#3D
VAL 7

—/

Werk

Label: Article
Jahr: 1989
PURL: https://resolver.sub.uni-goettingen.de/purl?312901348_54-55|10g26

Kontakt/Contact

Digizeitschriften e.V.
SUB Géttingen

Platz der Gottinger Sieben 1
37073 Gottingen

& info@digizeitschriften.de


http://www.digizeitschriften.de
mailto:info@digizeitschriften.de

UNIVERSITAS COMENIANA
ACTA MATHEMATICA UNIVERSITATIS COMENIANAE
LIV—LV—1988

ON A LINEAR EIGENVALUE PROBLEM

VALTER SEDA. Bratislava

We shall investigate the following linear eigenvalue problem

YOHSX) + gy} =0, —a<x<Za, (D
y(—a)=y(a)=0, (2
f ' h(t)g(H)y(t) dt = 0, 3)

where a > 0, the functions f, ge C'([—a, al, R), g(x) > 0in[—a, a], he C([—a,
al, R) and h(—a) = h(a) = 0. The problem has been formulated in (6], [4],
pp. 248—255, and it represents a mathematical model for deflection of a curved
beam. M. Gregus in [2], [3] and [4] has shown that under some conditions this
problem is equivalent to the problem (1), (2), (4) with

Y(~a)=0 @

and hence, the theory of the third order linear differential equation in [4] can be
applied. Here we find a simple sufficient condition for the existence of a nontri-
vial solution of (1), (2), (3). As usual, each real or complex number A for which _
there exists a nontrivial solution y of (1), (2), (3) will be called an eigenvalue of
that problem and the function y is called the eigenfunction of that problem.

Remark. A necessary and sufficient condition that each initial value problem
for (1) have a unique solution ye C*([—a, a), R) is that f, ge C'([—a, a), R).
Thus the assumption f, ge C'([—a, a], R) is not superfluous.

In order to solve the problem (1), (2), (3), let us notice that this problem is
equivalent to the problem (1), (2), (3) with

1.
Y+ + ()l =y"(—a), —asx=<a (1)
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as it follows by integrating (1) term-by-term from —a to x, —a < x < a, and
considering the condition y(—a) = 0. Consider, now, the problem

Y+ U+l =0, —asx=a, (5)
y(—a) = y(a)=0. (2)
This is the famous Sturm—Liouville eigenvalue problem. In the sequel we
shall use the following results concerning that problem which are collected in the
following lemma.
Lemma 1 ([1], pp- 159, 160, 171, 175—177 and [5], p. 292).

(i) The set of all eigenvalues of the problem (5), (2) can be written in the form
of a real increasing sequence

A< <..<i<..
such that lim A, = co.

(ii) There exists a sequence {y,},_, of the eigenfunctions y, of (5), (2) corres-
ponding to A, which have the following properties:

a) Each y,, n =0, 1, 2, ..., has exactly »n zeros in (—a, a).

b) The sequence {y,}_, is orthonormal with respect to the weight function
g l.e.

a

f gy, ()y,(r)dt =0 for n # m, and j gyi(nde=1,

—da

nm=0,1, ...

¢) If L}([—a, a]) is the vector space of all real measurable functions in[—a, ]
such that g'?ye L’([—a, a]) provided with the scalar product (y, z), =

=J g(0y(0)z(1) dr for each y, ze LX([—a, a]), then Li([—a, a]) is a Hilbert

space, whereby both L([—a, 4]), L*([—a, a]) as vector spaces are equal to each
other and their norms are mutually equivalent.

d) Each function ye L([—a, a]) can be expanded into the Fourier series of
the eigenfunctions y,,

yx)~ Y 7.(x) (6)
. n=0
where

Yo =J y(gy,(ndt, n=0,1,2, ..,

and the series in (6) converges to the function y in the metric of the space
L:([—a, a]). Hence {y,};"_, is complete in L}([—a, a]).
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e) If the function ye C([—a, a]), y’ is piecewise continuous on [—a, a] and
y(—a) = y(a) = 0, then the series in (6) converges absolutely and uniformly to
yon|[—a, al].

Now we shall consider the case that Ae R, A # A,.,n =0, 1, 2, .... Then the
problem (5), (2) has the Green function G,(x, t), —a < x, t < a, such that the
unique solution y, of the problem

V'+[f(x)+Agx¥)ly=1, —asx=aq, (7)
y(—a) =y(a) =0, (2)
can be represented in the form
Yalx) = J Gi(x, )dt, —as x = a. (8)
Consider the functional @: R — {4,}/_, — R defined by
D(A) = (h, y,), = j h(H)g(t)y,(r) dr. )
Denote .
Cy = <l, y) =f ya(n)dt, (10)
4 g —a
d,=(h, y,), = J h(Dg(Hy,(ndt, n=0,1,2, ... (11)

Then the following lemma holds.
Lemma 2. If A# A4,,n=0,1, 2, ..., then

o%X©

Cll
. (x) =
a(x) ”go =1

yn(x)! —a é X é a, (12)

whereby the series on the right-hand side of (12) converges uniformly and
absolutely in xe[—a, a] and the functional @ enjoys the properties:
= &d S
¢(A) — n=n s @I(A) —_— n-n .
ngo A—A, n=0 (A —A4,)

Both series in (13) converge uniformly in A on each compact interval which does
not intersect the set {4,}_,. Hence @€ C' on the open set R — {4,}_,.

Proof. By Lemma 1, the function y, can be expanded into a uniformly and
absolutely convergent series

(13)

7® =Y by (x), —as<x=a.
n=0
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We shall show that foreach n=0, 1, 2, ..., b, = ¢,/(A — 4,) and (12) will be
proved. Let n be an arbitrary but fixed nonnegative integer. Since y, satisfies the
condition (2) as well as the equation

Yo+ () + Ag()y, = (A — 4,)g(x)y,(x), —a<x=Za,

by the meaning of the Green function G, we get that
yn(’) = J‘ G,{(’* -\.) (}“ - /1,,)8(~’C)}'n(x) dx9 —a § t é a. (14)

Further the Green function G, is symmetric, i.e. G,(x, 1) = G,(¢, x), —a < 1,
x < a. Then with the help of (8), (14) and (10)

By= e 312 =f PR () = j [ f Gy(x, r)dr].

—dad —a

S = f " [ J * G, D dx]dt _

| “ c
=—-1 y,()dt = —2—
A=A, ) ( A—2

n

and hence (12) is proved.
By the uniform convergence of the series (12), on the basis of (9), (11),

L

z C'nl _}-’”(l)dl-: Z _Cld_"_

0 — Ay n=10 _2,

o) = J hn)g()

i n n

and the first equality in (13) is proved. If A varies in a compact interval J in the
set R — {A,},_o, then there is a ¢ > 0 such that [A — A,| = ¢ for each n =

=0, 1,2, ..., and the series Y |c,d,|/c,and ¥ |c,d,|/c? majorize the first and

n=0 n=0

the second series in (13), respectively. In view of Bessel's inequality,

Y jedizl ¥ (C"Z“Ld"z)é%(i" 1) +%(h, ). (15)
n=0 g

1
2n=0 g

Thus both series in (13) are uniformly convergent in J, and the first equality
implies the second one in (13). The lemma is proved.

Remark. By the Weierstrass theorem the functional @(A) is analytic in
Ae (R - {)‘n};t= 0)-

Lemma 3. If |c,d,| > 0 for a kK = 0, then

llir:l D(A) = (— o) sgn (¢, d;), Alir? D(A) = oo.sgn(cd,)
= A+

- M-

220



Proof. On the basis of (13), (15),

¢(/{) — (,kdk 4 Z Cndn - Cy dk + (DI\- (A,).
2’—;{/\' 11=0A-—2,” A“Ak

n#k

whereby @, (4) is bounded in a neighbourhood of 4, . This implies the statement
of the lemma.

Theorem 1. (i) If d, = 0 or ¢, = 0 for an integer k = 0. then 4, is an eigenvalue
of the problem (1), (2), (3) whereby in the case d, = 0y, is a corresponding
eigenfunction of that problem.

(1) Ife,dyc, . d, > 0,thenin (4, A, , ) there exists at least one eigenvalue
of the problem (1), (2), (3).

Proof. (i) If d, = 0, then clearly y, is an eigenfunction and 4, is an eigenvalue
of the problem (1), (2), (3).

Suppose now that d, # 0 and ¢, = 0. Consider the equation

Yo+ + Ag(x)ly = 1. (16)

If z is the solution of the corresponding homogeneous equation which satisfies
z(—a) =1, z’(—a) = 0, then the Wronskian of the solutions y,, = satisfies the
identity w(y,, z)(x) = —y;(—a) in [—a, a] and by the variation of constants
formula an arbitrary solution y of (16) is of the form

1
yi(—a)

Y06 = Gy () + Eyz(x) — j ) — n). 2] dr,

—as<x=Za,

where ¢, ¢;€ R. Since ¢, = 0, y satisfies (2) iff ¢, = 0. Hence the problem (16),
(2) is satisfied by the functions

y(x) = ¢, y(x) — f () (D) — yi ()z(D]dt = ¢, y,(X) + Fo(x),

yi(—a) J-
—as<x=<a.
Here j, is the solution of (16) which satisfies
y(—a)=0,y(-a)=0. (17)

Consider the condition (3). We have that

[ mogovwac=ed + 50, (18)
and in view of d, # 0 there exists a unique ¢, = C, for which C,d, + (4, o) =
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= 0. Hence 4, is an eigenvalue of (1), (2), (3) and C, y, + y, is the corresponding
eigenfunction of that problem.
If ¢,d, >0, ¢, . ,d,,, >0 (the case ¢,d, <0, ¢, ,d,,, <0 would be pro-

ceeded in a similar way), then by Lemma 3 Alirp @ (A) = oo, while
6

l}m A(D(/l) = — o0, and Lemma 2 gives that @ is coninuous. Hence there is a
M

Ae (A4, A, ) such that @(1) = 0. This means that the solution y; of (7), (2) with
A = A satisfies the condition (3) too.

Remark. Clearly, to any eigenvalue of the problem (1), (2), (3) exists at least
one dimensional space of eigenfunctions (of course without the null solution).
If they are two linearly independent eigenfunctions y, = of that problem belong-
ing to the same eigenvalue A, then without loss of generality we may assume that
they both are solutions of the same equation (7) and hence their difference is a
nontrivial solution of the corresponding homogeneous equation which satisfies
the conditions (2). Thus there is a k = 0 such that A = 4,, y — = = ay, with
a # 0 and hence d;, = 0. At the same time both functions y, z satisfy (16). It can
be shown that ¢, = 0 is also a necessary condition for the existence of a solution
to (16), (2). By (18) we have that (4, y,), = 0. Hence d, =0, ¢, =0 and (4,
7o) = 0 is a necessary condition for the existence of two linearly independent
eigenfunctions belonging to the same eigenvalue. But this is also a sufficient
condition, since under this condition all functions ¢, y, + 7, satisfy the problem
(16), (2), (3) and thus the functions ¢, 1, + ¢, 7, satisfy (1), (2), (3). The result can
be summoned up in the theorem.

Theorem 2. With the exception of the case ¢, = 0, d, = 0, (A, ), = 0 where
there is a two dimensional vector space of eigenfunctions of (1), (2), (3) belong-
ing to the eigenvalue 4,, in the other cases the space of eigenfunctions of the
problem (1), (2), (3) corresponding to the same eigenvalue 4 is one-dimensional.

Further the following theorem is true.

Theorem 3. If i(x) 20, h(x) £ 0in[—a, a] (or h(x) =0, h(x) £ 0in[—a, a]),
then no A £ A, is an eigenvalue of the problem (1), (2), (3).

Proof. Consider only the case that /i(x) = 0 in [—a, a]. The other case can be
investigated in a similar way. Let 1 < A,. Since the eigenfunction y, of (5), (2)
corresponding to A, is different from 0 in (—a, a), by the Sturm comparison
theorem the equation (5) is disconjugate in [—a, a] and hence the problem (5),
(2) has no nontrivial solution. At the same time, the Green function G,(x, t) < 0
for —a < x, t < a and therefore, y,(x) < 0 in (—a, a). This implies that @(1)
determined by (9) is negative and A is no eigenvalue of (1), (2), (3).

If A = A, then on the basis of the constant sign of the eigenfunction y,, »,
cannot satisfy the equality (3). If y is a solution of (7), (2), then multiplying the
equation (7) by », and integrating by parts we come to the equality
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= f " o) dx = f Y Ipe(x) dx + J " )+ gl i (idx =

—u =

=—j"Uu%+%ﬂﬂhuWwQMA¢mUuy+%gﬂwﬂhumx=o

which contradicts the constant sign of y, in (—a, a). Hence there is no nontrivial
solution of (1), (2), (3) for A = 4, and the theorem is proved.

6.
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SUHRN
O LINEARNOM VLASTNOM PROBLEME
Valter Seda, Bratislava

V praci sa skiima vlastna uloha (1), (2), (3). Najdena je postacujuca podmienka, aby existovalo

netrividlne rieSenie tejto ulohy.

PE3IOME
O JIMHEMHO! 3AJJAYE HA COBCTBEHHBIE 3HAUYEHUS
Banbtep llena, Bpatucnasa

B pabote uccnenyerca 3amaua (1), (2), (3). HaligeHo nocTaTouHOE ycTOBHE AN TOTO, YTOGBI

CyLIECTBOBAJIO HETPUBHAJIBHOE PELLICHHE 3TOM 3ajauu.
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