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A GENERAL APPROACH TO INTERIOR POINT
TRANSFORMATION METHODS FOR MATHEMATICAL
PROGRAMMING

MILAN HAMALA, Bratislava

This paper is devoted to a new class of parametric interior point methods
which do not possess the usual barrier property but whose other properties are
analogous to those of barrier methods. It turns out that this new class of
methods, which we call quasibarrier methods, is complementary to the class of
barrier methods in a certain sense. The quasibarrier methods may also be of
interest from the computational point of view, since their speed of convergence
(with respect to the parameter) is faster than that of barrier methods.

The partition of interior point methods into barrier and quasibarrier methods
is a natural consequence of the general convergence theory. The general conver-
gence theorem (convergence in the sense of function values) is proved here under
very weak conditions — that the transformation function has a minimum point.
(Neither continuity, nor barrier type assumptions are used.) In the second phase
we use the quasibarrier assumption to prove the existence of a minimum point.

1 Introduction
In transformation function methods the mathematical programming problem
Min{f(x)|g(x) >0 (i=1,2, ..., m} 1)
is transformed into a sequence of unconstrained problems
Min{7,(x)|xeR"} k=1,2,3, ..

where 7, (x) are such that:

Acknowledgement. The author is indebted to Dr. P. O. Lindberg and Prof. L. E. Zach-

risson (Department of Mathematics, Royal Institute of Technology in Stockholm) for reading the
draft and for valuable comments.
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a) T.(x) has a minimum point x* on some open connected subset X, < R"
(i.e. x*€ X, can be found by unconstrained methods);

b) The sequence of minimum points {x*} converges to an optimal solution x
of problem (1) [or at least the sequence of values {f(x*)} converges to the
optimal value f(x) of problem (1)].

These two properties of functions 7,(x) justify the well known SUMT
algorithm:*)

Step 1. Define T,(x) on an open set X, = R". Starting from any x’€ X, find a
minimum point x'e X, of T;(x).

Step 2. Define T,(x) on an open set X, = R" such that x'e X,. Starting from
x'e X, find a minimum point x’e X, of T;(x). '

Step 3. Define T;(x) on an open set X; = R” such that x’e X;. Starting from
x?e X, find a minimum point x’e X; of Tj(x). Etc.

From the point of view of how the sequence {7, (x)} is generated we distin-
guish two classes of transformation methods:

a) Parametric methods, if {T,(x)} is generated by means of one or more

parameters;

b) nonparametric methods (e.g. method of centres).

According to the position of minimum points {x*} with regard to the set of
feasible solutions [of problem (1)]

K={xeR"|g(x)=0 (i=1,2,.., m)} (1a)
or its ‘““interior set” ’
K°={xeR"|g,-(x)>0 (i=12 .. m)} (1b)

we distinguish the following three classes:
a) interior point methods (known also as barrier methods) if x*e K° for all

k=123, ...
b) exterior point methods (known also as penalty methods) if x*¢ K for all
k=123, ..

¢) other methods (e.g. Lagrange and exponential methods).

Here we shall deal only with the parametric interior point methods whose
transformation functions depend linearly on the parameter. A typical interior
point transformation function with linear parameter for the mathematical pro-
gramming problem (1) is: -

L) = TCx, 1) =) + 1 3. Flgi(0)]

i=1

where {r,}|0and I': R, . > R(R,, ={xeR|x>0})

*) Sequential Unconstrained Minimization Technique algorithm.
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has some additional properties which guarantee that 7(x, r,) has a minimum
point x* = x(r,) on K° In the case of convex programming problems and
barrier transformation functions these properties are [1]:

(A)  assymptotic property: lim —r—(é—é—) =0
(B)  barrier property: ll}’lol Iré)=+ow
(CX) convexity property: (&) is convex.

The well known examples of barrier functions are:
(&) = &' (hyperbolic or inverse barrier of Fiacco-McCormick [1])
L&) = —Iné  (logarithmic barrier of Lootsma [10]).
It turns out that the barrier property (B) can be replaced by an analogous
quasibarrier property (Q) (Hamala [6]—{9])
(Q)  quasibarrier property: lzi?g r'(é) = I (finite)
and
lim e -1 f=
€Lo &
As an example of a quasibarrier function we have:
L&) = —& (square root quasibarrier [8]).
The different behaviour of the “trajectory” f[x(r)] generated by I}, I, I; can
be illustrated by the following trivial example:
Min{x|x > 0}
with the optimal value f(x) = £ = 0. Then
Tix, ) =x+rx'=x()=+r

Lix,r)=x—rlnx=x(r)=r

— 0.

T;(x, r)=x—r\/;c‘=:»x(r)=ir2

and fx(r)] = f(X) as r ] 0.
To justify the replacement of the mathematical programming problem (1) by
a sequence of unconstrained type problems

Min{T(x, r,)|xeK%, {r}l0 2

the theory of Parametric Interior Point Methods (PIPM) must answer the
following questions:
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Question 1. Under what assumptions does the solution x* = x(r,) of (2)
exist?
Question 2. What are the assumptions giving convergence? (The conver-
gence in the sense of function values f(x*) — f(X), or in the sense
of solutions x* — x.)
Question 3. What is the quality of approximation for a given value r, > 0?
(Measured by |f(x¥) — f(X)], or by [x* — £].)
Note that from the practical (i.e. applied) point of view it is usually more
natural to use the “function measure”. E.g. the minimum f(X) =0 of the
function /> R, - R

=X if 0<x<l
f(x)<

is at X = 0. But if we compare x, = 0.5 and x, = 10, we see that the “closer
approximation” x, = 0.5 gives a worse result f(x,) = 0.5 than the *‘distant
point” x, = 10 for which we have f(x,) = 0.1.

The main theorem of Fiacco-McCormick [1] on barrier PIPM states the
existence and convergence of a minimizing sequence {x*} of T(x, r;), (x* — % as
ri. 1 0). They use various assumptions (e.g. continuity of functions, boundedness
of the set of optimal solutions, barrier property, etc.). Some of these assump-
tions are necessary to prove the existence x* and some are needed for conver-
gence x* — £. But since we have found that the barrier assumption can be
replaced by an equally powerful quasibarrier assumption, we propose to separate
the question of existence of x* € K° from the question of convergence f(x*) — f(%).
In this study the theory of PIPM is treated in the following way:

In the first phase we assume explicitly the existence of a minimum point x*
[so-called Existence property (E)] and look for the most general conditions of
convergence (i.e. Question 2). After this we give some estimation of the mag-
nitude | f(x*) — f(%)| (i.e. Question 3).

In the second phase we consider sufficient conditions for the existence
property (E), (i.e. Question 1). First we define a general quasibarrier property
and prove the existence theorems for the compact case, as well as for the convex
case. At the end of our study we apply the general theory of PIPM to the convex
programming problem and explain the relation between the barrier and quasi-
barrier methods by means of perturbed Kuhn-Tucker conditions.

=x"" if l<x

2 A General Model with Linear Parameter

By a general constrained optimization problem (GCOP) we mean a problem
of the following form:
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Min {F(x)|xe M}, (3)

where M < R" is a closed set (0 # M # R") and F: X—> R (M < X < R").
Instead of problem (3) we shall deal with the following weakened form of
GCOP:*)

Inf{F(x)|xe M}, Ginp)

where M° < R" is an arbitrary set such that ¢/ M° = M. For our purpose (3,,1)
is more convenient than (3) because it allows one to get rid of such secondary
assumptions as the requirement that the feasible set M be closed or that there
exist an optimal solution e M.

Remark. Obviously, if F(x) is continuous on M and attains its minimum
there (in xe€ M), then

F = inf F(x) = min F(x) = F(%),
xe MO XeM

i.e. the optimal value F of (3,,) equals the optimal value F(X) of (3).
Related to the problem (3;,) we shall consider the following parametrized
problem

Min{T(x, r) = F(x) + rG(x)| xe M°}, 4)

where r > 0 is a positive scalar parameter and G: M° — R is an arbitrary
function. Hence T: M° x R, , — R and, for any fixed x°e M°, T(x°, r) is linear
(affine) in r > 0. In what follows, we shall assume that for any r > 0 the
parametrized problem (4) has an optimal solution x(r) e M°. This basic assump-
tion on the function T'(x, r) we call “Existence property” (E). Thus

(E) Vr>0 3x(r)e M°: Tx(r), r] = mm T(x,r)

Remark. This (E) property is the only assumption we shall use to prove the
convergence F[x(r)] - F (as r | 0).
We shall treat the above-mentioned main questions of the theory of PIPM in
the following sequence and with the following results:
Q2. We shall show that for the convergence F[x(r)] - F (as r | 0) we need
only the *““Existence property” (E) (Theorem 4). For the convergence
x(r) — X it is sufficient to assume that F(x) is continuous (Corollary 5).
Q3. We shall show that for the so-called quasibarrier type we have
FIx(r)] — F = r. o(r) where o(r) - 0 (as r | 0) (Theorem 6).
Q1. Together with the barrier property we shall define the quasibarrier
property which, combined with a convexity or compactness assumption,
implies the existence property (E) (Lemma 7 and Theorem 9).

*) Problem (3;,;) means “to find the infimum of F(x) on M .
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3 Monotonicity and Convergence in the General Model

Letr,>r>...>rn>r..,>..>0
be a strictly decreasing sequence of positive numbers, such that limr, = 0, and

T(x, ry) = F(x) + r.G(x)

be the function defined on an arbitrary set M° # 0 satisfying the existence
property

(E) Vr,>03x"=x(r,): T(x, r) = m,i‘;'o T(x, r).

Denote:
x* = x(r,) — the minimum point of T(x, r,)

F = F(x"); G.=GK"); T, =T r).

Lemma 1. Let 0 <r, < r,. Then
a) HL<F
b) G, > G,
¢) G >0=>T,<T,
d) G,<0=>T,>T,

Proof. For the proof of parts a), b), ¢) see Theorem 25 in Fiacco-McCormick
[1].
d) If G, < 0, then obviously

L=E+nrG>E+rG=>T, QE.D.
Remark. Fiacco-McCormick [1] considered only the first three relations of
Lemma 1, which are involved in the theory of barrier functions. The last relation
is fundamental in the case of quasibarrier functions.

Corollary 2. Let {r,} |0 and F = \-iennfo F(x).

a) If G, > 0, then
F<F, <E<T<T.
b) If G(x) < 0 for all xe M°, then
L<TL.<F<F, <K

Proof.

a) Follows immediately from Lemma la, c.

b) It is necessary to show only that 7, < F
(the other inequalities follow from Lemma la, d).
Since G(x) < 0 for all xe M°, we have

T, < T(x, r,) = F(x) + r,G(x) < F(x), for all xe M°.
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Thus ”
T, < ri‘srlnvil"0 F(x)=F.
o Q.E.D.
Remark. There is an essential difference between the relation of Corollary 2a
(typical for barrier methods) and the relation of Corollary 2b (typical for
quasibarrier methods). In the second case, successive steps of the SUMT
algorithm provide us with monotone sequences of lower and upper bounds of the
optimal value £. On the other hand, the lower bound for barrier methods is
obtainable only in the convex case, by the weak duality theorem.
Note that in the first case F can be finite as well as — o0, but in the second
case F is finite. (Thus, the existence property (E) together with the assumption
that G(x) < 0 for all xe M°, imply that £ is finite.)

Corollary 3. Let {r,} |0 and F = in/vfo F(x). Then

a) limF, > F
c) G, >0=1limT7,>F

d) Forall xe M* G(x) <0=1im T, < F.

Proof. Follows immediately from Lemma 1 and Corollary 2.

Note that the relation b) defines a quantity G wich is either finite or + oo,
Theorem 4 (Convergence). Let {r,) | 0. Then

a) lim7, = F

b) lim F, = F.

Moreover, if F = inf0 F(x) is finite, then also
XeM
C) lim rka - O.

Proof.

I Let F= — 0.
Ia)

VN>0 3x,eM’ F(xy)< — N 5)
Now
T, < T(xy, 1) = F(xy) + 1,G(xy) < —N + r,G(xy)
and since {r,} | 0
VN>0 limsupT, < —N,
which implies )
lim7T, = —oo (= F).
Ib) The monotonicity of {G,} (Lemma 1b) implies
lim sup (—r,G,) < +
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Now, applying this and the proved part Ia) to the relation

F. =T, — r.G;
we get

limsup F, = — oo (= F).
II. Let F be finite.

IIc)
Ve>0 dx,eM’ F(x,)<F+¢ (6)
Now
F+nG <F+nG=T<T(x,r)=
= F('xc) + rkG(xs) < F+ £+ rkG(xu) (7)
or

Ve>0:r.G, < e+ r.G(x,),

which implies
limsupr, G, < 0.
But by Lemma 1b
lim infr, G, > 0,
therefore
limr, G, = 0.
I1a) By (7) and Ilc)

Ve>0: F<liminfT, <limsupT; < F + ¢,

which implies

F=1limT,.
IIb) Applying IIa) and Ilc) to the relation 7, — r, G, = F, we get
F=limF,.
Q.E.D.
Remark. The last relation in Theorem 4 does not hold in general, if F = — 0.
For example, if we take M°= R, ., F(x) =Inx, G(x) = x ',
T(x,r)=Inx+rx~', then F= —c0, x*=r, and r,G, = r,r;' = 1.

Corol.ary 5. Let F(x) be continuous on M = cl M°, the set M of all optimal
solutions % of (3) be nonempty and let {r,} | 0. Then every limit point of {x*}
belongs to M.

Proof. Let Xe M be an accumulation point of {x*}. (For the sake of simplic-
ity of notation suppose that x* — x.) Then from continuity of F(x) it follows
that

lim F(x*) = F(%).
250



But according to Theorem 4b
lim F(x*) = F

and so xe M. Q.E.D.

Remark. We have proved the convergence Theorem 4 under the assumption
of the validity of the existence property (E). It can be shown that the conver-
gence takes place even under a weakened assumption:

(Einp) Yr>0:1r)= ,\~isano T(x.r) is finite.
Then Vr>03p(r)eM®: t(r) < Ty(r), r] < t(r) + r
and it can be proved that
lim 1(r) = lim 71y(r), r] = F ‘ ®)
lim Fy(n] = F. ©)
Moreover, if F is finite, then

lim r. G[y(n)] = 0. (10)

Remark. If for any r > 0 we solve the parametrized problem (4) with better
than S-accuracy, i.e. if for any r > 0 we find z(r) e M° such that

t(r) < Tlz(r), r] < t(r) + o
and if F is finite, then

F< liml(i)nf T1z(r), r] < lim sup Tz(r), 1 < F+ &
r rlo
F< liml inf Flz(r)] < lim sup Fz(r)] < F+6
r rlo

0< lim“i)nfr.G[z(r)] <limsupr.G[z(r)] < 4.
r rlo

Moreover, if G(x) < 0 for all xe M°, then

Tlz(r), r] — 6 < F < Flz(r))]

and
“H)l r.Gl[z(r)] = 0.

Let us return once more to Corollary 3b. We see that there can be two
qualitatively different cases: G = + co and G finite. Accordingly, we introduce
two notions:
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Definition. We shall say that the transformation function
T(x, r) = F(x) + r.G(x) is of

a) B-type, if limG, = + 0;

b) Q-type, if  lim G, = G (finite).

Theorem 6. Let {r,} |0 and F, G be finite. Then

0<F,-F<rao,
where
lim @, =0,

k—

i.e., the rate of convergence of a Q-type method is superlinear with respect to the
parameter.
Proof. Let 0 <r; <r, (j> k). Then

T, = K, + .G, < F + ,G,.
Now, applying Theorem 4b and Corollary 3b (j » + o) we get

FE+nrnG. <F+rG

or ” "
0<F—-F<n(G-G)2nao,

Where li lim(G — G,) =0
m w, = lim — = 0.
* ‘ Q.E.D.

Remark. There does not exist any analogous theorem for B-zype methods.
For example in the case of the logarithmic or hyperbolic barrier function we
have only (see also the trivial example in the Introduction):

F, — F~ c,r, (linear rate of convergence [10], [11])
or

F,— F~c,\Jr, (worse than linear rate [10], [11]).

4 Sufficient Conditions for the Existence Property
Consider a function H: M° — R, where 0 # M° c R" is an open set, and its
“Existence property”
(Ey) Ix°e M’ H(x" = min H(x).
xeM
In the case of a continuous function H(x) and a bounded set M° the obvious

condition for this (E,;) property to hold is that for any point ye M° which is
“sufficiently close” to the boundary of M° we have
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H(y) > _inJo H(x).

For example, the class of the well-known barrier functions has this property. We
shall define another class of functions (so-called quasibarrier functions) which
also satisfies the above relation.

Definition. Let § # M° = R” be an open set and M = cIM°. A sequence
{(»*} = M° is said to be a boundary sequence if y*—jedM =M — M°.
A function H: M° — R is said to be

a) a barrier function, if for any boundary sequence

klim H(") = + o0,

b) a quasibarrier function, if for each boundary point y€ OM there exists at
least one sequence y* — j such that

lim H(y*) = A, (finite) ' (1)
and . _

anUB"?W=—w. (12)

kex |yt =yl

~ Lemma 7. (The existence property for a continuous function and a bounded

set.)
Let @ # M° = R" be open and bounded.

a) If H(x) is continuous on M° and barrier, then it has property (Ey).

b) If H(x) is continuous on M = cl M® and quasibarrier on M°, then it has

property (Ey).

Proof.

a) See Fiacco — McCormick [1] (Corollary 8, p. 46).

b) Since H(x) is continuous on the compact set M = cl M°, there exists
%€ M such that

H(") = min H(x). (13)

Suppose that y’e M — M°. Then by definition there exists a boundary sequence
y*¥ = y° such that

Ky _ 0
lim &Z__HF(J_) =
k=t =
But this implies that for sufficiently large index k, H(y*) < H(»°), contradicting
(13).
Q.E.D.

Remark. In Lemma 7 it is sufficient (in both cases) to require only the lower
semicontinuity of H(x) on M°.

=00
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Remark. By excluding the possible uncertainty of expressions of the type
(— o) + (+ ), we can immediately apply the notion of a barrier and quasibar-
rier function to the transformation function 7T'(x, r) = F(x) + r.G(x). The
details are given in the following lemma.

Lemma 8. The transformation function 7T(x, r) = F(x) + r. G(x), defined on
an open set M° is:

a) barrier if G(x) is a barrier function and for any boundary sequence {y*}

lim inf F(y*) > — o, (14)

b) quasibarrier if G(x) is a quasibarrier function and for any boundary
sequence y* —
lim F(3*) = F,+, (finite) (15)
and FOY) — F
lim sup Ul

k=xy* =Pl

< 4 o00. (16)

Remark. The conditions (14), (15) are obviously fulfilled if F(x) is continuous
on M = cl M°. The condition (16) is fulfilled if F(x) satisfies a Lipschitz con-
dition on M = cl M°. ‘

Theorem 9. (The existence property for a convex transformation function.)
Let:

a) 0 # M° < R" be an open convex set, M = cI M°;

b) the set M of all optimal solutions of the problem (3) is nonempty and
bounded,

c) if M is unbounded, then for any ray x + us < M (ue R,, 0 # se R")

lim -le(x+ys)=0; (17)
!
d) F(x) is convex and continuous on M,
and eg) G(x) is convex and barrier on M°,
or eq) G(x) is convex, continuous on M and quasibarrier on M°.
Then for any r > 0 the transformation function T(x, r) = F (x) + r.G(x)
has the (E) property.
Proof. 1. For the case of barrier assumption (eg) see Fiacco-McCormick [1]
(Theorem 25, p. 97).
I1. Consider the quasibarrier assumption (eg). First we shall show
that the set

S ={xeM|T(x,r) < T(%,r), XeM
is bounded. (Obviously, S, is convex and closed.) Suppose that S, is unbounded.
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Then it contains a ray
w=w)=xX+uz—-x), pu>1,
where z€ S, can be chosen in such a way (by assuption b) that
e=F(z) — F(x) > 0.
Then by convexity of F(x):
Fw)y=>FX)+pu.¢
and
Tw,r)=Fw)+r.Gw) > F(X)+ pe+r.G[X + u(z — %)) =

= F(x) + u{e +r -l—G[)E + u(z — )2)]}.
J7;

But by assumption c) the last expression.tends to + oo as g — oo. This contradic-
tion proves the boundedness of S,.

Now the continuous function 7T(x, r) on a compact set S, attains its minimum
at some point x(r)e S, € M. But, obviously,

T[x(r), ] = min T(x, r) = inf T(x, r).
YEeS, XeM

So T(x, r) attains its minimum on M. Now, by the same argument as in the proof
of Lemma 7b), it can be shown that x(r) cannot be a boundary point of M, i.e.
x(r)e M°.

Q.E.D.

5 Quasibarrier Functions for Convex Programming

Here we apply the results obtained for the general model (3), (4) to the convex
programming problem (1) with convex functions f, —g; defined on R", the
nonempty open set K° (1b) and the convex transformation function

T, r)=f)+r- Y g =,(x)+r.Gx), (18)
i=1
where I': R, , - R. Now for the function
G(x) = ), I'[g:(x)] (19
i=1

— to be convex, it is sufficient to require that
(CX) I'(&) be convex for £ > 0, and
(M) I'(¢) be (monotonically) nonincreasing;
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— to be quasibarrier, it is sufficient (as is proved below) to require that

llfro\ (&) =T (finite)
Q ”
r@-r_

&10 5

— to be “‘asymptotic” in the sense of (17), it is sufficent (as is proved below)
to require that

(A) lim e _ 0.

These four assumptions (CX), (M), (Q), (A) are not independent. It is
elementary to prove the following.

Lemma 10. Assumptions (CX), (A) imply (M).

Remark. Since convexity of I'(£) implies continuity for £ > 0, we can con-
tinuously extend I'(£) to £ =0 by

r(0) = lim I'(¢) =

Hence I'(£) can be considered as convex continuous on R, and property (Q) can
be defined as

10 £

We are now in a position to prove a convergence theorem for convex
programming and quasibarrier transformation functions which is a complete
analogue to the basic convergence Theorem 25 ([1] p. 97) of Fiacco-McCormick
concerning barrier transformation functions.

Theorem 11. Consider the convex programming problem (1) with the
nonempty set K° (1b) and a nonempty bounded set K of all optimal solutions
X. Let I': R, — R have the properties (A), (CX), (Q). Then the quasibarrier
transformation function (18) has the following properties:

(i) Forany r, > 0 there exists x* = x(r,) € K° which minimizes T(x, r,) on K°;
For {r,}10

(i) lim T(x*, ) = lim f(x*) = f(9);
(iti) Every limit point of {x*} belongs to K;
(iv) The sequence {T(x*, r,)} is monotonically strictly increasing if I'(§) <0

for £ > 0;
(v) The sequence {f(x*)} is monotonically decreasing;
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(vl) The sequence {G(x*)} defined by (19) is monotonically increasing and
converges to a finite value.

Proof. (i) To prove the existence property (E) we shall show that the assump-
tions of Theorem 9 are fulfilled. The assumptions a), b), d) are obviously
fulfilled. We need only to show that the function G(x) (19) has the asymptotic
property (17) and is quasibarrier.

I. First we shall show that G(x) is quasibarrier on K°. Let je K — K be a
boundary point of K°. We shall construct a sequence {y*} = K° y* — 7 which
satisfies the relations (11), (12) of the definition of a quasibarrier function. Let
x%eK’ §=x"-75 {A}<R,.,, 410, y*=3+ A5, I=/{ilg,(y)=0}. Ob-
viously,

m m

lim GOY) = 3 lim Clg0M] = ¥ Tg( =6

i=1 i=1

where G is finite. Now

GOUN=G_GUN-G__1 § 1ok - Gl =

ly* — 7l LS AJSL S
Ly MG+ A0 =T
151 i A
1 {r[gi();'{—lkj)]_r}‘gi(ﬁ"'-lkg)'
151l g0+ 4d) A

The first sum (i ¢ ) is finite as 4, | 0 (directional derivative of a convex function).
By the (Q) assumption, the first terms in the second sum (ie ) tend to — oo as
A, 1 0. The terms

gi(.y + A’AST) : ie 1'
P
are positive and (by concavity of g;) monotonically increasing as 4, | 0. Hence
N
jim SO0 =G _ _
kex yt =7l

II. Now we shall show that for any ray x + use K (1a) the function G(x) (19)
has the asymptotic property (17). Consider the ray w = w(u) = X + us, (u> 1)

in K, where xeK, §=Z— X, ZeK, Z # X.
By concavity of g;(x) we have

0<gwW)<gX)+up.o, u>1) (20)
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where 6, = g,(5) — g,(¥) > 0. (The fact that &, > 0 follows from (20); otherwise
the right-hand term of (20) would become negative as u goes to infinity.) Now
by Lemma 10 ‘

G(T+u) =G =Y gl = Y Tlg(® +p.8),
i=1 i=1
which, by assumption (A), implies
lim lG()?+,u.§)_>_0. 21
H—= 7 u
From (20) we see that the concave function
Yi(w) = gi(w) = gi(x + p3)

is nondecreasing. (Otherwise, there are 1 < y, < y, such that y(u,) > y(u,),
and by concavity of y(u) we get

H—

H — Hy

Y < y(p) + () = vl — o0
contradicting the first inequality of (20)). Hence by Lemma 10 the convex
function

o) = I'ly; (W] = I'[gi(x + pd)]

is nonincreasing, which implies

fim, S G(E + 1) 0. 22)
H— 7L ﬂ
The relation (22) together with (21) imply (17). Now the statement (i) of
Theorem 11 follows from Theorem 9.
(i1) Follows from the convergence Theorem 4.
(iii) Follows from Corollary 5.
(iv) Follows from Lemma 1d.
(v) Follows from Lemma la.
(vi) Follows from Lemma 1b and the continuity of G(x) on K (1a).
‘ Q.E.D.
Theorem 12 (Dual convergence). if in addition to the assumptions of Theo-
rem 11 the functions f, g;, I" are assumed to be differentiable and we put

wt = —r Mg xM) G=1,2, ..., m) 23)
then the point (x*, u*) is a feasible solution to the dual problem
Max{L(x, u)| V.L(x, uy) =0, u>0} (24)
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m

L(x.u) = f(x)— Y ug/(x).
i=1

Moreover, all limit points of the sequence {(x*, «*)} are finite optimal solutions
to the dual problem (24). and at least one limit point exists.

Proof is analogous to that for barrier functions ([1], Theorem 26, p. 98) so we
do not repeat it here.

Remark. From Theorem 12, by the weak duality theorem ([1], Theorem 22,
p. 92), we get the following estimation for the optimal objective function value:

m

0 <f(x) —f(9) < —r I gix)lgi(x").

i=1

This estimation can be improved in the following way. By convexity of L(x, u*)
and Theorem 12

L(%, u*) — L(x*, u*) > VL(x*, u®)T(® — x¥) =0,

which implies

0<f(x")—f(D) <) ulg(x") — (] =

i=1

= Z ui/\gi(-\_k) + Z‘“ik[gi(xk) — gi(X)],

iel i¢l
where i
I'={i|g(x) = 0}.
After substituting u! according to (23) we get

O <f(x*) = f(®) < ray + reay,

where
b= = ¥ Mg ()l (x*) 2 0
iel
of = =Y I [g,(x")]g:(x") — (X))
i¢l

Note that by assumption (Q)
= I'"[g,(X)] fori¢l

lim I"’[g;(x")]
ko AN = —w for iel.
Hence
klim o = 0.
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By convexity and monotonicity of I'(£) we have
0< —&I"(8) < 1(0) — 11(%),

which implies (in accordance to the superlinear convergence of quasibarrier type
methods proved in Theorem 6)

lim Cbk = 0.

k=7

Note that in performing the SUMT procedure we can gradually identify all
nonbinding constraints (/¢ /) and omit them from the following iteration steps.
Thus for sufficiently small » > 0 we can deal entirely with the binding con-
straints. In such a case the speed of convergence is determined by

Zu,‘g,—(,\‘k) =ra, = —r; Z I[gi(x")lg,(x*).

iel iel
Example. For /i > 1 let
-1 U
n@:-g("l mf%@=—(l—ﬁ§”.
Then l
u(r) = —r g (x(r)] = r(l - %) l2,(x] ",

: r h ] h
(x(r)=|—1|(1—=].
£A0) [u,-(r)] ( 11)

h
ron) = ¥ u(r).g/(x(r) = r"<1 —1) A

iel

which implies

Hence

Suppose that for ie J (Theorem 12)

lim u,(r) = & > 0.
rl0o

Then for some constant ¢ > 0 we have

r.o(ryxc.r", (h>1)
o 0 < f1x(M)] — f(H) S c.r

Remark. For h=2 we have I'(§) = — \/Z So the convergence of the
“squareroot quasibarrier method” is quadratic with regard to the parameter
r > 0 (provided that &; > 0 for ie I and the nonbinding constraints are omitted).
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Remark. In general, the value of the limit

0 0
T X (4
lim = = lim #
k= wk rlo w(r)

can be any nonnegative number (including + o) as is demonstrated by the
following example. Let us consider

Min{(x; — 1Y +2x%|x,>20, x>0}, (p=1).

This is a convex problem with a unique optimal solution ¥ = (1, 0). Let
r¢)=- \/E Then V. T(x, r) = 0 gives a unique trajectory x(r):

pn =1y = an=nor V=B -1

Thus we have

1 |
0 = Wena ); &= 5\/2=§\/E(x. — =¥

0 —
i 20 - i 2y, — 1 =
rl0 a‘)(r) .\'l—vl p'\'l

6 The Relation between the PIPM and Kuhn-Tucker Conditions

and
0 if 1<p<?2
if p=2

—

In this part we shall prove a theorem on perturbed Kuhn-Tucker conditions
which formally unifies both the theory of barrier and quasibarrier methods and
at the same time shows the close relation between the theory of parametric
interior point methods and the Kuhn-Tucker optimality conditions. We begin

_with some intuitive considerations which will lead us to a natural problem
formulation.

Consider the convex programming problem (1) with differentiable convex
functions f, — g;, the nonempty set K° (1b) and an optimal solution X. The
related Kuhn-Tucker (necessary and sufficient) optimality conditions are:

m

V() — Y i, Vg(%) =0 (25a)
i=1
gi(x) =0 (25b)
(i=1,2,...m) {i.g(&)=0 (25¢)
>0, . (25d)
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If T(x, r) is some convex and differentiable (interior point) transformation
function of problem (1), then its minimum point x(r)e K° is determined by

V.T(x, r)=0. : (26)
If x(r) = %, or at least f[x(r)] = f(X) (as r|0), then the relation (26) can be
interpreted as some approximation of the Kuhn-Tucker conditions (25) (as will
be made more clear below).

Problem. Is it possible to proceed backwards?

Or in other words, are there any reasonable approximations of the K-T
conditions (25) from which we can derive some appropriate transformation
functions? Is there any simple way to derive all transformation functions of the
form (18) by modifying the K-T conditions (25)?

Example. Fiacco-McCormick ([1] p. 40) replace the complementarity con-
dition (25c) by the perturbed one

ugi(x)=r, (r>0) (25r1)

and then substitute for u; into (25a) to get

V) —r Y ——Ve,(x) =10
i=1 &(x)
or

V{f(x) —r Y In g,(.\')} =0.
i=1

Hence the perturbation (25r) generates the Logarithmic barrier function.
Now, following the basic idea of the perturbation (25r), we shall present a

general scheme of modifying the K-T conditions, which will enable us to

generate all barrier and quasibarrier transformation functions of the form (18).
Consider a function IT: R, — R such that [1(0) = 0, I1(¢) > 0 for &> 0.

Then the complementarity condition (25¢) is equivalent to

u AT [gi(x)] = 0. 27)
Now instead of perturbing (25c) we shall perturbe (27), i.e.
wll[g,(x)]=r, (r>0). (271)
Substituting for y; into (25a) we get
= |
Vf(x) -r Vgi(x) =0
& oo
or
o [ dgi(x)
V{f(x) —-r —-'—} = 0. (28
,-‘_‘-:1 IT[g,(x)] . )
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If we deﬁng:

dé , 1
F(§)=—J77?5, 0rF(§)~—F€)- (29)
then the relation (28) becomes
V.T(x,r)=0, (30a)
where i
T(x,r)=f(x)+r Y I'lgx), (31)

i=1

i.e. a function of the required type (18). Hence the original K-T conditions {25)
have been transformed to (30a) and

(i=1,2,...,m gi(x)>0. (30b)
If T(x, r) is convex, the conditions (30) are equivalent to the ‘
Min {T(x, r)|xe K°}. (32)

But the basic question of the ““Existence property” (E) of the function (31)
still remains open. Hence, in the next step we shall make clear under what
conditions (for the function IT: R, - R, IT(0) =0, I1(¢) > 0 if £> 0) the
resulting function T'(x, r) (31) will be a convex barrier or a convex quasibarrier
transformation function.

Recall that the desired properties of I'(£) (29) are (CX), (A), (B) or (CX), (A),
(Q) (Theorem 11). We shall express these properties in terms of the derivative
function I'"(&).

The convexity property (CX) is equivalent to the monotonicity of I''(£).
Hence, instead of (CX) we have

(CX") I'’(£) is nondecreasing.
The asymptotic property (A) is equivalent to
(A") 51im r'¢g=o.

It can be easily shown that the barrier property (B) together with the quasi-
barrier property (Q) is equivalent to

(BQ) ljflol ') = —oo.
Now through the transformation (29), i.e.
1
II¢) = — — (33)
I’
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the properties (CX"), (A"), (BQ’) correspond to the following properties for the
function I1(§):

(CX*) IT(¢) is nondecreasing;
(A¥) lim JI(§) = +o0;
(BQ¥) lim 17(¢) = 0.

Note that the requirement I7(0) = 0 and (BQ*) imply the continuity of I7T(&) at
&E=0.

Hence, we have proved the following perturbation theorem (as a consequence
of the theory of barrier and quasibarrier functions).

Theorem 13. Given the convex programming problem (1) with differentiable
convex functions f, —g,, the nonempty set K° (1b) and the bounded set K # 0
of optimal solutions. Let IT: R, — R be such that I7(0) = 0, IT(§) > 0 for £ > 0
and satisfying the conditions (CX*), (A*), (BQ*). Then for any r > 0 the
perturbed system of the Kuhn-Tucker conditions

m

V(x)— Y. 4 Vg(x) =0

8(x)=0
ullg,(x)] =r
u; >0

has a solution x(r), u(r) and for some xe K

m flar)] = S0,

Examples.
meE=¢ =>r,<¢=)=1§
L&) =¢ = L&) =—In¢
(&) = 24¢ = I(&) = —VE

11,(¢) = ;,hT] g (for h> 1)= I(&) = _5(' ‘5),
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SUHRN

VSEOBECNY PRISTUP K TRANSFORMACNYM METODAM
VNUTORNEHO BODU PRE MATEMATICKE PROGRAMOVANIE

Milan Hamala, Bratislava

Clanok je venovany novej triede parametrickych metod vnatorného bodu, ktoré nemaji obvyk-

lu bariérovu vlastnost, avSak ich ostatné vlastnosti su analogické ako v bariérovych metédach.
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Ukazuje sa, 7e tato nova trieda parametrickych metdd, ktoré nazyvame kvazibariérovymi metoda-
mi, je v uritom zmysle komplementarna k triede bariérovych metod. Kvazibariérové metody su
zaujimavé aj z vypoc¢tového hladiska, pretoZe ich rychlost konvergencie (vzhladom na parameter)
je lepsia ako v bariérovych metodach.

PE3IOME

OBUMN MOAXOA K METOAAM HITPA®HBLIX ®YHKLIMN THUIA
BHYTPEHHEW TOUYKWU C MMAPAMETPOM 1S 3AJAUYU
MATEMATHUYECKOI'O INMPOrPAMMUPOBAHUA

Munan M'amana, bpatucnasa

CTaTha NOCBALICHa HOBOMY KJIACCY METOOB IITPAa(HBIX QYHKUUH THNA BHYTPEHHEH TOYKH C
NapaMeTPOM, KOTOpble He 00IaidaloT OOBIYHBIM CBOWCTBOM Oapbepa, HO OCTasIbHbIE X CBOWCTBA
AHAJIOTUYHBl MeToaaM GapbepHbiXx QyHKkuMit. Oka3piBaeTCs, YTO ITOT HOBBIH KJIacC METOAOB —
KOTOpbIE MBI Ha3bIBAEM METOAAMH KBa3HbapbepHbIX GyHKLMH — B ONpeaeIEHHOM CMBICIIE AOMOJI-
HUTENIbHBIA K KJlaccy MeTonoB OapbepHbix (yHkuui. Mertoabl kBa3zubapbepHbIX (QYHKUMH HH-
TEPECHbl TAKXKE C BbIYUCIUTEIbHONH TOYKH 3PEHHS, MOTOMY YTO CKOPOCTb MX CXOAMMOCTH (OT-
HOCHTEJIbHO NMapaMeTpa) Jy4lle, YeM B MeTolax GapbepHbix (GyHKIIMIA.
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