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ON THE KURZWEIL INTEGRAL FOR FUNCTIONS
WITH VALUES IN ORDERED SPACES 1

BELOSLAV RIECAN, Liptovsky Mikulas

The paper contains the definition and some elementary properties of the
Kurzweil integral for functions f: {a, b) —» X, where X is a linear lattice. In
continuation of this article some limit theorem will be proved. Throughout the
paper m is a finite real-valued Borel measure.

First we recall the definition of the Riemann integral. By a decomposition of
an interval I = {a, b) we mean a finite set of couples (J,, t,), ..., (J,, t,), where
J,, ..., J,are non-overlapping intervals covering Tand t,e J; (i = 1, 2, ..., n). The
corresponding integral sum is the number

S(.D) = 3 fltym(J)

i=1

where m(J)) is the measure of the interval J,. A function f: I — R is integrable
in the Riemann sense if

IxeRVe>036>0VDeA(S): |S(f, D) — x| <e.

Here A(9) is a set of sufficiently fine decompositions. It consists of such
decomposition D that

Jic(ti— 0, t+ 9) i=1,2,..,n

Kurzweil’s definition of the integral can be obtained from Riemann’s, if one
substitutes the number ¢ > 0 by a positive function §: I — (0, 00). So, a function
f: I—- Ris integrable in the Kurzweil sense if

Ixe R Ve > 036€(0, ) VDe A(8): |S(f, D) — x| < &.

Here A(6) consists of all decompositions D for which J; < (¢, — 6(¢), t;, + (),
i=1,..,n

Of course, we must know that the definition is correct, i. e. that 4(8) # 0 for
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every d: I — (0, o0). Namely, if A(5) = 0, then every real number satisfies the
desired implication and hence it is the integral.

Lemma 1. A(6) # 0 for every 8: I — (0, o0).

Proof. If I = {a, b) need not be decomposed under J, then at least one of the

intervals <a, a ; b> , <a : b, b> has this property. So we may construct a

sequence ({a,, b,»), ., of intervals such that {a,, , b,, > =<a,, b,> = <a, b)

for every n and such that lim (b, —a,) = 0. Choose fe (") <a,, b,>. Then

n— oL =1

{a,, b,y = (t, — 6(ty), t, + 6(t,)) for sufficiently large » and therefore {a,, b,
can be covered under 6, what is a contradiction.

In a general case when the range of f'is only partially ordered we cannot use
the ¢ technique. Namely, if 4 = R and s = sup 4, then to every & > 0 there is
ae A such that s — € < a < 5. This is not true in general linear lattices. Therefore
we use the double sequence technique proposed by D. H. Fremlin [1]. The
motivation is the following. If a; ~ 0(j — o0, i = 1,2, ...) and (g;), , is a bounded
sequence of real numbers, then to every £ > 0 and every i there is ¢(i) such that
a; < ¢ for every j 2 ¢(i). Especially a,,,, < € and so sup a,,, < & Therefore we

can work with the suprema sup a,,, (pe N") instead of ¢ positive.

Now some definitions. A non-empty set X is a linear lattice, if X is a real linear
space, X is a lattice with the lattice operations x v y, x A y and the following
implications hold: x<y=x+z=<y+z, x<y, >0, eeR=ax < ay.
A linear lattice X is called boundedly o-complete, if every bounded sequence (a,);

of elements of X has the supremum \/ q,.
i=1

In the real valued case, if 0 < x < gfor every € > 0, then x = 0. In the double
sequence technique we need something similar. This means is given by the
notion of a weakly o-distributive lattice (see [4]).

Definition 2. A boundedly o-complete linear lattice X is said to be weakly
o-distributive, if for every bounded double sequence (g;),; such that a; \ 0
(jooo,i=1,2,..)itis

I\ V gy = 0.
@eNN i

In the paper we shall assume that X is a given weakly o-distributive linear
lattice.

Definition 3. A function f: I — X is called integrable (in the Kurzweil sense),
if there exist xe X and a bounded double sequence (g;),; such that a,; \ 0
(J— o,i=1,2,...)and forevery ¢ : N — N there exists §: I — (0, oo) such that
for every De A(6)
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|x — S(f, D)| < \/ Qiggiy-

The element x is defined uniquely. Indeed, let ye X be another element
satisfying the conditions of the preceding definition. Then

ly —S(f, D) < \/biw(i)
for every De A(5), where 6: I — (0, oc) is a function corresponding to both

functions ¢: N - N and w: N > N.
- Then

3} £ |x — S(f, DY+ | p— SO, D) < \/aiw(i) -t \/ biw(i)'

Therefore
Ix =yl = w{bh‘ \/ Qi) + \,/ biyiy = \/ biyii
and
Ix —yl = /\ \/biwi) =D.
weNN
Therefore we may put
x={fdm.

Theorem 4. If f, g: [ > X are integrable and a, fe R, then af + Pg is integ-
rable and

[(af + Pg) dm = af fdm + B[ g dm.
Proof. We prove the theorem in two steps.
1. If £, g are integrable, then /' + g is integrable and

[(f+g)dm=][fdm+ [g dm.

Indeed, tﬁere are b; n0, ¢; 0 (j— o0, i=1, 2, ...) such that for every
@: N — N there is §: I - (0, oo) such that for every De A(5)

ij‘fdm - S8(f. D)l < \/bia(i)1
ljg dm — S(g, D)| < \/"i:pur
Evidently S(f + g, D) = S(f, D) + S(g, D). Therefore

Iffdm + (g dm — S(f+ g, D)| < \/b«om s \/ Cron = \/"i«nn*

where a; = b, + ¢;.
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2. If fis integrable and ce R then ¢f is integrable and

fefdm=c(fdm.

Namely, if (a;), ;is bounded and @, ~ 0 (j — o0, i =1, 2, ...) then (|c| @), has
these properties, too. further

le§ f dm — S(cf, D) = lc|If f dm — S(f. D) < \/ Iclaiy;
for sufficiently fine D.
Theorem 5. If fis integrable and nonnegative, then
| [fdmzo0.
Proof. There is a bounded (a;),, such that ¢; ~N0 (j—» o0 i= 1,2, ...) and

f.f'dm = S(f, D) — \/aiw(i)

for any ¢: N — N and any sufficiently fine D. Evidently S(f, D) = 0. Therefore
_Ifdm < \/aiw(i)

for every ¢: N—> N, hence by the weak o-distributivity of X we obtain
—ffdm<o.

Lemma 6. Let X be boundedly complete. Then a function f: I —» X is integ-
rable if and only if the following condition is satisfied:

There exists a bounded sequence (a;),; of elements of X such that a; ~ 0

(j—= x,i=1,2,..)and for every ¢: N - N there is 6: I - (0, cv) with
IS(f. D) = S(f. Do)l </ i

for every D,, D, A(9d).
Proof. Evidently the condition is necessary. Now we prove that it is sufficient.
To every ¢: N — N there is 6(¢) with the property stated allow. Put

T=1{6:1-(0,0c);3p: N> N, 6= 06(¢)}.
Then for e T the set
{S(f. D); De A(9)}

is bounded. Since X is boundedly complete, there exist

a;= /\ S(f,D), b;= \/ S(/.D).

De 4(0) De A(0)

If 8, 6.€T. then 6§ =min(4,, &) < 6,, 6., so A(S5) = A(J,) N A(J,), hence
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{S(f, D); De A(5)} is bounded, too, and
az= N\ SULD)S N\ S(/D)s \/ S(LD)s \/ S(f,D) = bs,.

De A(4)) De A(8) De A(6) De,4(53)

Therefore

\/asé /\b5~

deT SeT

hence there exists xe X such that
as< x < b,
for all 6e T. Now let ¢: N — N. Then there is §(¢): I — (0, o0) such that
S(f, D)) £ S(f, D,) + \/ai¢(i)
for all D, D,e A(8(p)). Fix D,. Then
bh‘(w) = S(f, D,) + \/aiwr
Since the inequality holds for every DzeA(S(w)), we have

bsg) S dugy + \/ Gigisy.
i
By the weak o-distributivity of X we obtain /\ \/ a,,, = 0 and so
7] i

/\ hb‘((o) - \/ Asp) = /\ (bb'(w) - aﬁ(w)) <0
[ [ ®
hence
x=N\ bsg) = \/ao‘w)-
[ [
Then for every De A(5(p))
S(f,D)—x= bsg) — Asq) S \,/ Qi)

and similarly

x—=S8(f,D) = b&(q)) — Asp) = \/aiq)(i)
so that
IS(f, D) — x| < \/aia)(i)
and the proof is complete.

Theorem 7. Let X be boundedly complete, E, F, G be compact intervals, F,
79



G be non-overlappingand E = FU G. If f: E — X is integrable, then the restric-
tions f|F and f|G are integrable too and

j_fdmzjf%+ffdm.
E F G

Proof. By Lemma 6 there is a; such that for every ¢: N— N there is
6: E— (0, o0) that

IS(f, D)) — S(f, D))l < \/ Qi iy

for every D,, D,e A(J). Put &, = 6|F and let D, D" € A(6,).
By Lemma 1 there exists Dye A(6|G). Put D, = D u D,, D, = D’ u D,. Then
D,, D,e A(d), so that

IS(f, Dy) — S(f, D,)| < \_/aiq;(f)-
But
S(f, D)) = S(f, D) + S(f, Dy)

S(f, D,) = S(f, D) + S(f. D),
so that

IS(f, D) = S(f, D) < \/ gy

for all D, D"e A(6,). Hence f is integrable on F by Lemma 6.
Since f'is integrable on E, we have

S(f, D)—ffdm‘ <\ iy
E - i

for all De A(8). Choose 8, < 6| F such that

lS(f. D)) — '[ fdm| < \/b,-a,{,-,
F i

for every D, € A(6,). Similarly there exists 6, < §|G such that

U9~ | ram| <V,
G i
for every D,e A(6.). Evidently D, U D,e A(9), so that

< \/ Qi)
1

'S(‘f. D] V) D:) - J ./.dn‘l
E
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Since S(f, D, v D,) = S(f, D,) + S(f, D,), we obtain
[ronrin= [ o
s(f, D)) — Lfdm‘ +

< \/ @iy + \/ bigiy + \/ € en

f.fdm—S(ﬁDIUDz) +
E

<

+ s(f, Dy) — j fdm

n

| Theorem 8. If f: I » X is a simple measurable function, /' = > XX, Where

i=1
x;€ X, E, are disjoint Borel subsets of 7 and m is a finite Borel measure defined
on the o-algebra of Borel subsets of /, then fis integi+ble and

ffdm = i xm(E)).

i=1

Proof. Evidently, by Theorem 4 it suffices to prove that X is integrable (for
x€ X and E Borel) and [ xy; dm = m(E) x. Assume first that E is compact and
x 2 0. To every positive real number ¢ there is an open set U > E such that
m(U\ E) < e. Since E is compact there is &: I — (0, o0) such that

(t—=96(1),t+ 8(t))cU for teE
(t—6(1), t + 5(:)) NE=0 for t¢E.
Let De A(6), D ={(E\, 1)), ..., (E,, ,)}. Then E c U{E; t,€ E}, hence

m(E) S 5 m(E) =m( | £) S mV) S m(E) + 5.

1ek ek
Further
2 xm(E) = Y xxe(t)m(E) + ¥ xxe(t)m(E) =
LekE ek LEE
= Z xxe(t)m(E) = S(xyg, D).
i=1
So

xm(E) < S(xxg, D) < xm(E) + ex,
|SCxxe, D) — xm(E)| < ex

hence it suffices to put a, = xl. (i=1,2,...). If Eis an arbitrary Borel set, then
J
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there are compact F and open U such that F< F < U m(U\F) < €. By the
preceding

[ xxr dm = m(F) x.
Evidently y,- = 1 — x, .., hence also
fxxedm =[x dm— (xg, . dm = xm(l) — xm(I\U) = m(U) x.
Further

S(xxp, D) £ S(xxe, D) < S(xxy. D).,
SO

[S(xxe, D) — m(E) x| < 2ex

for sufficiently fine D. Hence we have proved the equality | xy, dm = xm(E) for
nonnegative x. In the general case one can use the Riesz decomposition
X = x" — x~ and the linearity of the integral.

Now we may summarize. We started with a finite Borel measure m on a
compact interval and functions with values in a weakly o-distributive linear
lattice X. Recall that the conditions imposed on X are very general, because the
weak o-distributivity of X is a necessary and sufficient condition for the exten-
dability of X-valued measures and X-valued Daniell integrals [4]. Under the
weak conditions we defined the Kurzweil integral and proved that it is a linear
positive operator and it coincides with the Lebesgue integral on simple measur-
able functions. Only the additivity of the integral (Theorem 7) was proved with
an additional condition that X is boundedly complete (the weak o-distributivity
asks only bounded o-completness).
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SUHRN

O KURZWEILOVOM INTEGRALI PRE FUNKCIE S HODNOTAMI
V USPORIADANYCH PRIESTOROCH I

BELOSLAV RIECAN, Liptovsky Mikula§

V ¢lanku je uvedena definicia a niektoré elementarne vlastnosti Kurzweilovho integralu pre
funkcie s hodnotami v linearnom zvize.

PE3IOME

OB UHTETPAJIE KYP3BEWJIA AJ1 ®YHKLUWHW CO 3HAYEHUAMMU
B YITOPAAOYEHHbBIX IMMPOCTPAHCTBAX I

BEJIOCJIAB PUEYAH, JluntoBckn Mukynaun

B cTaTbe NpuBeICHO ONPEACIICHHE U HEKOTOPbIE OCHOBHbIE CBOICTBA MHTCrpasa Kypasenna ans
JyHKUMA CO 3HAYEHMAMHU B JIMHEHHOM pelueTKe.
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