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1 Introduction

In [2] M. Gregu$§ summarised the main results of the theory of linear
differential equations of the third order.

V. Seda [5] developed the theory of transformations of the linear dif-
ferential equation of the n-th order.

J. Moravcik in [4] investigated the differential equations

PO px)y + gy =0, xel=(a, b)

belonging to the class T (/) (see (2.2)), i.e. which can be transformed to a
differential equation with constant coefficients and whose solutions can be
expressed explicitly.

In [6] the sequences of zeros of the solutions of the oscillatory equation

¥t alx)y +b(x)y=0
are compared with the sequences of zeros of the solutions of the equation
¥+ AX)y' + B(x)y =0

when the coefficients possess certain higher monotonicity properties.

In this paper, using the above-mentioned results, we derive certain higher
monotonicity properties of the sequence {x;, — X, }, where {x,} and X, denote
the sequence of consecutive zeros of an oscillatory solution of

Y74 p ()" + g (x)y = 0e Ti(])
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and ,
Y7+ pa () + qa(x)y = 0e Ty (1),

respecitively.

The presented approach is the model for investigation of differential equa-
tions which cannot be transformed to a differential equation with constant
coefficients.

2 Definitions and notation

Consider a differential equation

Y+ p(x)y" + q(x)y =0, o
xel=(a.b), —x <a<bs< o, p(x)eCl). g(x)eC:(1). '

Let K be a real number. By [4] the differential equation (2.1) on an interval
I is said to be in the class (/) if

pon+ (L) 260
oabba, 38 _» oy (2.2)
(b(.\‘))m g ?
where _
b(x) = q(x) — %p’(x) +0 onl 2.3)

Suppose that the differential equation (2.1) is in the class T (/) for
K> —22‘ .
2

Put X
h(x) = J |b(s)|"* ds,

where v, e l. From this it follows that
h(x) = |b(x)|"". (2.4)
h
Suppose that the integral J |b(s)]'*ds = «x and that the finite
lim [ |b(s)|' *ds exists. The change of variables
y(x) = (I(x) " "u(r).
2.5)
hx)y=1, (H(x) "= x@1), [\ = -],
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N—=a

where h(l) =J = (a, o), a= lim I |b(s)|' *ds, transforms the differential
equation (2.1) into
u+ Ki+ru=0, tel, (2.6)

where |r| = 1, sgnr = sgn b(x) (see [4]).
In [4] it is shown that

u (1) = exp (A1)

u,(t) = exp(— %A, t) cos xt, 2.7)

us() = exp(— %l, t) sin xt

is a fundamental system of the solutions of (2.6)(4, and x are suitable real
numbers) and

yi(x) = W) 'u(h(x)), i=1,2,3 (2.8)

is a fundamental system of the solutions of (2.1).
If ¢,, ¢,, ¢y are real numbers (¢; + ¢; > 0) and b(x) > 0, xe 1, then oscillatory
solutions of the differential equation (2.1) form a system

Sias={ey + ey + aps)

If b(x) < 0, x €1, then oscillatory solutions of the differential equation (2.1)
form a system

Sy3=1{c)s + s

Let n be a nonnegative integer and / be an open interval.
We say that f(x)e M, (I) (f(x)e MXI)) if

(=1 f2x) =0 ((=1)f9%) > 0) for xel, i=0,1, ..., n

A sequence {x.}eM, ({x;jeM}D if (—1YA'x, =20 ((—1)A'x,>0) for
i=0,1,...nmk=1,2,....

3 New results

In this section we consider the differential equations
Y+ p(x)y +q(x)y=0, j=1,2, 3.1)
where X€ 1’ P (’\’)‘ pz(.\')e Cm + I(I)' 9 (’\')" q9» ('\‘)E Cm(I)* m g 3.
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Let b,(x) and /hj(x) be determined from the coefficients of equations (3.1,),
Jj = 1. 2 by formulae analogous to (2.3) and (2.4). Suppose that the differential

equations (3.1,). j = 1,2 are in the class Tx(/) for K > — % 243, bj(x) <0, xel,
Jj=12

The following theorem compares the sequences of zeros of the solutions of
two differential equations. It describes the sequence of differences of corres-

ponding zeros of the solutions of equations (3.1,) and (3.1,).
Theorem 3.1. Let n = 0 be an integer and m = max (n, 3). Let the differential

equations (3.1,) be in the class Tx(/) for K > — % 2'*and b(x) <Oonl,j=1,2.

Let the integrals
h
J b)) *ds =00, j=1,2

and let the finite

lim J b)) *ds, j=1.2

Nx—at

exist. Suppose that for xe/
(=D(UEE)) )" Z (=) () )" >0, i=0,1,..,n, (3.2)

where the n-th derivatives exist in the open interval /, and the lower derivatives
are continuous in its closure /*. Suppose y(x) is an oscillatory solution of (3.1,)
and Y(x) is an oscillatory solution of (3.1,). Then, if x, > X, we have

(—1)A(x, — X)) >0, i=0,1,...m k=12, .., (3.3)

for the zeros x,, X, of y(x) and Y(x), respectively, in the intersection /* N1,
where I is an interval defined to be either (X,, &) or (X;, o) according as there
does or does not exist a solution & for the equation

J.;h}(s) ds = ‘r h;(s)ds, 3.4
Xy X,

&, being the least such solution.
All of the above remains true if the factor (—1)' is deleted simultaneously
from (3.2) and (3.3).
Proof. The transformations
y(x) = X(@u(t), x(t) = (h(x))™",

. . (3.5)
Y(X) = X()U(1), X(1) = (h5(X))~",
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transform the equations (3.1,), (3.1,) into the equations
u+Ku—u=0,

U+KU—-U=0, tel,

respectively.
Since

X(0) = (=b,(x)7">0, X(1)=(=by(x))""">0, xel,

(3.6)

there is a one-to-one correspondence between the zeros of y(x) and u(f) and
between those of Y(X) and U(r), respectively. But all oscillatory solutions of

(3.6) are of the form
exp(— %l, t) d, cos (xt — d)
where d, and d, are constants. So that

A =AT,=Z k=1,2, ..,
V4

where ¢,, t,, ... are the zeros of u(r) corresponding, respectively, to x,, X,, ...
T,, T; ... are the zeros of U(f) corresponding, respectively, to X,, X, ....

Since, by (3.5),
X X
t=f h,(s)ds =j hy(s)ds
Ayl X,
we have t) =T, =0, so that t, = T, = (k — l)’—r,k= 1,2, ...and
x

(=IYA(x — X,) = (= YA (x() — X(1,)).

,and

3.7

Applying a mean-value theorem for higher differences and derivatives [1] to

the expression (3.7) we obtain

(—1)A(x, — X,) = (— —) (v‘“(r +i@= ) X'"(’A— + "@E))’
X,

0<@<l1, i=0,1,...,n, k=1,2,
However,

(=D'x?@O) > (=D)X"), i=0,1,...n

(3.8)

3.9
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for ¢ in the appropriate interval (see (3.4) and [3], p. 67). So, the assertion (3.3)
follows immediately from (3.8) and (3.9).

The last assertion in the statement of Theorem 3.1 follows on making obvious
changes in the above proof.

This completes the proof of Theorem 3.1.

Remark 3.1. The conclusion of Theorem 3.1 remains true if the hypothesis
hi(x)<Oonl/ j=1,2isreplaced by b,(x) >0o0n /,j =1, 2 and y(x), Y(x) are
of the form y=cy,+ ayn Y =c6yn+ ayn where v, = () u(hy),
f= 2,3 = 1,2.

Example 3.1. Consider the differential equations

P74+ (MNe™ — 1)y + (MN}*e*™ + Nie™)y =0,

xel=(0, ), j=1,2, (3.10,)

where M > -—%2"andN3§N,<0.

In the case of the differential equations (3.10;) the coefficients p,(x) and ¢,(x)
have the form

pi(x) = MN}e™ — 1, ¢(x) = MN?*e* + N,e™, j=1,2.
Since, by (2.3),
bi(x)= Ne*™, j=1,2

and by (2.2)
K=M,
we have
3.10)e T, (), j=1,2.

Further, by (2.4),
(h(x)"'=(=N) e, j=12,
so that (3.2) holds.
It is obvious that

J (=N)e'ds =
0

and the finite

lim J'(—N,.)”e-"ds, =12

=0t

exist.
Thus, the hypotheses of Theorem 3.1 are fulfilled and (3.3) holds.
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Consider an oscillatory solution y(x) (Y(x)) of (3.1,)((3.1,)). By [2] the
function y(x) (Y (x)) is a solution of the equation of the band of solutions of the
differential equation (3.1;) on the whole interval /

L) =y"— L‘Jl + (p,— + '—'f) =0, (3.11)
W/ Ii',-

where
Wy = )~ exp (= Ak, j=1.0=2).

It is known in [2] that the substitution

P(0) = ()" *exp (— 4, =y (x)/2)o(x) (3.12))
transforms (3.11,) into the equation
v+ fi(x)p =0, xel, ) (3.13)
where
1 hy 3 h,">3 3n
fi=—-L—=( + »xh-, =1, 2. (3.14)
/=3 ho 4 (h_; ha 4 ’

Using this relation between the equations of the second and of the third order
we derive further sufficient conditions for the higher monotonicity properties of
solutions of certain 2nd order differential equations.

Theorem 3.2. Let the conditions of Theorem 3.1 be satisfied. If y(x)) and
Y(x) are solutions of the equation of the band of solutions (3.11,), (3.11,) of the
differential equation (3.1,), (3.1,), respectively, then (3.3) holds.

Proof. By a direct calculation (by (2.5), (2.8) and (3.12;)) we can show that
the equation (3.13;) possesses a pair of linearly independent solutions

0(x) = ((h(x))" *exp (A, 1(x)/2)y (x) = (3hj(x))™"* cos xhy(x),
va(x) = = (sh(x))"*exp (4, h;(x)/2)y;3(x) = (xhj(x))~"" sin sh;(x)
such that the Wronskian w(v,, v;) = 1 and ,
Pi(x) = v3(x) + vi(x) = (hi(x)"", j=1,2,
by (3.2), satisfy
(=Dp'(x) 2 (- 1)pUx) >0, i=0,1,...,n

for x in the appropriate interval.

So, the conditions of Theorem 5.1 in [3] are fulfilled. By this theorem (3.3)
holds.

Remark 3.2. Proof of Theorem 3.2 follows also from Theorem 9 in [5],
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because by this theorem the transformations (3.5) transform the equations
(h)™*Ly(y) =0, j = 1, 2, respectively, into the equation

i+ A+ A+ Ku=0, teJ

the fundamental system of solutions of which is formed by the functions u,(z),
us(1) from (2.7).

Remark 3.3. The equation of the band of solutions (3.11,) of the differential
equation (3.10,) does not fulfil the hypothesis f,(x)e M, , (/) of Theorem 1.1 in

[6] because the function f(x) defined by (3.14,) has the form f (x) = — i +

+ ®*NiBe™.

But one can show that the equations of the band of solutions (3.11,) and
(3.11,) of the differential equations (3.10,) and (3.10,), respectively, fulfil the
hypotheses of Theorem 3.2. By this theorem we have {x;, — X, }e M}

So, this result does not follow from Theorem 1.1 in [6].
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SUHRN

e} ROZLOZENiNQLOV?CH BODOV RIESENi LINEARNYCH
DIFERENCIALNYCH ROVNIC TRETIEHO RADU

Elena Pavlikova, Zilina

V praci sa porovnava postupnost nulovych bodov {x,} oscilatorického riesenia rovnice
Y+ p )y + ¢ (x)y =0e T, (1)
s postupnostou nulovych bodov {X,} oscilatorického rieSenia rovnice
¥ A pa (X 4 g (x)y = 0e T ().

Vo vete 3.1 s uvedené postacujiice podmienky na to. aby postupnost {.x, — X, } bola monotonna
n-tého radu.

PE3IOME

O PACMPEAEJIEHUU HYJIEM PEMIEHUM JIMHEVHBIX JUGPEPEHUUAJIBHBIX
YPABHEHUM TPETBEIO MOPSIAKA

Enena IMasaukoa, XKuauua

B paGoTe cpaBHMBaeTCs MOC/CA0BATENBHOCTL HYJEH {X,} OCUMJUISLMOHHOTO PELUEHHA ypaB-
HEHUs
Y p (X)) + g (x)y=0eT(1)
C MOCJ/IEI0BATENbHOCTBIO Hy.IeH {X) ] OCUM/IIALMOHHOIO PELIEHHS YPaBHEHHS
3 pa () + ga(x)y = 0e T (]).

B Teopeme 3.1 mpuBeaeHbl IOCTATOYHbIE YCJIOBHUS IUIS TOro, 4TOOBI MOCIENOBATENILHOCTH
{x, — X} ABNAIaCH MOHOTOHHOM MOPSAKA M.
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