#3D
VAL 7

—/

Werk

Label: Article
Jahr: 1989
PURL: https://resolver.sub.uni-goettingen.de/purl?312901348_54-55|10g30

Kontakt/Contact

Digizeitschriften e.V.
SUB Géttingen

Platz der Gottinger Sieben 1
37073 Gottingen

& info@digizeitschriften.de


http://www.digizeitschriften.de
mailto:info@digizeitschriften.de

UNIVERSITAS COMENIANA
ACTA MATHEMATICA UNIVERSITATIS COMENIANAE
LIV—LV—1988

ON VALUES OF THE FUNCTION ¢+ 7

HELENA BEREKOVA — TIBOR SALAT, Bratislava

1 Introduction

There are many papers devoted to the study of values of arithmetical func-
tions /- N — N, N being the set of all positive integers. E.g., already in [5] (p. 256)
it is shown that the set of all values of the Euler’s function ¢ has the asymptotic
density 0. An analogous result concerning the values of the functions o + ¢,
o + tis proved in [1]. In [2] it is proved that the set of all positive integers that
does not belong to the sequence {o(n) — n},_, has a positive lower asymptotic
density. It is still an open question whether there are infinitely many ne N not
belonging to the sequence {n — @(n)},"_,.

In this paper we shall prove that the sets of positive values of the functions
¢ + 7, ¢ — 7 have the asymptotic density 0. Let us remark that this fact cannot
be established by the method used in [1], since the method from [1] devoted to
the investigation of values of functions f: N — N is based on the assumption that
f(n) = n for all ne N. But it is easy to check that if {p,}_, is the increasing
sequence of all prime numbers then for each 1 > 0 there exists a k, = ko(7)e N
such that for each k > k, and n = p, ... p; (distinct primes) we have f(n) =
= @(n) + 1(n) < nn.

2 The main results

The main result of this paper is the following theorem.
Theorem 1. The set of values of the function ¢ + 7 has the asymptotic
" density 0. '

For the proof of Theorem 1 we shall use two auxiliary results. The first of
them is closely related to Theorem 1 from [4].

Recall the following usual denotation. If 4 < N, then we put

267



Ax)= Y L.

aeA.a S x

If there exists
lim ikl = d(A),

X—= % X

then the number d(A) is called the asymptotic density of the set 4. The numbers

fimeinf 2% = g0
X = X
and
lim sup A0 d(A)
x

X=X

are called the lower and the upper asymptotic density of A, respectively.
Lemma 1. Let x e R and let g, h be two continuous and positive real func-
tions defined on the interval (x,, + o0) with

lim g(x) = lim A(x) = + 0.

Let N, be a set of positive integers satisfying the condition

No(x) = O(g—’i-) (x = 0). (a)
(x)
Suppose, further, that
x
— > (x> b
e ( ) (b)
and % is a non-decreasing function for x > x, > Xx,.
X
Let
h(x) = o(g(x)) (x — 00) (©)
If f: N— N and
lim inf AW) >0,
peee B
h(n)
then
d(f(Ny)) = 0.

Proof. According to the assumption of Lemma there existsa § > 0 and nye N
such that for each n > n, we have
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n

=0 .
f(n) 2 o)

M
We can assume already that n, > x,.
On the basis of the Darboux property of continuous functions we get from
(b) an x, > x, such that each x > x,, xe N has the form

X = 6_t(x_), (2)
h(1(x))

where #(x) is a suitable real number. Evidently, we have lim #(x) = + o0.

Let xe N, x > x,. Let ne N, n > n, be such that f(n) < x. Then according to
(1) and (2) we get

t(x) ) n
—=x2= >0 —.
ey T2 %0

From this we obtain

LI

h(t(x)) ~ h(n)

Since % is non-decreasing (see (b)) we get from this 7(x) = n.
X

Put for brevity F = f(N,). We have just proved that if x > x,, xe N and
ne Ny, n > n,, f(n) £ x, then we have n £ t(x). Hence each such f(n) is included
in the number N,(#(x)). Further, the number of all ne Ny, n < n,, is not greater
than n,. Therefore we have

F(x) = ny + Ny(2(x))

for each x > x,.
From this we get

F() _my | No(t(x) _

B ol JER
X X X
X t(x) X

On the basis of (a) there is a K > 0 such that for x > x; > x, we have

No(t)) e 1 _ 1
() T ¥gl)  g(i(x)
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Hence
Nolt() _ o1 10
x 0 gltx) x
But then from (2) and (4) we get (for x > x,)
No(1(x)) < K h(t(x)).
x 0 gt(x)

If x — oo, then #(x) - oo and then according to (c) the right-hand side has the
limit 0. So by (3) we get

(x > xy). 4)

d(F) = d(f(Ny)) = 0.

The proof is finished.
Lemma 2. Denote by M, (k = 0) the set of all ne N’s of the form

W= e - Q)
where ae N and ¢, ..., g, are distinct prime numbers. Then we have

x(log log x)*

M, (x) = 0( ) h=» ), ©)

log x

Proof. In what follows we shall use the following wellknown result:

Let kK = 1 and 7, (x) denote the number of all n’s with n < x which have the
formn =gq,.q,... g, (k is fixed, g, ¢>, ..., g, are distinct primes). Then we have
x(log log x)* !

T (x) ~ (x = 0) (7

log x

(cf. [3], pp. 368—370).
Evidently, (6) holds for k£ = 0. In this case (see (5)) the set M, equals the set
{1%, 2%, ..., n*, ...} and therefore

My(x) = O(/x) = 0(—*—)

log x

Hence in what follows we can assume that the number & is a fixed positive
integer. Let

n=gq,..qa<x, neM,. (8)

If a is fixed, then the number of n’s, ne M, satisfying (8), equals ﬂ'k(—x—’).
at
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Consider that from (8) we get for a the estimation a < \/g Thus we have

Mix) = Y, m.(%). ©)
a

In view of (7) there is a K > 0 such that for each x > ¢

k—1
() = g0 I0g X) (10)
log x
holds.
If x
= e, ) (11)
a .

x
a’log =
22

The condition (11) is equivalent to the condition a < _x_) Consider that
V e?
X X
mw= T s T oa(3)

We shall investigate the second summand on the right-hand side. The con-

\V e? 2

dition (for a)

is equivalent to the condition

and therefore
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Consider that the number of positive integers lying in the interval

¥
= )i o

M©s T m(X)+ow.
P

lsu<

does not exceed the number

Therefore

Hence

(12)

The first summand on the right-hand side of (12) can be expressed in the form

zﬂ(é) = 5,00 1 5,2,
N a’

Igu< —-‘,
where

S (x) = , S(x)= Z

l<a<logy

R
logx <a< =
el

Considering (10) we get the following estimations

k—1
x(log log iﬂ)
Si(x) < K .
|

Sa=logx 2 X
a“log —
a?

S:(x)=K Z
log.\'<a<\/§ azlog_x_
a

Put forr> e
V1(loglog 1) -

v(t) =
logt
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(k is a fixed positive integer). An easy calculation shows that

V(1) = 1, {1l(log log ="'+ 1tk = 1).

log™t (2 N

k—2 k— 1
‘ (log log 1) }logt 1 {\/;(log log ) } _
tlogt log’t t

1 . logt
= —(log lo t)“'(—————l)—i—
log?t {\/; o8 2
k — 1 (log log t)"‘l}
+ :
\ﬂ logt
From this we see that v'(¢) > 0if t > e > e. Therefore the function v is increas-
ing in the interval (e?, + ).
Using the function v we get

S(xK Y %u(%) (13)

| <a<logy a

Since the function v is increasing and positive in (e?, + o0) we get v( ) < v(x)

for each a = 1. Then (13) yields

S0 <Koy ¥ L

lsa<logy d

But for y > 0
1
Y, —=O(logy)
asya
(cf. [3], p. 266). Hence

Si(x) = K\/; \/;(log log x)" ' O(log logx) =
o

log x
k
_ 0<x(log log x) >
log x
So we get .
k

S,(x) = 0("—(‘%) (x = o). (19)

log x

We shall estimate the sum S, (x).
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The condition

logx<a<

is equivalent to the condition

3 X X
e'<—7<

a’® log’x

(15)

-

Put + = —. Since the function v is increasing in (e?, + 00), for each a satisfying

()5 o)

But then a simple estimation gives
SWsk ¥ ﬁv(i‘;) <
a \a

~ '

a
(15) we get

IIA

logx <a<

§K\/;v<x>z l=

- -
log’x/a<vx a

= K\/;v( s >O(logx) =

log? x

k—1
Jx <log log a )
\ log’x

= K\Jx

O(log x).

log x.log
log?x

Since x > ¢’, we have logx > 2,

X
= <X, log log

= O(log log x).
log’x logx

Further,
X

log®x

log ~logx (x— o0).

Therefore we get
Kk — 1
8,(x) = o(i('—"-g%) (x = ). (16)
log x
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By (12), (14), (16) we get at once

x(log log x)*

M, (x) = 0( ) (x - o0).

log x
The proof is finished.

We can now prove Theorem 1.

Proof of Theorem 1. Let £ > 0. Choose an me N such that
27" < ¢g. (17)

Denote by N,(N,) the set of all ne N’ of the form n = g,.q, ... g, .a*, where
k >m(k < m),gq,, ..., g, are distinct prime numbers and ae N. Then, evidently,
N=NUN, NnN,=0.

Put for brevity /= ¢ + 7. If ne N,, then in the standard form of » there are
at least m odd primes. From the well-known equalities

1

mm=nruﬁ—;> o(n) =[] (ap) + 1)
pln 4

(n =]] p""”) we get then 2”|p(n), 2™|7(n), hence 2| f(n). But then the inclusion

pln
SJWN) < {1.2m,2.2" .., j.2" ..}
holds. From this we have (see (17))
AUy s2<e (18)
Further, according to the definition of the set N, we see that
Ny=MyuM,u...UM,.

By Lemma 2 we have

Ny(x) = 0(M> (x = o0). (19)
log x
Further,
timinf —I® > fminf — 20 ___,-r5 9 (20)

N ) B o)
log logn log logn

(cf. [3], p. 267), where y > 0 is the Euler’s constant.
Using the denotation from Lemma 1 we choose N, = N,, x, = €2, g(x) =
= __I_ng_, h(x) = log log x.
(log log x)™

275



We shall verify that the assumptions of Lemma 1 are satisfied. Evidently we
have

lim g(x) = lim h(x) = + o0,

g(x) >0, h(x) >0 for xe(e?, +x).

No(%) = Ny(x) = o(gi) _ O(LUPM)
(

X) log x

Further,

(see (19)).
Hence the condition (a) in Lemma 1 is satisfied. The (b) holds, too, since the

function
x X

h(x) N log log x

is continuous and increasing in (e, +o0) and its limit if x — o0 equals + co.

Also (c) is satisfied because of 4(x) = log logx = 0(__10&) = o(g(x))
(log log x)™
(x = o).
The condition
timinf L5 0
n— o n

h(n)
follows from (20).
Therefore according to Lemma 1 we have

d(f(Ny)) = 0. 21

Since f(N) = f(N,) Uf(N,), it follows from (18) and (21) that d(f(N)) < &.
But ¢ is an arbitrary positive real number. Therefore d(f(N)) =0, i.e.
d((¢ + 7)(N)) = 0. This ends the proof.

For each n > 30 we have ¢(n) — ©(n) > 0 (cf. [6], p. 143, Exercise 7). In
connection with Theorem 1 the following question arises: How large is the
asymptotic density of the set of values of the sequence {¢(n) — t(n)};"_;,?

This question can be solved by a small modification of the method used in
the proof of Theorem 1. A little greater change we must do only in the proof
of the inequality

lim inf ———M—

" ()
log logn

where y(n) = p(n) — 7(n) (see (20)).
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But here in suffices to remark that

fm it — Y0 fminf —2 iy

n— X ( n ) n— ( n ) n—x < n )
log logn log logn log logn

and observe that 7(n) = O (n°®) for each £ > 0 (cf. [4], pp. 260, 267). Then we have

(22)

lim _m =0
n— oo n
<log log n)
and (20) gives
fiminf —2%0 _ — v 0,

" ()
log logn

The remaining modifications of the mentioned method are only slight and
therefore they can be left to the reader. So we get the proof of the following
result.

Theorem 2. The set of terms of the sequence {@(n) — 7(n)};_ ;, has the asymp-
totic density 0.
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SUHRN
O HODNOTACH FUNKCIE ¢ + 1
Helena Berekova — Tibor Salat, Bratislava
Nech 7(n) oznaduje pocet prirodzenych delitelov prirodzeného ¢isla n a @ oznacuje Eulerovu
funkciu. V praci je dokazané, Ze mnozina ¢lenov kazdej z postupnosti {@(n) + t(n)}; -,
{p(n) — 7(n)},"- 3 ma nulova asymptoticka hodnotu.
PE3IOME
O 3HAUYEHUAX ®YHKLUH ¢ + 7
Ilenena BepexoBa — Tu6op llanaT, BpaTucnasa
MycTs 7(n) 0603HaYaET YHUCIO HATYpaNbHBIX AENUTENEH YuChaa n M @ ob6o3Ha4aeT PyHKLHIO

Ditnepa. B pabore mnoka3zaHo, YTO MHOXECTBO 4JIEHOB KaXjOH H3 MOCNENOBaTEIbHOCTEH
{o(n) + t(n)}_ \, {@(n) — t(n)};. 3, *MEET HYJIEBYIO ACHMNTOTHYECKYIO MIOTHOCTD.
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