,..,n, (48)
aeR, i=1,2,..,na<a<..<a,

Then there exists a path of regularity for the kernel

G(t, s), where G is

tn—l

the Green function of the problem (47), (48).
Proof. The conditions (48) imply that ¢ =1,i= 1,2, ..., n and

1 a af ... (n—1)! a}?
4,=|; : # 0,
1 a, a? ... (n—=1)! a?

because a, < a, < ... < a,. On basis of Lemma 10 there exists a path of regular-

n—1
ity for the kernel ; -G (1, 9).
t” -
Example 2. Consider the scalar problem

y* =0 @
3 a?yi"Ma)=0,k=1,2,....n k#i, ; al >0,
o Ky (@) j;]ikl 49)

J
y*=a) = 0.

n— 1

Then there does not exist a path of regularity for the kernel G(t, 5).

tn -1
Proof. Since ¢/’ = 0,j= 1,2, ...,n — 1, it follows that A,, = 0 forall k = 1,
2,...,nk #i Then 0 # A = a(n — 1)! A,,. Consider the form of the function
n— 1
G(t, 5).
or ! : :
On the basis of Lemmas 3 and 4 and from the definition of g,(s), we get

B A=D1 =1=0, a<i<s

n—1

o=

G(t, s) = e

g_f:) Afn =) =2CAn-1)=1, s<t<a,

for se | (a, a; 4 1)-

n
k=i
i—1

When se () (., @), then
k=1

! -1, a <t<s

atn—l

G(t,5) = {

0, s<t<a,
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n=1

We suppose that there exists a path of regularity for the kernel G(t, s)

t"_ 1
in form of a finite sequence of points (¢,, t,), (¢, t3), ..., (¢t _ 1, &), (&, t;) in which

G da : ; :
——G(t, ) is continuous and different from zero. From the form of

at" -1

an -1
ﬁG(t’ s) it follows that all points of this sequence must be from the set

"~

n—1 i—1

s<t<a,sel)(a,a.,,) orfromthe set aq, <1 <s,se ) (4, a;,,) where
an . k=i ‘ k=1
o G (1, s) is continuous and different from zero.

=

i—1 i—1

Firstletr,€ () (a, a;, ) thent, < 1, < a;, ,e | ) (a,a,, ). The point (¢, t,)

(=1 k=1
n—1

is from the set where

G(1, s) = — 1. By way of analogy we get the points

tn——l

(13 13), ... (4, 1) Where t, <1, < 15... f; < a;. Hence the point (¢, ¢,) is from

fi—1 n—1

the set s <t <a;, se | (@, a ) where
k=1

G(t, s) is identically equal to

tn—l

Zero.
Similarly, in the second case we get a sequence ¢, >1t,> ... >, > a,
n—1 n—1

;e | (&, a, ) and the point (1, 1) from the set 1 < s < a,, t€ | ) (a, a; , )

k=i k=i
n— 1

where

G(t, s) is equal zero.

t” -1
It follows from this that there does not exist a path of regularity for the kernel
n—1

o G(t, 5) for the problem (47), (49).

Futher Theorem 9.9 from the paper [2] p. 72 is stated here as Lemma 11.

Lemma 11. Let the integral operator 4 defined by (44) be completely con-
tinuous in the space C = C(Q) (or in any L, = L,(Q), | <p < ). Let the
kernel H(t, s) of this operator be nonnegative and there exists a path of regular-
ity. Then the operator 4 has a nonnegative eigenfunction which corresponds to
a positive eigenvalue g(A4).

Remark 4. By a similar way as in Example 2 we can show that in the case that
a”=0,j=1,2, ..., n— 1, the operator

ay ! t

x(s) ds = f x(s) ds

aq

n—1

an—l

tn-—l

G(t, 5)

A,_x(1) = J. G(t, )

L]

x(s) ds = ‘[

a

n—1

150



and this operator has no eigenfunction in E according to the remark in [2], 9.1,
p. 66.

On the basis of Lemmas 10 and 11 the following statement is true.

Lemma 12. Let the assumptions (45) and (46) be satisfied. Then the operator
A, k=0,1, ..., n— 1, defined by (28) has a nonegative eigenfunction which
corresponds to g(4,) > 0.

On the basis of these properties of the operator A4, the following theorem is
true. :

Theorem 3. Let the assumptions of Lemmas 8 and 10 be satisfied and ¢, be
a nonnegative eigenfunction of the operator A4,. Then the functions

1 j
Q(Ak) ay

a<t<a, j=01,..,n—-1,

o
—G(t s
ot/ (&)

@) = @(s) ds, (50)

form an admissible system of functions with respect to G such that for the
associated system of constants K j=0, by wen it —= 1,

‘ Ki = 0(4,) (51)
18 true.

Proof. The proof is analogous to proof of Theorem 3 in [4] p. 87—88.

The functions ¢, determined by (50) are all continuous and nonnegative in
<a,, a,). Clearly ¢, satisfies (50) for j = k. First we show that the functions g,
Jj=0,1,...,n— 1, form an admissible system of functions with repect to G. In
agreement with (28), we define the operator 4,: E — E by

an

x(s) ds, a<t<a, xeE (52)

A;x (1) =J a%G(t, s)

aq

j=0,1,...,n—1.
By (21), (22), (50), (52) we have to find such constants k; > 0, =0, 1, ...,n — 1,
that

o) = (4D <X a0,  a<i<a, (53)
o(4,)
But the proof of (53) runs in the same way as the proof of (43’). Hence we
can assert that the existence of k;, > 0,j=0, 1, ..., n — 1, with property (53) is
guaranteed.
Finally we prove (51). In virtue of (25), (24) and (50)

K = max{ky o, ki15 -5 kin—1} < 0(4p)-

On the other hand, Lemma 3 from [4] p. 84 gives an opposite inequality and
hence, (51) is true.
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SUHRN
VEKTOROVA n-BODOVA OKRAJOVA ULOHA
EVA SIMALCIKOVA, Bratislava

V praci sa skima n-bodova okrajova uloha pre nelinearne diferencialne systémy n-tého radu s
linearnymi okrajovymi podmienkami. Metoda rieSenia tejto ulohy je podobna ako v praci [4], kde
sa uvazuje De la Valée Poussinova tloha, ktora je Specialnym pripadom ulohy (1), (2). PouZiva sa
pritom Krasnoselského teoria kladnych operatorov.

V praci su podrobne preskimané vlastnosti prislu$nej skalarnej ulohy a si dané podmienky,
ktoré zaruduju existenciu cesty regularity tejto funkcie.

PE3IOME
BEKTOPHAA n-TOYHAS KPAEBAS 3AJIAYA
OBA IIMMAJIYHUKOBA, Bpatucnasa

B paboTte m3yyaercsa n-TouHas kpaeBas 3aqava n-TOTO MOPANKA IS HEJIMHEHWHBIX CHCTEM C
JIHHEeHHBIMH KpaeBbIMH YCJIOBHAMH. MeTox peleHus 3Toit 3aia4m noaoOHbIH MeTony B paboTe [4],
B KOTOpOii peuuaexcs 3aaava [enasane ITycena, koTopas ABJISETCA CNELMANbHBIM CIIy4aeM 3aJa4H
(1), (2). Ipu 3ToM ucnonb3dyercs KpacHocenbCKOro TeopHs MO3UTHBHBIX ONEPaTOPOB.

B pa6oTe noapoGHO aHaM3upoOBaHbl CBONWCTBA GyHK1MHM ["pHHA COOTBETCTBYIOLIEH CKAIAPHON
3amaqd. 3mech Takke MOKa3aHBl yCJIOBMS, BHINOJHEHHE KOTOPBIX obecrieuHBaeT CylecTBOBaHHE
JIOPOXKH HEBBIPOXAEHHOCTH 3TOH QyHKIMH.

152



	
	Article


