

Werk

Label: Article **Jahr:** 1989

PURL: https://resolver.sub.uni-goettingen.de/purl?312901348_54-55|log7

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

UNIVERSITAS COMENIANA ACTA MATHEMATICA UNIVERSITATIS COMENIANAE LIV—LV—1988

A REMARK ON A FLOW WITH A HOMOCLINIC TRAJECTORY

MAREK FILA - FRANTIŠEK MARKO, Bratislava

1 Introduction

We show the existence of nontrivial positively invariant sets for certain flows with homoclinic trajectories.

Our proof is based on the Wažewski theorem (on its version stated in [1]) and the main tool is the fundamental group. An analogous result for a flow with a knotted trajectory can be found in [1].

2 Wažewski principle

Let T be a topological space and let R denote the set of all reals. If $f: T \times R \to T$ is a flow on T then we denote $f(\gamma, t) = \gamma \cdot t$ for all $\gamma \in T$ and $t \in R$. The set

$$\gamma. R = \{\gamma. t; t \in R\}$$

is called the trajectory of the flow f determined by the point γ . Let W be a subset of T. We denote

$$W_0 = \{ \gamma \in W; \exists t > 0, g.t \notin W \}$$

and

$$W^{-} = \{ \gamma \in W; \ \forall \ t > 0, \ \gamma. [0, \ t) \not\subset W \}.$$

The set W^- is called the exit set of W.

If W^- is closed relative to W_0 and for every $\gamma \in W$ it holds

$$\gamma.[0, t] \subset \operatorname{cl}(W) \Rightarrow \gamma.[0, t] \subset W$$

where cl(W) is the closure of W, then the set W is called a Wažewski set. In [1] one can find the following

Theorem (Wažewski): If W is a Wažewski set, then W^- is a strong deformation retract of W_0 and W_0 is open relative to W.

If W^- is not a strong deformation retract of W, then $W-W_0$ is not empty, i.e. there exists a trajectory which stays in W for all positive time.

3 Topological prelimilaries

If we want to prove the existence of a trajectory which stays in W for all positive time, it is sufficient to show that W and W^- are not of the same homotopy type.

Let X be a linearly connected topological space. We denote the fundamental group of X by $\pi(X)$. It is an invariant of the homotopy type.

If the fundamental groups of W and W^- are not isomorphic, then W and W^- have different homotopy types and we can conclude that there exists some trajectory which stays in W for all positive time. This is the main idea of our paper.

Let G_1 , G_2 be arbitrary groups. We denote the free product of the groups G_1 and G_2 by $G_1 \times G_2$.

The computation of the fundamental group of a more complicated topological space can be reduced to computations of fundamental groups of simpler spaces by

Theorem (Seifert-van Kampen, [2]): Let X be a linearly connected topological space. Let $X = U_1 \cup U_2$, where U_1 and U_2 are open sets, $U_1 \cap U_2$ is linearly connected. The inclusion maps $i: U_1 \cap U_2 \to U_1$ and $j: U_1 \cap U_2 \to U_2$ induce homomorphisms of groups $i_*: \pi(U_1 \cap U_2) \to \pi(U_1)$ and $j_*: \pi(U_1 \cap U_2) \to \pi(U_2)$. Let N be the smallest normal subgroup of $\pi(U_1) \times \pi(U_2)$ which contains the set $\{i_*(\gamma) \cdot (j_*(\gamma))^{-1}; \gamma \in \pi(U_1 \cap U_2)\}$. Then $\pi(X) \cong \pi(U_1) \times \pi(U_2)/_N$.

4 Flows in a cylinder

Suppose that f is a flow on R^3 such that its trajectories run downward outside a solid cylinder V of a finite height. Further let there exist points γ_0 , γ_1 , γ_2 , γ_3 from the interior of V such that

$$\gamma_0 \cdot R = \{\gamma_0\}$$

$$\omega(\gamma_1) = \{\gamma_0\} \quad \text{and} \quad \gamma_1 \cdot t_1 \notin V \text{ for some } t_1 \leqslant 0$$

$$\alpha(\gamma_2) = \{\gamma_0\} \quad \text{and} \quad \gamma_2 \cdot t_2 \notin V \text{ for some } t_2 \geqslant 0$$

$$\omega(\gamma_3) = \alpha(\gamma_3) = \{\gamma_0\} \quad \text{and}$$

the trajectory γ_3 . R is contained in the interior of V.

Finally, let the set
$$W = V - \bigcup_{i=0}^{3} \gamma_i^i$$
, where

$$\gamma_i^t = \{ \gamma \in V; \exists t \in R, \gamma_i . t = \gamma \}$$
 for $i = 0, 1, 2, 3$.

Moreover, suppose that the set W has the same homotopy type as a solid cylinder of a finite height without its axis and without a circular line which lies in the interior of the cylinder and has exactly one common point with that axis. See Figure 1.

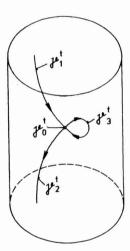


Figure 1

It is easy to see that such a flow exists.

Using the above notation we state the following theorem:

Theorem 1: There is a $\gamma^+ \in W$ ($\gamma^- \in W$) such that the positive (resp. negative) part of the trajectory running through γ^+ (resp. γ^-) is contained in W.

Proof: It is obvious that W is a Wažewsi set. The set W^- consists of all points of the bottom of V without one of its internal points. W^- is therefore homotopically equivalent to the circle S^1 , hence $\pi(W^-)$ is isomorphic to the group of integers denoted by Z.

Now we shall compute the fundamental group of W. Let us choose the sets U_1 , U_2 as follows:

 U_1 is the set W without some surface σ with the boundary consisting of the trajectories γ_3 . R and γ_0 . R,

 U_2 is the open solid torus contained in the interior of V.

The position of the sets U_1 and U_2 is depicted in Figure 2.

The set $U_1 \cap U_2$ is homeomorphic to an open cylinder, hence it is contractible to a point and $\pi(U_1 \cap U_2)$ is trivial.

According to the theorem of Seifert — van Kampen we have $\pi(W) \cong Z \times Z$. Since the group $Z \times Z$ is not commutative an Z is commutative, the groups $\pi(W)$ and $\pi(W^-)$ are not isomorphic.

The previous arguments show that there exists a trajectory γ^+ . R which stays in W for all positive time.

Reversing the flow we get also the existence of a trajectory γ^- . R which stays in W for all negative time.

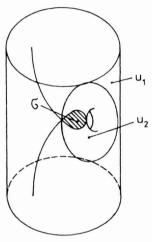


Figure 2

Remark: If we assume that γ_0 is a hyperbolic rest point of the flow f and there is no trajectory which is contained in V for all time except of γ_0 . R, γ_3 . R, then γ_0 . $R \cup \gamma_3$. R is either the ω — limit set of γ^+ . R or the α — limit set of γ^- . R.

REFERENCES

- 1. Conley, C. C.: Isolated invariant sets and the Morse index, Conf. Board Math. Sci., No. 38, Amer. Math. Soc., Providence, 1978
- 2. Hilton, P. J.-Wylie, S.: Homology theory, Cambridge University Press, Cambridge, 1960

Authors't address:

Received: 15. 11. 1985

Marek Fila Katedra matematickej analýzy MFF UK 842 15 Bratislava

František Marko Matematický ústav SAV Obrancov mieru 49 814 73 Bratislava

SÚHRN

POZNÁMKA K TOKOM S HOMOKLINICKOU TRAJEKTÓRIOU

Marek Fila - František Marko, Bratislava

Pre istý typ tokov s homoklinickou trajektóriou je dokázaná existencia netriviálnej pozitívne invariantnej množiny.

Dôkaz je založený na Wažewského vete.

РЕЗЮМЕ

ЗАМЕЧАНИЕ О ПОТОКАХ С ГОМОКЛИНИЧЕСКОЙ ТРАЙЕКТОРИЕЙ

Марек Фила — Франтишек Марко, Братислава

Для некоторых потоков с гомоклинической трайекторией показано существование нетривиального позитивно инвариантного множества.

Доказательство основано на теореме Важевского.

x ,