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ON THE SEQUENCES OF BOUNDED VARIATION

PAVOL RALBOVSKY. Bratislava

Introduction

The sequences of bounded variation have a significant place in formulation
of different criteria for convergence of functional series.
Let (X, d) be a metric space and x = {x,}/_, be a sequence of its elements. The
number
*
Vix) = Z d(x; 41, x,)€<0, +00)
k=1
is said to be a variation of the sequence x. If V(x) < + oo, then x is said to be
a sequence of bounded variation.
The present paper deals with the structure of the sequences of bounded
variation in the space of all convergent sequences. Moreover, in this paper we

shall study the properties of functions which preserve bounded variation of
sequences.

1 Sequences of Bounded Variation in the Space of Convergent Sequences

In this part of the paper we shall investigate the position of the set W of all
sequences of real numbers of bounded variation in the space C of all convergent
sequences.

The space C is a Banach normed linear space with the norm

”xH = S]\JP I'\‘nl (x = {xn}:= | € C)

Proposition 1.1. If the sequence x = {x,}_, of elements of a metric space X
has bounded variation then it is fundamental.

Proof. Let £ > 0. Since V(x) < + o0, there exists an n, such that

Y dxg 00 X)) <&

k > ny,
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Let pe N (N is the set of positive integers). Using the triangular inequality we
obtain

d(xn+h xn+p) < d(xn+l’ xn+2) + d(xn+2’ xn+3) + ...t d(X,,+,,_|, xn+p) <é&.

The proof is finished.

Corollary 1.1. If x = {x,},_ , has bounded variation and (X, d) is a complete
metric space, then x is a convergent sequence. Hence we have W < C.

The position of the set W in the set C is described by the following theorem.

Theorem 1.1. The set W is an F, set, dense in C, first Baire category in C.

Proof. At first we shall prove, that Wis dense in C. Let ¢ = {c,},_ € C, and
£> 0. We shall prove that there is such a sequence a = {a,},_,€ W that
la — c|| < €. Since ce C, there is t € R such that ¢, — t. Then there is n, such that
for n > n, we have |c, — 1| < &/2. Define a = {a,},/_, in the following way:

a,=c¢, for n<n
a,=t for n>n,

It is obvious that ae W and for each ne N we have |c, — a,| < ¢/2 and so
lc —al <e
Let x = {x,}_,eC. We put

l/u(-\'-) = |'\‘2 - xll + ...+ |xn - Xy - II (n = l, 2’ )
For ne N and Ke N we define
B(n, K) = {x: W,(x) < K}

Then it is obvious that

(1) w=J () B K).

K=1n=1

It is easy to prove that the set B(n, K) is closed in C for each n and K.
therefore according to (1) the set Wis an F, set in C.

We shall prove that W is the set of the first Baire category in C. It is sufficient
to prove that the set

H='()B(nK), KeN

n=1
is nowhere dense in C. Since this set is closed in C, it is sufficient to prove that
the set C — H is dense in C.
We prove that for each xe C and é > 0 there is a sequence y = {},}_, such
that ||y — x|| < 6 and W,(1) > K for all sufficiently large »n. Since xe C, there
is an a € R such that x; » a. Choose N, > 1 such that |x; — a| < §/2 for j > N,
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Let y be a sequence defined in the following way:
x;=x; for j<N,
Choose a positive integer L such that LJ > K and put

yi=a+ 62 for Ny<j< N,+ L+ 1, jisodd,
yy=a—062 for Ny<j< Ny,+L+1, jiseven,

yi=a for j>Ny+ L+ 1
Obviously ye C, and

Ng+ L+
Wysre )z Y la+382—(a—92)=38L+1)>K
i=Ny+1
and [|x —y| = slug) b, =yl < @.
=12 e

The proof is finished.

2 On Mappings that Preserve Boundedness of Variation of Sequences

Definition 2.1. Let (X, d) be a metric space and f: X — X. The function f'is
said to preserve boundedness of variation of sequences if for each x = {x,},/_,
x,€X, V(x) < + oo we have V(f(x)) < + w0, where f(x) = {f(x)), f(x,), ...}

The following theorem characterizes the functions f: X — X that preserve the
bounded variation of sequences. We recall the notion of the local Lipschitz
condition (see [2], [1], [4])

Definition 2.2. Let (X, d) and (Y, d’) be two metric spaces, let f: X —» Y. The
function f'is said to be locally Lipschitz at pe X, if there isan M > 0 and § > 0,

such that for each ye K(p, ) = {ye K: d(p, y) < 6} we have

d'(f(y), f(p) < Md(y,p)

The function f is said to be strongly locally Lipschitz at pe X, if there
is an M>0 and 6> 0, such that for every x,veK(p,§) we have
d'(f(x), () < Md(x, y).

A function f: X — Y is said to be strongly locally Lipschitz on X if it is
strongly locally Lipschitz at every point pe X.

Theorem 2.1. Let (X, d) be a complete metric space. A function f: X - X
preserves boundedness of variation of sequences if and only if it is strongly
locally Lipschitz on X.

Proof. 1. Let the function f'be strongly locally Lipschitz on X. We shall prove
that it preserves boundedness of variation of sequences. Let x = {x,}X_, be a
sequence of elements of X. Let
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(2) Vi)=Y d(x;,,.5) < + 0.

A=1

According to corollary of Proposition 1.1 we have

lim x, = x,e X

k =

Since the function f'is strongly locally Lipschitz at x,, there isan M > 0 and
0 > 0. such that

(3) Vi e K(xg, 0)=d(f(y). f(,) < Md(y,, y,)

It follows from x; — x, that there is an n, such that for each k > n, we have
X, € K(x,, 0). Then according to (2) and (3) for n > n, we have

Yodifix, ) S )M Y d(x,,,x,) < +o0

n=n, n>ny,

and therefore

g/

Z d(f ('YII # l)ﬂ ,f(-\‘n)) < + 0.
n=1
Thus we have proved that V(f(x)) < + oo.
2. Leta function /: X — X be not strongly locally Lipschitz on X. Then there
is a point ¢ € X, such that f'is not strongly locally Lipschitz at g. Hence to every
A >0 and ¢ > 0 there are such points y,, y,€ K(gq, 0) that

d(f(y). f(32) > Ad(y), yy).

Put 4 =2, =241 (n=1,2,..)
Hence to each n = 1. 2, ... there exist points y,. z,€ K(¢, 27" ") such that
(4) [[(f( ..Vn)" ./.(:n)) > 2”‘1( yn* zn)

and so v, *+ Z,.
Let us remark that

(5) d(y,.z,)<27".

Let M, be the smallest positive integer for which the inequality
27" < M,d(y,, z,) holds. By (5) we have that M, > 2 and by the definition of M,
we have

(M, - 1)d(y,,z,)<27".

Hence according to (5)

M,,d(y,,, Z”) < 2-" o z—n — 2—n+l
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and so
(6) 27"< M d(y,,z,) <2 "t n=1,2,..).

We shall construct a sequence ¢ = {r,, 1,, ...} of points of the space X in the

following way. In the first M, + 1 places the members are the following ele-
ments:

Yis 215 Yis Zis oeny Yis 21, (}’1)

next M, + 1 members are the following elements:

Y25 235 V25 225 +ees Va5 22, (Y1)

We can continue this construction by induction. It is obvious (sce (6)) that

S Aty 1) S Y Md(yz)+ Y d(ryi )+ Y dGar.) <

n=1 i=1 i=1 i=1

< 22"’+'+ 22_"4- 22"’< + 0.

i=1 i=1 i=1

On the other hand by the definition of the sequence 7 and (4) we have

Y d(f(,, ) S > S Md(f(0), f) =

n=1 n=1

Z Z M’lznd(ym :u) g. Z l = +CX:)

n=1 n=1

The proof of the theorem is finished.

3 The Class of Functions Preserving Boundedness of Variation of Sequences in the
Space of Continuous Functions

In what follows P(R) denotes the set of all real functions of a real variable
which preserve boundedness of variation of sequences. By C(R, R) denote the
linear space of all continuous functions f: R— R

Theorem 3.1. P(R) is a linear subspace of the space C(R, R)

Proof: We shall prove that if f, ge P(R) and a, be R then (af + bg)e P(R).
Let ¢ = {c,}'_, be a sequence of real numbers of bounded variation. Then

V((af +bg)e) = Y laf + bg)(cx , 1) — (af + bg)(c,)] =

k=1

= Z laf (cx 4 1) — af (¢;) + bg(cx +1) — bg(e)l <

k=1
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< 3 (allf (e s ) — £l + 1bl1gle, s ) — gle)l) =

k=1
= lal V(f(c)) + b V(g(c)) < + .

Hence af + bge P(R) and P(R) is a linear space.

Definition 3.1. Let (X, d) and (Y, d’) be two metric spaces and f: X — Y. Let
g.h: X - R*. The function f'is said to be strongly locally Lipschitz with respect
to g and A, if for every pe X the following holds: if y, ze K(p, h(p)), then

d'(f(y). f(z) <g(p)d(y,z).

The class of functions is said to be a class of equally strongly locally Lipschitz
functions if there are functions g and / such that each fe M is strongly locally
Lipschitz with respect to g and 4.

Note 3.1. In the similar way we can define equally locally Lipschitz class of
functions and equally Lipschitz class of functions.

Note 3.2. If M is a class of functions each of which is strongly locally
Lipschitz, then the class M need not be a class of equally strongly locally
Lipschitz functions.

Theorem 3.2. Let M = {f,. f, ...}.f;i: X > Y,i= 1,2, ... beaclass of strongly
locally Lipschitz functions with respect to g and A. Let {f,}/_, be uniformly

convergent to a limit function /. Then f'is a strongly locally Lipschitz function
with respect to g and /.

Proof. Let pe X. According to the assumption of the theorem for each ne N
and x. ye K(p. h(p)) we have

(7) d'(£,(x). 1,(3)) < g(p)d(x, y).
We show. that
(8) d'(f(x), f(3) < g(p)d(x. y).
Let £ > 0. Then there is an n, such that for » > n, we have
sup d(f(x), fu(x)) < e.
Then from (7) we obtain
d'(f(x). f(3) < d'(f,(x). [,(») + d'(f,(x), f(x)) +

+d'(f(y), f(y) <g(p)d(x,y)+ 2e.

The latest inequality is true for every € > 0 and x, ye K(p, h(p)). Hence (8)
is true.

The proof of the theorem is finished.
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Corollary 3.1. If the space X is complete, then for each g, h: X - R™ the class
of all functions {f;| f;: X = Y, iel} that are strongly locally Lipschitz with
respect to g and & (we shall denote it L(X, Y, g, h) is colosed.

Lemma 3.1. Let X be a compact space and let

M={ff: XY, iel}

be the set of strongly locally Lipschitz functions with respect to g and 4. Then
there exists an L > 0 such that all functions f,e M are Lipschitz with the
constant L.

Proof. Let J = {K(p, h(p)):pe X} be a covering of the space X. Since the
space X is compact, there is a finite subcovering of X O = {K(p, h(p)):pe P},
where P is a finite set. Denote

L = maxg(p)
peP

Using the triangle inequality and mathematical induction it can be easily
proved that L satisfies the theorem.

Corollary 3.2. If the function f is strongly locally Lipschitz on a compact
space X, then fis Lipschitz on X.

Corollary 3.3. Let X be compact. Then each strongly locally Lipschitz func-
tion belongs to a certain class L(X, Y, n, 1).

By P(X) we shall denote the set of all functions f;: X — X, i€ I, that preserve
the boundedness of variation of sequences.

From corollary 3.1 and 3.3 and theorem 2.1 we obtain the following theorem.

Theorem 3.3. Let X be a compact metric space. Then P(X) is an F-set.

Proof. The assertion follows at once from the obvious equality

PX)= ) L(X, X,n, 1)
n=1
In the following the class C(R, R) is considered as a space endowed with the
topology of uniform convergence.
Theorem 3.4. The class P(R) is a dense set in C(R, R).
Proof. Let fe C(R, R). It suffices to show that there exists a function g e P(R)
such that

9 [f(x) —g(x)| <& foreach xeR.

We partion R into a countable union of closed intervals (n,n + 1) (n is an
integer). According to the well-known Weierstrass Theorem we can construct
foreachn =0, +1, +2, ... a polynomial P, such that for each xe (n, n + 1) we
have |f(x) — P,(x)| < &. This construction can be realized in such a way, that
Pn+1)=P, (n+1) (n=0, £1, £2,...). Then it suffices to put g(x) =
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= P(x)forxe(n,n+ 1) (n=0, +1, +2, ...) and, since each polynomial is a
Lipschitz function, (9) follows.
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SUHRN
O POSTUPNOSTIACH S KONECNOU VARIACIOU
PAVOL RALBOVKY, Bratislava
V praci je preskiimana Struktiira postupnosti s kone¢nou variaciou v priestore vietkych konver-

gentnych postupnosti. Okrem toho sa v praci Studuji vlastnosti funkcii, ktoré zachovavaju kone¢na
variaciu postupnosti.

PE3IOME
O TMOCJIEJOBATEJIBHOCTAX C KOHEUHON BAPUALIMEM
MABOJ1 PAJIBOBCKM, BpaTucnasa
B ctaThe paccMaTpuBaeTCs CTPyKTypa MOC/EeI0BATEIbHOCTEH C KOHEYHOI Bapualuei B npo-

CTPAHCTBE BCEX CXOAALUMXCH TMocieaoBaTenbHocTeidl. KpoMe TOro B crarbe paccMaTpHBAIOTCH
CBOWCTBA )yHUHMI COXPAHAIOIIMX KOHEYHYIO BApHALIMIO MOCIIE0BATEILHOCTEM.
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