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NECESSARY AND SUFFICIENT CONDITIONS FOR
OSCILLATIONS OF FIRST ORDER DELAY DIFFERENTIAL
EQUATIONS AND INEQUALITIES

JAROSLAV JAROS, Bratislava

1 Introduction

The purpose of this paper is to examine the oscillatory nature of linear delay
differential equations of the form

n

X+t Y px(o)=0, t=2a>0 (1)
i=1

i=

and .
@O+ @) Y px(t®) =0, t2a>1, )

i=|

where p,>0,0< 0; < 1,i=1, 2, .., n, are constants. More precisely, we shall
derive necessary and sufficient conditions under which all solutions of the
retarded differential equations (1) and (2) oscillate. In proving our results we
shall use the method developed by Ladas, Sficas and Stavroulakis in [8].

Recently, some authors (Tramov [12], Ladas, Sficas and Stavroulakis [8],
Arino, Gyori and Jawhari [1], Hunt and Yorke [4]) have independently derived
the necessary and sufficient conditions for the oscillation of all solutions of the
delay differential equation

O+ Y pxlt—1)=0, 124, 3)
i=1

where p; and 7; are positive constants. According to their results all solutions of
Eq. (3) oscillate if and only if the corresponding characteristic equation

~A+ Y pe’i=0 @)

i=1
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has no real roots. Since the direct investigation of Eq. (4) may be a difficult
problem itself, the authors mentioned above have developed also some explicit
sufficient conditions which ensure that Eq. (4) has no real roots, so that all the
solutions of Eq. (3) are oscillatory.

Surprisingly, however, there are not many results in the literature on the
oscillation of delay differential equations of the form (1) and (2) which would
be sharp enough to provide the characterization of the oscillation of all solu-
tions. To the best of the author’s knowledge, Canturia [2] and Nadareisvili [10]
are the only references related to the subject of this paper.

- In what follows, the oscillatory character of the solution x(z) of (1) or (2)
defined on an interval [z, 00), f. = a, is considered in the usual sense, that is, x(#)
is said to be oscillatory if it has arbitrarily large zeros in [t,, c0) and it is said
to be nonoscillatory otherwise.

As it is customary, we shall say that a continuous real-valued function u(r)
defined on an interval [z,, o) eventually has some property if thereisa T = ¢,
such that u(r) has this property on [T, o0).

2 Main results

The problem of the characterization of oscillations of Egs. (1) and (2) can be
examined in a variety of ways. Our approach here patterns after that in [8] and
requires only elementary tools.

We begin with a simple lemma which will be needed in the proof of our main
theorem.

Lemma. Let x(¢) and y(¢) be the nonoscillatory solutions of the retarded
differential inequalities
sgn x(ot){x’(t) + pt 'x(ot)} £0, t=a>0, (5)
and
sgny(t)y' () + ptInt)~'y(t)} <0, r2za>1, (6)

where p > 0,0 < o < 1, defined on the intervals [oa, c0) and [a?, 00), respective-
ly. Then

Ix(0)| 2 (’i“ziq\lzlx(m)l, L2 a ¥, (7
and In1/o\? '
NOE (’%—") P, tza ®)

Proof. We prove only the part concerning the inequality (5) (the proof for (6)
is similar).
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Without loss of generality we may assume that the solution x(f) of (5) is
positive on [oa, o0). Then the inequality (5) becomes

x()+pt~'x(o1) £0, 12a. )
Let s = o~ 'a be given. Integrating both sides of (9) from s to o~'*s and using
the fact that x(r) is decreasing on [a, o0), we obtain that
—x(s) + ‘”—L"z—lﬁx(a”s) <
~112 plnljoc 12
< x(o™" s)—x(s)+Tx(a’ s)Z0 (10)
for s = o7 'a. For given t = o~ *?a we apply (10) to s = ¢'*t and to s = ¢ and
get
x(6'*1) 2 [(pIn1/0)/2)x(ot)
and

x() 2 [(pIn1/0)/2]x(c"?1)

for 1 > 67*?a. Combining these inequalities we get the desired relation (7).
Theorem 1. A necessary and sufficient condition for all the solutions of
Eq. (1) (or Eq. (2)) to be oscillatory is that

—a+ ) po >0 (11)

i=1
for all @ > 0.
Proof. We consider only Eq. (1).
(The ““only if” part.) Assume to the contrary that (11) does not hold. Then
there exists an ¢, > 0 such that

-+ Y po;, °=0
i=1

and so Eq. (1) has a nonoscillatory solution x(¢) = ¢~ .

(The *“if” part.) On the other hand, let (11) hold and assume for the sake of
contradiction that there exists an eventually positive solution x(¢) of Eq. (1).

Whenall g;,i =1, 2, ..., n, are equal to 1, then (11) obviously does not hold.
Thus, we may assume without any loss of generality that o, = min{o,, ...
g} <l

Define the set

L 3

A={a>0:x() + at'x(f) < 0 eventually}.
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From (1) we have
X'(0) + p,t ' x() < x'(t) + p,t ' x(0,) £0

eventually, so that p,e A. Consequently, the set 4 is non-empty.
Taking into account that x(z) is decreasing and using Lemma, we find

0=xW+t" Y px(o=x(M+17" Y px(o,0) =

i=1 i=1

< X0 + Qs In o)1~ S pix(t)

i=1

eventually, which proves that (2/(p,In1/c,))’ ¥ p; is an upper bound of A.
i=1

Since A is non-empty and bounded from above, it has the supremum. Denote

this supremum by a.

Let ae A be given and consider the function u(z) = t“x(¢). Then
u'(t) = t4x'(1) + (a/t)x(1)) <0

for all large ¢, which implies that u is eventually decreasing. From (1) we obtain

0=x()+1" Z pix(oit) =x"() + ! Z pi(o:) “u(o;t) >

i=1 i=1

>x'()+17" Y po e u(ty = x'(0)+ 17" Y, pioy x(1)

i=1 i=1

for all large ¢ and, consequently, ) p,0; “€ A.

i=1

This implies that ) p,0;“ < @ and since a€ 4 was arbitrary, we conclude that

Y po s d.
i=1
But this is the contradiction to (11).
The proof in the case when x(¢) is an eventually negative solution of Eq. (1)
(or (2)) is similar and we omit it.
Following the idea of Arino, Gyori and Jawhari in [1], Theorem 1 can be
restated also as follows.
Theorem 2. All the solutions of Eq. (1) (or (2)) oscillate if and only if

—a+ ), pio; >0, (12)

i=1
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where @, is a unique solution of

S p(nl/o)o e =1. (13)

Proof. Denote

F@)= —a+ Y po7*, aeR.
i=1

Since

F'(@) =} p,(Inl/6;l’0;“> 0, aeR,
i=1
F(a) is a convex function and it suffices to show that the minimum of F(a) is a
positive value. Looking for this minimum we get the equation

F(@)=—1+ Y p(n1/o)o =0

i=1
which is nothing else than (13).

On the other hand, from the first part of the proof of Theorem 1 it follows
that if all the solutions of Eq. (1) are oscillatory, then (11) holds in fact for all
real @. Thus, in particular, (12) is true for the real number g, given as a unique
solution of (13). The proof is complete.

Due to their transcendental nature, neither (11) nor (13) are easily tractable.
Therefore, we proceed further and derive a set of explicit sufficient conditions
for oscillation of Egs. (1) and (2) in terms of the coefficients p, and o; only. The
advantage of working with these explicit conditions rather than (11) and (13) is
obvious.

Theorem 3. Each of the following conditions implies that every solution of
Eq. (1) (or (2)) is oscillatory:

(@) p;Inljo,> 1/e for some ie{l, 2, ..., n};
(b) Y p.(Inl/o)> /e, where o =max{o,, i=1, ..., n};
i=1
(c) nA((p,Inl/oy, ..., p,Inl/c,) > 1/e for some s < 1, where A(a,, ..., a,),

n /s
a;20,i=1, ..., n,is defined by A (a,, ..., a,) = [(l/n) Y a,:‘] for s #0

i=1

‘and Ay(a,, ..., a,) = lin}) A(ay, ..., a,);

@ ¥ pnt/o> le;
i=1

@%ﬁ@w

i=1

(Z Inl/a,-)> 1/e.

i=1
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Proof. It is easy to see that each of the conditions (a) and (b) implies (d).

Moreover, since Y. p;Inl/o, = nA,(p,Inl/o,, ..., p, In 1/0c,) and the function A,

i=1

is nondecreasing in s for every fixed 2n-parameter family (p;, 0;), i=1, ..., n,
p;>0,0< 0 =1, (see [3, p. 175]), the condition (c) also implies (d). Thus, it
suffices to prove (d) and (e). In both cases we shall show that the condition (11)
of Theorem 1 is satisfied.

Proof of (d): Let us consider the function

G@)=—1+ ) po “a’, a>0.
i=1
Denote by J the set of all i, | £i < n, such that o, # 1. Minimizing every
p;o7 %a”',iel, by setting @ = (In 1/0;)' and omitting in G(a) the members with
o, = 1, we find
G@) =z —1+4+YpIn(l/o)e=—1+ ) p;In(l/o,)e>0

i€l i=1

for @ > 0. Consequently,
I'(a) >0 forall a>0,

so that the condition (11) is satisfied.
Proof of (€): Let G(a) be defined as in the proof of (d). From the arithmetic
mean-geometric mean inequality it follows that

n 1/n
Gz -1+ n(ﬂ p,o’i‘“a"> -

i=1

-1 +5(fl p,~>”" exp(‘—l Y In 1/<’f>

a\i=1 Ni=1

for a > 0. Differentiating the last expression with respect to a we find that it is

n -1
minimized at @ = n(z In 1/0',) . Thus,

G@)= —1+ (Z In l/q)(ﬁ p,-)””e >0

for every a > 0 and the proof is complete.

Remark 1. The conditions (d) and (e) are independent. We illustrate this fact
by the following examples.
Consider the equation

x’(t)+9Lx(e“'t)+lx(e‘”9t)=0, t=2a>0. (14)
t t
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Here
Vplp'_’(]n l/O'| + ln ‘/G‘_)) = 10/27 > l/é’,

so that the condition (e) is satisfied. However,
pInljo, + p,Inljo, = 2/9 < 1/e,

and so (d) does not hold.
On the other hand, for the equation

x’(t)+Lx(e"'t)+Lx(e"zt)=O, t=2a>0, (15)
8et 2et

we have
piInl/o, + p,Inl/o, = 9/8e > 1/e,

so that the condition (d) holds. But
vpip.(Inl/o, + Inl/o,) = 3/4e < 1/e,

and so (e) is not satisfied.

Remark 2. In the case » = 1 each of the conditions (a)—(e) reduces to p
In 1/0 > 1/e which is both a necessary and sufficient condition for oscillation of
all the solutions of the equations

x(®)+Lx(1)=0, t=2a>0 (16)
t
and
() +-L-x¢=0, t=a>1, (17)
tint

where p>0and 0 <o < 1.
By similar arguments we can establish parallel results concerning the advan-
ced equations

x()—1t! Zp,-x(c,-t)=0, t=2a>0 (18)
#=1
and

()= (@™ Y px(t™) =0, t2a>1, (19)
i=1
where p, > 0,0, =2 1,i=1, 2, ..., n, are constants.
Theorem 1’. A necessary and sufficient condition for all the solutions of
Eq. (18) (or (19)) to be oscillatory is that

a— ) pof<0 (20)
i=1

for all @ > 0.
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Theorem 2’. All the solutions of Eq. (18) (or (19)) oscillate if and only if

a4 — Y pio°<0 (21)

i=1
where q, is the unique solution of
Y pi(lno)o! = 1. (22)
i=1
Theorem 3’. Each of the following conditions implies that every solution of
Eq. (18) (or (19)) is oscillatory: '
(a) p;Ina; > 1/e for some ie{l, 2, ..., n};

n

(b) Y p/Inoc > l/e, where 0= min{c,, i =1, ..., n};

i=1

(c) nA(p,Inoy, ..., p,Ino,) > 1/e for some s < 1;

(d) Y p/Ino;,> 1/e;
i=1

(e) (l'_'[ p,.)“n<i In o,-) > 1/e.

i=1

Finally, we note that all the results presented in this paper remain valid if we
replace Egs. (1), (2), (18) and (19) by the retarded differential inequalities

senx(){x 0+ 17! ¥ pix(an} <0, 23
i=1
sgn x(?) {x’(t) +(@n)~" Y pix(to")} <0, (24)
i=1
where p,>0,0< 0,5 1,i=1, 2, ..., n, and the advanced inequalities
senx(){x'0 — ' T pxtei 20 25)
i=1
senx() X0 — ()" 3 px(c”)} 20, 26)
i=1

where p, > 0,0, =2 1,i=1, 2, ..., n, respectively.

We shall provide a brief outline of the proof of Theorem 1 for the inequality
(23).

The necessity part is obvious. In order to prove the sufficiency part, let us
assume that the inequality (23) has an eventually positive solution x(¢). Then,
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according to the comparison result of Philos [11, Corollary 1], the correspond-
ing differential equation (1) has an eventually positive solution u(¢), which is a
contradiction with the assertion of Theorem 1 applied to (1).

Similarly we can prove that the sufficiency parts of Theorems 1 and 2 (and,
consequently, Theorem 3) remain true also for the nonlinear delay differential
inequality

sgn x(){x(1) + f(t, x(g, (1)), ..., x(g, (D)} £ 0, (27)

where the following conditions are satisfied: there exist constants p; > 0,
0<o<=<1,i=1,2,...,n and T = a > 0 such that either

() f uy, ., u,)sgnu, 217! Z pilu;l

i=1

forte=2T,uu;,>0, i=1,...,n limg() = o
=%

and g(t) < ot fort=T, i=1,.., n,
or
(i1) Sy, o u,)sgnuy = (ting)™" Y pluy|
i=

fort=T,uu,>0, i=1,..,n limg() =
15

and g() <% fort2T, i=1,..n
We note that under the above assumptions the sufficiency part of Theorem

1 gives Corollaries 2 and 3 in [10].
The parallel results concerning the nonlinear advanced differential inequality

sgn x(){x'(1) — f(t, x(g, (1)), ..., x(g, (D))} 2 0, (28)

can be also proved without much difficulty if we assume that there exist con-
stants p,> 0,02 1,i=1, ..., n,and T = a > 0 such that either

(iii) St uy, oo u)sgnuy 267" Y pluy
i=1
fort=2 T, uu;>0,i=1, ..., n and g,(¢) = ot
fort>T,i=1, ..., n,
or
(iv) St wy ) sgnu 2 (¢n )™ Y piluf
i=1

fort> T, uu;>0,i=1,...,n and g(t) = "
fort>T,i=1, ..., n

The details of this extension are left to the reader.
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SUHRN

NUTNE A POSTACUJUCE PODMIENKY OSCILACIE DIFERENCIALNYCH
RO /NiC A NEROVNIC PRVEHO RADU S ONESKORENYM ARGUMENTOM

Jaroslav Jaros, Bratislava

V praci st odvodené nutné a postacujuce podmienky oscilacie vietkych rieSeni linearnych
diferencialnych rovnic typu

X+ i pix(o;) =0 Q)]

i=1
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YO+ @nn" Y pyr™) =0, (@)

i=1

kdep;>0a0<o < 1,i=1.2, ..., n si konStanty.

PE3IOME
HEOBXOAUMBIE U JOCTATOYHBIE YCJIOBUSA KOJIEBJIEMOCTH
JNUPDEPEHLIMAJIBHbIX YPABHEHUW U HEPABEHCTB MEPBOI'O MOPAAKA
C 3ATA3AbIBAIOIIMUM APTYMEHTOM

SApocnas Apow, bpaTuciasa

B paboTe npuBencHbl HEOOXOAUMBIE H TOCTATOYHbIE YCJIIOBUS KOJIE6/1IEMOCTH BCEX pELUEHUH
JIMHEHHBIX A depeHIMabHbIX YPaBHEHHH BMAA

X+t 'Y px(or) =0 (1)
i=1
17
YO+ @nn Y pye?) =0, 2)
H=:
rep,>0,0<0,=1,i=1, .., n NOCTOAHHBIE.
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