

Werk

Label: Article **Jahr:** 1989

PURL: https://resolver.sub.uni-goettingen.de/purl?312901348_54-55|log28

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

UNIVERSITAS COMENIANA ACTA MATHEMATICA UNIVERSITATIS COMENIANAE LIV—LV—1988

GENERIC CHAOS CAN BE LARGE

TOMÁŠ GEDEON, Bratislava

In the paper we shall consider continuous maps of a compact real interval *I* to itself. A concept of chaos was given in 1975 by Li and Yorke [3]. An equivalent definition can be found in [2] (cf. also [6]):

Definition 1. A map f is chaotic if there is an $\varepsilon > 0$ and a non-empty perfect set $S \subset I$ such that for any $x, y \in S$, $x \neq y$, and any p from the set Per(f) of periodic points of f,

$$\lim_{n\to\infty}\sup|f^n(x)-f^n(y)|>\varepsilon,\tag{1}$$

$$\lim_{n \to \infty} \inf |f^n(x) - f^n(y)| = 0,$$
 (2)

$$\lim_{n\to\infty}\sup|f^n(x)-f^n(p)|>\varepsilon. \tag{3}$$

The set S is called a chaotic set for f.

In 1985 Piórek [5] introduced the notion of generic chaos for more general systems; for maps of the interval it reads as follows:

Definition 2. A map f is called generically chaotic if the set G of all $(x, y) \in I^2$ for which

$$\lim_{n \to \infty} \inf |f''(x) - f''(y)| = 0,$$
(4)

and

$$\lim_{n \to \infty} \sup |f^n(x) - f^n(y)| > 0, \tag{5}$$

is generic (i.e. residual) in I^2 .

It can be proved that any generically chaotic map f is chaotic in the sense of Li and Yorke and that the converse implication is not true [8]. However, there is another, essential difference between these two concepts. Any scrambled set G, satisfying Definition 2, is a priori residual in I^2 , but there is no scrambled set $S \subset I$, satisfying Definition 1 and residual in a subinterval $J \subset I$ [1].

It is known that a scrambled set of a map, satisfying Definition 1, can have a positive Lebesgue measure, see e.g. [4] among others. The main aim of this note is to exhibit a class of generically chaotic maps which have scrambled sets G of the full two-dimensional Lebesgue measure (Theorem 2).

In the sequel, a map $f: [0, 1] \to [0, 1] = I$ is called a full piecewise monotonic map (denoted $f \in FPM$) if there exist r > 2 and a sequence $a_0 = 0 < a_1 < a_2 < \ldots < a_r = 1$ such that, for any $i = 1, \ldots, r$,

$$g_i = f[a_{i-1}, a_i]$$
 is continuous and differentiable in (a_{i-1}, a_i) (6)

$$g_i([a_{i-1}, a_i]) = I (7)$$

$$\inf(g_i') \ge q > 1 \text{ in } (a_{i-1}, a_i), \text{ for some } q.$$
 (8)

A map f is called full piecewise linear $(f \in FPL)$ if $f \in FPM$ and

$$g_i = f | [a_{i-1}, a_i]$$
 is linear for $i = 1, ..., r$. (9)

Piórek [5] has proved that if $f: [0, 1] \rightarrow [0, 1]$ and $f \in FPM$, then f is generically chaotic. The next theorem gives a stronger result:

Theorem 1. Let $f: [0, 1] \rightarrow [0, 1] = I$ and $f \in FPM$. Then there exists a set $G \subset I^2$ residual in I^2 and such that for any $(x, y) \in G$

$$\lim_{n \to \infty} \inf |f''(x) - f''(y)| = 0 \tag{10}$$

$$\lim_{n \to \infty} \sup_{x} |f^{n}(x) - f^{n}(y)| = 1.$$
 (11)

Proof: Let a_i be the critical points of f as in the definition of FPM and let $A_0 = \{a_0, a_1, ..., a_r\}, A_{n+1} = A_n \cup f^{-1}(A_n)$. The set A_n divides I into r^{n+1} open intervals $I(n, 1), I(n, 2), ..., I(n, r^{n+1})$. Clearly f^n is monotonic and continuous on every I(n, i), and $f^n(I(n, i)) = I$ for every i.

Let, for $\varepsilon > 0$ and n = 1, 2, ...

$$L_{n,\varepsilon} = \{(x, y) \in I^2; \inf_{k \ge n} |f^k(x) - f^k(y)| < \varepsilon\},$$

$$U_{n,\varepsilon} = \{(x, y) \in I^2; \sup_{k \ge n} |f^k(x) - f^k(y)| > 1 - \varepsilon\},$$

$$G = \{(x, y) \in I^2; \liminf_{n \to \infty} |f^n(x) - f^n(y)| = 0,$$

$$\limsup_{n \to \infty} |f^n(x) - f^n(y)| = 1\}.$$

We show that each of the sets $L_{n,\varepsilon}$, $U_{n,\varepsilon}$ for $n=1, 2, \ldots \varepsilon > 0$ is open and dense in I^2 . This will imply the genericity of G, since $G \supset \bigcap_{n=1}^{\infty} L_{n,1/n} \cap U_{n,1/n}$. A proof of the fact that $L_{n,\varepsilon}$ is dense in I^2 can be found in [5].

To see that $U_{n,\varepsilon}$ and $L_{n,\varepsilon}$ are both open in I^2 it is sufficient to realize that $h(x, y) = |f^k(x) - f^k(y)|$ is continuous for every k and every point $(x, y) \in I^2$.

The proof of density of $U_{n,\varepsilon}$ is given in the following.

Lemma 1. $U_{n,\varepsilon}$ is dense in I^2 .

Proof: Fix $(x_0, y_0) \in I^2$, $\varepsilon > 0$, $\sigma > 0$. Choose $p \ge n$ so large that each of the intervals I(p, j) has the length less than σ (this is possible because of (8)). Next find s and t with $x_0 \in I(p, s)$, $y_0 \in I(p, t)$ (here \overline{B} denotes the closure of a set B).

Choosing $x \in I(p, s)$ and $y \in I(p, t)$ so that $f^p(x) < \frac{\varepsilon}{2}$ and $f^p(y) > 1 - \frac{\varepsilon}{2}$ we

obtain

$$|x - x_0| < \sigma$$
, $|y - y_0| < \sigma$ and
$$|f^p(x) - f^p(y)| > 1 - \frac{\varepsilon}{2} - \frac{\varepsilon}{2} = 1 - \varepsilon.$$

Before stating the main result, we prove the following.

Lemma 2. Let $f: [0, 1] \to [0, 1]$, $f \in FPL$, $I \times J \subset (0, 1) \times (0, 1)$ be an open interval, M an infinite set of natural numbers and λ the Lebesgue measure in the plane. Then there exists a G_{δ} set $B = B(I \times J, M) \subset (0, 1) \times (0, 1)$ such that $\lambda(B) = 1$ and for any $(x, y) \in B$ there is an infinite set $S \subset M$ with

$$(f^n(x), f^n(y)) \in I \times J$$
 for $n \in S$.

Proof: Denote $f^{-n}(I \times J) = \{(x, y); (f^n(x), f^n(y)) \in I \times J\}$ and $C_{m,n} = \bigcup \{f^{-i}(I \times J), i \in M, m \le i < n\}$ for any m < n. If there exists a sequence $n(1) < n(2) < \dots$ of natural numbers such that $\lambda(C_{n(i),n(i+1)}) = 1$ for any i, then $B = \bigcap_{\infty} C_{n(i),n(i+1)}$ has the desired properties.

If such a sequence does not exist there must be $n(1) \in M$ such that

$$0 < \lambda(C_{n(1),m}) < 1 \text{ for any } m > n(1).$$
 (12)

Denote $B_1 = f^{-n(1)}(I \times J)$. Since f is full piecewise linear $\lambda(B_1) = d = \lambda(I \times J)$ (clearly, d > 0). Now assume by induction that sets B_1, \ldots, B_k and integers $n(1), \ldots, n(k)$ from M are defined such that

any
$$B_i$$
 is open and $B_{i-1} \subset B_i \subsetneq (0, 1) \times (0, 1)$ (13)

$$\lambda(B_i \backslash B_{i-1}) > \frac{d}{2}(1 - \lambda(B_{i-1})) \tag{14}$$

$$(f^{n(i)}(x), f^{n(i)}(y)) \in I \times J \text{ for any } (x, y) \in B_i \setminus B_{i-1}.$$

$$(15)$$

For n > n(k) define a system G_n of open intervals $I(n, j) \times I(n, i)$ i, j = 1, 2, ...

which are contained in $(0, 1) \times (0, 1) \setminus B_k$. (Here intervals I(n, i) are the same as in the proof of Theorem 1.)

Let $D_n = \bigcup G_n$. The set D_n is nonempty because B_k consists of a finite number of two-dimensional intervals. Since $D_n \cap B_k = \emptyset$, we can choose an $n = n(k+1) \in M$ such that

$$\lambda(D_n) > \frac{1}{2}(1 - \lambda(B_k)).$$

Now put

$$B_{k+1} = B_k \cup (f^{-n(k+1)}(I \times J) \cap D_n).$$

One can easily check that conditions (13), (14), (15) hold. Denote $\lim_{k \to \infty} \lambda(B_k) = b$. Suppose b < 1. Then we can write (see (13) and (14)) $\lambda(B_{k+1} \setminus B_k) > \frac{d}{2}(1-b) > 0$ and thus $\lim_{k \to \infty} \lambda(B_k) = \infty$, which is impossible. Therefore b = 1.

Denote $E_0 = \bigcup_{k=1}^{\infty} B_k$. Repeating of the above construction with condition n(1) > i, (this can always be done because of (12)) yields sets E_i with $\lambda(E_i) = 1$ for $i = 1, 2, \ldots$. Now the set $B = \bigcap_{i=1}^{\infty} E_i$ has the required properties. \square

Theorem 2. Let $f: [0, 1] \to [0, 1]$ be full piecewise linear. Then f is generically chaotic and the corresponding scrambled set G (according to the Definition 2) has the full Lebesgue measure. Moreover, there exists a subset $A \subset G$ which has full measure such that for any $(x, y) \in A$

$$\lim_{n\to\infty} \sup_{x\to\infty} |f^n(x) - f^n(y)| = 1.$$

Proof: Denoting by N the set of positive integers, let

$$A_k = B((0, 1/k) \times (0, 1/k), N)), A^k = B((0, 1/k) \times (1 - 1/k, 1), N)).$$

According to the Lemma 3, $A = \bigcap_{k=1}^{\infty} A^k \cap A_k$ has desired properties. \square

Remark. It is easy to see that every full piecewise linear map f is chaotic in the sense of Li and Yorke, but every scrambled set S of such an f (according to Definition 1) if measurable, must have zero Lebesgue measure. To see it, we can slightly modify the argument from [7].

Assume the contrary: Let A be a scrambled set for f with $\lambda(A) = \alpha$. (Here λ is the Lebesgue measure on the line and $\alpha > 0$.) Recall that I(m, i) are the

maximal open intervals with the property that $f^{m+1}|I(m, i)$ is linear and r is the number of laps of f.

Denote $h(m) = \sup_{i} \{|I(m, i)|\}$. Fix m such that $\alpha/h(m) > 1$. Then f^{m+1} maps each of the intervals $I(m, 1), \ldots, I(m, r^{m+1})$ linearly onto (0, 1). Put $A_i = A \cap I(m, i)$. Then $\sum_{i} \lambda(f^{m+1}(A_i)) \ge \sum_{i} 1/h(m)\lambda(A_i) = \alpha/h(m) > 1$, hence for some $i \ne j$ we have $f^{m+1}(A_i) \cap f^{m+1}(A_j) \ne \emptyset$. Consequently, there are two different points $x \in A_i$, $y \in A_j$ with $f^n(x) = f^n(y)$ for every $n \ge m+1$, contrary to (1).

Therefore, Theorem 2 is interesting also from this point of view.

REFERENCES

- Gedeon, T.: There are no mappings with residual scrambled sets. Bull. Austral. Math. Soc. (to appear in 1987).
- Janková, K.—Smítal, J.: A characterization of chaos. Bull. Austral. Math. Soc. 34 (1986), 283—293.
- 3. Li, T. Y.—Yorke, J. A.: Period three implies chaos. Amer. Math. Monthly 82 (1975), 985—992.
- 4. Misiuriewicz, M.: Chaos almost everywhere. Iteration Theory and its Functional equations, (editor Liedl et al), Lecture Notes in Mathematics 1163 (Springer 1985), pp. 125—130.
- 5. Piórek, J.: On the generic chaos in dynamical systems. Univ. Iagell. Acta Math. 25 (1985), 293—298.
- Smital, J.: Chaotic function with zero topological entropy. Trans. Amer. Math. Soc. 297 (1986), 269—282.
- 7. Smital, J.: A chaotic function with some extremal properties. PAMS 87 (1983), 54-56.
- 8. Snoha, L.: On generically chaotic maps. (to appear).

Author's address:

Tomáš Gedeon Radarova 2 821 02 Bratislava

SÚHRN

GENERIC CHAOS CAN BE LARGE

Tomáš Gedeon, Bratislava

V práci sa skúmajú metrické vlastnosti genericky chaotických množín.

Našli sme triedu funkcií zobrazujúcich reálny kompaktný interval do seba, ktorých genericky chaotické množiny majú plnú mieru.

Received: 27. 11. 1987

РЕЗЮМЕ

ГЕНЕРИЧЕСКИЙ ХАОС МОЖЕТ ОКАЗАТЬСЯ БОЛЬШИМ

Томаш Гедеон, Братислава

В предложенной работе мы исследуем метрические свойства генерически хаотических множеств.

Мы выделили класс непрерывных отображений действительного компактного интервала в себя, генерически хаотические множества которых имеют полную меру.