#3D
VAL 7

—/

Werk

Label: Article
Jahr: 1989
PURL: https://resolver.sub.uni-goettingen.de/purl?312901348_54-55|log21

Kontakt/Contact

Digizeitschriften e.V.
SUB Géttingen

Platz der Gottinger Sieben 1
37073 Gottingen

& info@digizeitschriften.de


http://www.digizeitschriften.de
mailto:info@digizeitschriften.de

UNIVERSITAS COMENIANA
ACTA MATHEMATICA UNIVERSITATIS COMENIANAE
LIV—LV—1988

THE MAXIMAL FAMILIES WITH KESPECT TO THE
COMPOSITION OF FUNCTIONS WITH A CLOSED GRAPH

ROBERT MENKYNA, Liptovsky Mikulas

In the paper we shall consider functions whose domain X and range Y are
topological spaces and which have closed graphs in X" x Y. Let U(X, Y) denote
the family of all functions with a closed graph and C(X, Y) the family of all
continuous functions.

A. M. Bruckner in the monograph [1] has defined the maximal additive
(multiplicative) family. The paper [7] deals with maximal additive and maximal
multiplicative families for functions with a closed graph. In a similar way we
shall deal with the maximal family with respect to the inner (outer) component
of the composition of functions with a closed graph.

Definition 1. Let X, Y, Z be topological spaces. The family of functions
M*(X, Y, Z)c U(Y, Z) is called the maximal family in U(Y, Z) with respect
to the outer component of the composition of functions, if M (X, Y, Z) is the
family of all functions fe U(Y, Z) such that f(g)e U(X, Z) forevery ge U(X, Y).

Similarly we may define M"(X, Y, Z) < U(X, Y), the maximal family in
U(X, Y) with respect to the inner component of the composition of functions.

The paper [6] brings the following theorem.

Theorem 1. let X, Y, Z be topological spaces. For every function ge C(X, Y)
and fe U(Y, Z) it holds that f(g)e U(X, Z).

Corollary. C(X, Y)n U(X, Y) = M"(X, Y, Z).

Theorem 2. If Y is a Hausdorff compact topological space, then M*"(X, Y, Z) =
=U(X, Y)and M*“(X, Y, Z) = U(Y, 2Z).

Proof. If a topological space Y is Hausdorff and compact, then from Theo-
rem 3 [5] it follows that C(X, Y) < U(X, Y) and from Theorem 4 [5)
U(X, Y) < C(X, Y). That is, C(X, Y) = U(X, Y). Because according to Theo-
rem 1 for every function fe C(X, Y) and every ge U(Y, Z) it holds that
g(NeU(X, Z), then M (X, Y, Z) = U(Y, Z) and M"(X, Y, Z) = U(X, Y).

In the following we shall deal with the cases where a topological space Y is
not compact.
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Definition 2 [4]. A compactification of a topological space X is defined to be
a pair (e, X,), where X, is a compact topological space and « is a homeomor-
phism of X onto a dense subspace of X,,.

Definition 3. Let (a, Y,) be a compactification of a topological space Y. We
say that the function fe U(Y, Z) is of the family M(Y,, Z) if and only if fis
constant or satisfies the next condition: If a net {a(y,), i€ I}, y;€ Y converges to
any point ye Y, — a(Y), then the net {f(y,), ie I} does not converge in Z.

In the general case correspondent families M(Y,, Z) for different compacti-
fications (@, Y,) of a topological space Y may by different.

Theorem 3. Let y, Y,), be compactification of a topological space Y. If ¥,
is a Hausdorff topological space, then for every compactification (e, Y,)
M(Y,, Z) c M(Y,. Z) holds.

Proof. Let the function f¢ M(Y,, 7). There is a net {y,, ie I}, y;€ Y such that
the net {y(y;) » ye Y, — — y(Y) and the net {f(y;), i€ I} converges to a point
ze Z. The topological space Y, is HausdorfT, then any subnet of the net {y;, ie I}
does not converge in Y. However there is a subnet {y,, jeJ} such that a(y,-l_)
converges to the point € Y, — a(Y). The net {f(y,]_), jeJ} converges to the
point ze Z, i.e. the function f¢ M(Y,, Z), which finishes the proof.

Remark. If ¢: Y, — Y, is a homeomorphisin of topological spaces Y, Y,, then
from Theorem 1 it is clear that f(@)e U(Y,, Z) if and only if fe U(Y,, Z).
Therefore if below (a, Y,) will be a compactification of a topological space Y,
without loss of generality we can assume that Y < Y,.

Lemma 1. Let (a, Y,) be a compactification of a topological space Y. If the
function fe U(X, Y) is discontinuous at a point x,e X, then there is a net {x;,
iel}, x;— x, such that f(x,) > je Y, — Y.

Proof. If fis discontinuous at a point x,, then there is a net {x;, je J}, x; - x,
for which f(x;) = F(x;)and an open neighborhood ¥ of the point f(x,) such that
the net {f(x;), je J} is frequently in Y, — V. Since Y, — V' is compact, we may
choose a convergent subnet {f(x;), iel}, f(x;) - ye ¥, — V. The point j is a
member of Y, — Y, because the opposite assertion contradicts the fact that
feUX, Y).

Theorem 4. Let X, Y, Z be topological spaces and Y, > Y a compactification
of the topological space Y. Then for every function fe M(Y,, Z) and every
geU( <, Y) it holds that f(g)e U(X, Z),i.e. M(Y,, Z)c M (X, Y, Z).

Proof. Let g be any function of the family U(X, Y). If fe U(Y, Z) is constant,
then f(g)e U(X, Z), since {f(y)} is a closed set in Z for every ye Y (Theorem 1
[5D.

If fe M(Y,, Z) is not constant, then if a net {(x;, f(g(x;))), i€ I} converges to a
point (x,, z)€ X x Z, the net {(x;, g(x;)), i€ I} converges to the point (x,, g(x,)).
If that is not the case, there is a subnet {x,-i, jeJ} (Lemma 1) such that g(x,.j )—
—JjeY,— Y. Since {f (g(xi’_)), jeJ} converges to ze Z, we have a contradiction
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with the assumption fe M(Y,, Z). Because the net {(g(x,), f(g(x,))), i€ I} conver-
ges to the point (g(x,), z)€ ¥ x Z and fe U(Y, Z), it holds that z = f(g(x,)), i.e.
f(@)eUX, 2).

Let M(Y, Z) be a union of all families M(Y,, Z). If a topological space Y is
Tychonoff, then for Stone-Cech compactification (S, Yy) is holds, that M(Y,
Z) = M(Y;, Z).

Corollary. For any topological space X, Y, Z it holds that
MY,Z)c M™“(X, Y, Z).

In the present section we construct topological spaces X, Y, Z for which
CX, N)nUX, Y)eM"(X,Y,Z) s UX, Y),or M(Y,Z)g M™“(X,Y,Z) &
< U(Y, Z) respectively.

Example 1. Let us give topological spaces (X, 7,), where X = N and T, =
={4eP(N), N— A is finite}u {0}, (Z=1{z, z), P(Z)) and (Y =
= Vo Yo» Y1» ¥}, ...}, T,), where the subbase for the topelogy T, is the family of
all subsets’ of the forms {y,, y;} or {y., ¥/}, i=1,2, ... .

It is easy to verify that the following propositions hold.

Proposition 1': A function fe U(X, Y) if and only if f(X) N {y,, v} =0
and f satisfies any from the following conditions:

i) fis constant, ii) card f ~'(y) < + oo for every ye Y.

Proposition 2'. U(Y, Z) = C(Y, Z) and fe C(Y, Z) if and only if
JO) =f0), fO) =f(;) forevery i= 1,2, ...

We are going to show that:
a) UX, Y)2 M"(X, Y, Z).
We define the function f: X —» Y by

f(‘) Yo, fx=2n-—1
X) =
Yn, ifx=2n

and the function g: Y - Z by
Z1 ifye{ym Y }
22 ifye{yz/ny;’ }

Evidently fe U(X, Y) (Proposition 1') and ge U(Y, Z) (Proposition 2'), but
g(f)¢ U(X, Z) because the net {(2n, g(f(2n))), n=1, 2, ...} converges to the
point (1, z,) but g(f(1)) = z, # z,. Thus the function fe U(X, Y) — M™"(X, Y,
Z). .

b) There is a function fe U(X, Y) — C(X, Y) such that g(f)e U(X, Z) for
every ge U(Y, Z).

We define a function f: X > Y by f(n) =y,, n=1, 2, ... . The function
fe U(X, Y) (Proposition 1') and fis discontinuous in every point ne X. For every
function ge U(Y, Z) g(f) is a constant (Proposition 2') and so g(f)e U(X, Z),
that is fe M"(X, Y, Z) — C(X, Y).

g(v)={
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In Example 2 we shall use the Sierpinski theorem ([2], p. 440).

The Sierpinski theorem. If a continuum X (a connected and compact topolo-
gical space) has a countable cover {F}> , by pairwise disjoint closed subsets,
then at most one of the sets F, is non-empty.

Remark. The assertion of the Sierpinski theorem holds for a set

oo
0 #A=|) A4 too, where 4, c 4, ... isa sequence of continua.

i=1

Example 2. Let X =[0,1], Z=[0,1) and Y = {(x, sin l), xe(O, —l-]} v
x T

v {(x, 0), xe[O, l]} with the relative topology of [0, 1]%.
/4

For given topological spaces it holds:

Proposition 12 If feU(X, Y) is discontinuous at a point x, then
S(x,) = (0, 0).

Proof. Assume that f(x,) # (0, 0). Then for every sequence x;—> x, the
sequence {f(x;)};2, does not converge to the point (0, 0). Thus there is a
neighbourhood U = (x, — 8, x, + &) of the point x, and a neighbourhood
V = (—¢ €)*n Y of the point (0, 0) such that f(U)n V = 0. The set Y — V may
be expressed as a countable union of closed, pairwise disjoint sets

Y— V=) 4, Because 4,, i = 1, 2, ... is compact, the set £~'(4,) is closed

(Theorem 3.6 [3]). Evidently () f~'(4,) > U and according to the remark
i=1

above exactly one set ' (4,) is not empty. From this and from Theorem 4 [5]
it follows that f'is continuous in the point X,, which contradicts the assumption.
We shall show that:

a) U(Y, Z) 2 M™(X, Y, Z), that is we choose a function feU(Y, Z) and
ge U(X, Y) for which f(g) ¢ U(X, Z).

Define the function f: ¥ — Z by f(x, y) = %lyl and the function
0 .
(x, sin —) ifx#0
8 X—Ybyg(x)= X
0, 0) if x=0.
The function fe U(Y, Z), ge U(X, Y) but f(g)¢ U(X, Z), because the sequence

2 2 * : 1
e G, oo 10 e g (o)

SE&O) =02,
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b) M (X,Y,Z) 2 M(Y, Z), thatis there is fe U(Y, Z) — M(Y, Z) such that
f(@)e(X, Z) for every ge U(X, Y).

Define the function f: Y->Z, f(x, y)= —x(x—-l-). The function
.

e ]

felU(Y, Z) — M(Y, Z), since the sequence {(—2— 1)} converges to the
(4n+ Dm

n=1

point (0, 1)e Y; — Y and the sequencef( —-0eZ. LetgeU(X, Y)

@4n + )rx l)
be any function and let a sequence {(x;, f(g(x;))), i = 1, 2, ...} converge to a point
(x,, 2)e X x Z. We shall show that z = f(g(x,)).

If x, is a point of continuity of the function g, then f(g) is continuovus at x,
and thus z = f(g(x,)).

If x, is a point of discontinuity of the function g, then the set of accumulation
points of the sequence {g(x;)}” , is a subset of {(x, y), x = 0 and ye[—1, 1]}.
Because fe C([0, 1]%, Z), the sequence {f(g(x;))}., converges to z = 0. From
Proposition 12 it follows that g(x,) = 0 and so f(g(x,)) = 0, i.e. f(g(x,)) = z.
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SUHRN

MAXIMALNA TRIEDA FUNKCIi VZHCADOM NA SKLADANIE FUNKCI]
S UZAVRETYM GRAFOM

Robert Menkyna, Liptovsky Mikulas
Nech X, Y, Z si topologické priestory. Ozna¢me U(X, Y) triedu vetkych funkcii /> X > Y's
uzavretym grafom v X x Y. V ¢lanku sa zaoberam triedou vietkych funkcii fe U(x, Y)/fe U(Y, Z)
| takych, Ze g(f)e U(X, Z) /f(g)e U(X, Z)/ pre kazdu funkciu ge U(Y, Z) /ge U(X, Y)/.
PE3IOME

MAKCUMAIJIbBHASI CUCTEMA OTOBPAXEHUWI MO OTHOLWEHUIO
K KOMITO3ULIMN OTOBPAXEHUN C 3AMKHYTBIM T'PA®UKOM

Pobept MenkuHa, JluntoBckn Mukynaiu

IMycts X, Y, Z aBnq10TCS TONONOrHYeCKUMHU mpocTpaHcTBaMu. O6o3naunm U(X, Y) cuctemy
BCEX TeX OTOOpaXkeHni NpocTpaHcTBa X B MPOCTPAHCTBO Y, rpaduKH KOTOPBIX SBJISIOTCS 3aMK-
HYTBIMH MOAMHOXeCTBaMH B X x Y. B 3T0# paboTe aBTOp pacCMaTpHBAET CHCTEMY BCEX OTO-
6paxenuit fe U(X, Y)/fe U(Y, Z)/, nna xoTopsix umeet mecto g(f)e U(X, Z) [f(g)e U(X, Z) nna

« moboro ge U(Y, Z)/ge U(X, Y).
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