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GENERIC CHAOS CAN BE LARGE

TOMAS GEDEON, Bratislava

In the paper we shall consider continuous maps of a compact real interval /
to itself. A concept of chaos was given in 1975 by Li and Yorke [3]. An
equivalent definition can be found in [2] (cf. also [6]):

Definition 1. A map f'is chaotic if there is an £ > 0 and a non-empty perfect
set S < I such that for any x, y€eS, x # y, and any p from the set Per(f) of

. periodic points of f,

lim sup |f"(x) — /" ()| > &, (1
lim inf|f"(x) — /")) = 0, @)
lim sup | f"(x) — f"(p)| > . 3)

n—x

The set S is called a chaotic set for f.

In 1985 Pidrek [5] introduced the notion of generic chaos for more general
systems; for maps of the interval it reads as follows:

Definition 2. A map f'is called generically chaotic if the set G of all (x,y)erl’
for which

lim inf|f(x) — /()] = O, @
and
lim_’sup I/"(x) — ") > 0, &)

is generic (i.e. residual) in /2.

It can be proved that any generically chaotic map £ is chaotic in the sense of
Li and Yorke and that the converse implication is not true [8]. However, there
is another, essential difference between these two concepts. Any scrambled set
G, satisfying Definition 2, is a priori residual in /2, but there is no scrambled set
S < I, satisfying Definition 1 and residual in a subinterval J < / [1].
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It is known that a scrambled set of a map, satisfying Definition 1, can have
a positive Lebesgue measure, see e.g. [4] among others. The main aim of this
note is to exhibit a class of generically chaotic maps which have scrambled sets
G of the full two-dimensional Lebesgue measure (Theorem 2).

In the sequel, a map f: [0, 1] — [0, 1] = I is called a full piecewise monotonic
map (denoted feFPM) if there exist r>2 and a sequence
a,=0<a <a,<..<a =1such that, foranyi=1, ..., r,

g: = flla;_,, a;] is continuous and differentiable in (a,_,, a;) (6)
gla_,a)=1 @)
inf(g/)= ¢ > 1in (a,_,, a;), for some gq. )

A map f'is called full piecewise linear (fe FPL) if fe FPM and
g =flla_,, a]is linear fori=1, ..., r. )

Piorek [5] has proved that if f: [0, 1] — [0, 1] and fe FPM, then fis generically
chaotic. The next theorem gives a stronger result:

Theorem 1. Let f: [0, 1] > [0, 1] =1 and fe FPM. Then there exists a set
G < I? residual in I? and such that for any (x, y)eG

lim inf | f"(x) — f"(y)| = 0 (10)
lim sup |f"(x) — f"()| = 1. (1)

n—x

Proof: Let g; be the critical points of f as in the definition of FPM and let
Ay=1{ag ay, ..., a}, A,,, = A,0f'(A,). The set A, divides I into r"*' open
intervals I(n, 1), I(n, 2), ..., I(n, r"*"). Clearly f" is monotonic and continuous
on every I(n, i), and f"(I(n, i)) = I for every i.

Let,fore>0andn=1,2,...

L,.={(x, nel; inf |f() - /'Ol < &),
Un.s = {(x’ J’)E 12; f‘ip |fA(x) ‘f"(}’)| > 1 - 6'},
G = {(x, y)e I*; lim inf | f"(x) — f"(»)| = 0,

lim sup | f"(x) — /")l = 1}.

n— 7

We show that each of thesets L, ., U, ., forn=1, 2, ... £¢> 0 is open and
dense in I°. This will imply the genericity of G, since G> () L, ,,0 U, -
n=1

A proof of the fact that L, , is dense in I can be found in [5].
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To see that U, , and L,, are both open in /7 it is sufficient to realize that
h(x, y) = |f*(x) — f*(»)| is continuous for every k and every point (x, y)e >

The proof of density of U, , is given in the following.

Lemma 1. U, , is dense in I°.

Proof: Fix (x,, yo)€I% &€ > 0, o> 0. Choose p > n so large that each of the
intervals /(p, j) has the length less than o (this is possible because of (8)). Next

find s and r with x e I(p, s), y,€ I(p, t) (here B denotes the closure of a set B).
Choosing xeI(p, s) and yel(p, 1) so that f7(x) <§ and f"(y) > 1 —g we

obtain
|x — x| < o,y —yl <o and

1f7(x) — f7 )l > 1 — g - g =1—g 0

Before stating the main result, we prove the following.

Lemma 2. Let f: [0, 1] > [0, 1], fe FPL, I x J = (0, 1) x (0, 1) be an open
interval, M an infinite set of natural numbers and A the Lebesgue measure in the
plane. Then there exists a Gsset B= B(I x J, M) = (0, 1) x (0, 1) such that

A(B) = 1 and for any (x, y)€ B there is an infinite set S ¢ M with

(f"(x), f"(v)) el x J for neS.

Proof: Denote f7"(I x J) ={(x, »); (f"(x), f'(»))elxJ} and C,, =
= U{f"(l x J), ieM, m £ i< n} for any m < n. If there exists a sequence
n(1) <n(2) < ... of natural numbers such that A(C,, . 1,) = 1 for any i, then
B = h C,.ni+ 1) has the desired properties.

If such a sequence does not exist there must be n(1)e M such that

0 < AC,y.m) < 1 for any m > n(1). (12)

Denote B, = f~""(I x J). Since f is full piecewise linear A(B,) =d = A(I x J)
(clearly, d > 0). Now assume by induction that sets B, ..., B, and integers
n(l), ..., n(k) from M are defined such that

any B;isopen and B,_, < B;< (0, 1) x (0, 1) (13)
MB\B; _ ) > g(l — AB;_)) (14)
(f"%x), f*()) e x J for any (x, y)e B\B, _,. (15)

For n > n(k) define a system G, of open intervals I(n, j) x I(n,i)i,j=1,2,...
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which are contained in (0, 1) x (0, 1)\B,. (Here intervals I(n, i) are the same as
in the proof of Theorem 1.)

Let D, = ( ) G,. The set D, is nonempty because B, consists of a finite number

of two-dimensional intervals. Since D,nB,=0, we can choose an
n=n(k + 1)e M such that

AD,) > %(1 — AB)).

Now put
By =B,u(f (I x J)A D,).

One can easily check that conditions (13), (14), (15) hold. Denote
lim A(B;k)=b. Suppose b < 1. Then we can write (see (13) and (14))

AMBy . \B,) > g(l —b)>0 and thus klim A(B;) = o0, which is impossible.
Therefore b = 1.

x

Denote E, = | ) B;. Repeating of the above construction with condition
k=1

n(1) > i, (this can always be done because of (12)) yields sets E; with A(E,) = 1
fori=1,2,.... Now the set B = (") E; has the required properties. O

i=1
Theorem 2. Let f: [0, 1] — [0, 1] be full piecewise linear. Then fis generically
chaotic and the corresponding scrambled set G (according to the Definition 2)
has the full Lebesgue measure. Moreover, there exists a subset 4 = G which has
full measure such that for any (x, y)e 4

lim sup | /"(x) — /") = 1.

Proof: Denoting by N the set of positive integers, let
A, = B((0, 1/k) x (0, 1/k), N)), 4" = B((0, 1/k) x (1 — 1/k, 1), N)).

According to the Lemma 3, 4 = (") 4* 1 A4, has desired properties. 0O
k=1

Remark. It is easy to see that every full piecewise linear map f'is chaotic in
the sense of Li and Yorke, but every scrambled set S of such an f (according to
Definition 1) if measurable, must have zero Lebesgue measure. To see it, we can
slightly modify the argument from [7].

Assume the contrary: Let 4 be a scrambled set for f with A(4) = a. (Here A
is the Lebesgue measure on the line and a > 0.) Recall that I(m, i) are the
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maximal open intervals with the property that ™ *'|I(m, i) is linear and r is the
number of laps of f.

Denote h(m) = sup {|/(m, i)|}. Fix m such that a/h(m) > 1. Then f”*' maps

each of the intervals I(m, 1), ..., I(m, r™*") linearly onto (0, 1). Put
A;= AnI(m,i). Then Y A(f/"* '(4,)) = Y 1/h(m)A(4,) = a/h(m) > 1, hence for

some i # j we have f"*'(4,) nf"*'(4;) # 0. Consequently, there are two dif-
ferent points x€ 4;, y€ 4; with f"(x) = f"(y) for every n = m + 1, contrary to
(1.

Therefore, Theorem 2 is interesting also from this point of view.
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SUHRN
GENERIC CHAOS CAN BE LARGE
Tomas Gedeon, Bratislava
V praci sa skiimaji metrické vlastnosti genericky chaotickych mnozin.
Nasli sme triedu funkcii zobrazujucich realny kompaktny interval do seba, ktorych genericky

chaotické mnoziny maju plni mieru.
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PE3IOME
FEHEPUYECKHUI XAOC MOXET OKA3ATbLCS BOJIbIIUM
Tomam Negeon, BpaTtucnasa
B npeanokenHoit paboTe Mbl UCCIElyeM MeTpHYECKHE CBOWCTBA FeHEPHYECKH XaOTHHECKHX

MHOXECTB.

Ml BbIAETHIH K1ace HEMPEPBIBHBIX 0T06pa)KCHHF| NEACTBUTENBLHOTO KOMMAKTHOT O HHTEpBAJia
B cebs. TE€HEPHUYECKHA XAOTHYECKHE MHOXECTBA KOTOPBIX HMEIOT MOJIHYIO MeEpYy.
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