

Werk

Label: Article **Jahr:** 1989

PURL: https://resolver.sub.uni-goettingen.de/purl?312901348_54-55|log21

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

UNIVERSITAS COMENIANA ACTA MATHEMATICA UNIVERSITATIS COMENIANAE

LIV-LV-1988

THE MAXIMAL FAMILIES WITH RESPECT TO THE COMPOSITION OF FUNCTIONS WITH A CLOSED GRAPH

ROBERT MENKYNA, Liptovský Mikuláš

In the paper we shall consider functions whose domain X and range Y are topological spaces and which have closed graphs in $X \times Y$. Let U(X, Y) denote the family of all functions with a closed graph and C(X, Y) the family of all continuous functions.

A. M. Bruckner in the monograph [1] has defined the maximal additive (multiplicative) family. The paper [7] deals with maximal additive and maximal multiplicative families for functions with a closed graph. In a similar way we shall deal with the maximal family with respect to the inner (outer) component of the composition of functions with a closed graph.

Definition 1. Let X, Y, Z be topological spaces. The family of functions $M^{out}(X, Y, Z) \subset U(Y, Z)$ is called the maximal family in U(Y, Z) with respect to the outer component of the composition of functions, if $M^{out}(X, Y, Z)$ is the family of all functions $f \in U(Y, Z)$ such that $f(g) \in U(X, Z)$ for every $g \in U(X, Y)$.

Similarly we may define $M^{in}(X, Y, Z) \subset U(X, Y)$, the maximal family in U(X, Y) with respect to the inner component of the composition of functions.

The paper [6] brings the following theorem.

Theorem 1. let X, Y, Z be topological spaces. For every function $g \in C(X, Y)$ and $f \in U(Y, Z)$ it holds that $f(g) \in U(X, Z)$.

Corollary. $C(X, Y) \cap U(X, Y) \subset M^{in}(X, Y, Z)$.

Theorem 2. If Y is a Hausdorff compact topological space, then $M^{in}(X, Y, Z) = U(X, Y)$ and $M^{out}(X, Y, Z) = U(Y, Z)$.

Proof. If a topological space Y is Hausdorff and compact, then from Theorem 3 [5] it follows that $C(X, Y) \subset U(X, Y)$ and from Theorem 4 [5] $U(X, Y) \subset C(X, Y)$. That is, C(X, Y) = U(X, Y). Because according to Theorem 1 for every function $f \in C(X, Y)$ and every $g \in U(Y, Z)$ it holds that $g(f) \in U(X, Z)$, then $M^{out}(X, Y, Z) = U(Y, Z)$ and $M^{in}(X, Y, Z) = U(X, Y)$.

In the following we shall deal with the cases where a topological space Y is not compact.

Definition 2 [4]. A compactification of a topological space X is defined to be a pair (α, X_a) , where X_a is a compact topological space and α is a homeomorphism of X onto a dense subspace of X_a .

Definition 3. Let (a, Y_a) be a compactification of a topological space Y. We say that the function $f \in U(Y, Z)$ is of the family $M(Y_a, Z)$ if and only if f is constant or satisfies the next condition: If a net $\{a(y_i), i \in I\}$, $y_i \in Y$ converges to any point $\tilde{y} \in Y_a - a(Y)$, then the net $\{f(y_i), i \in I\}$ does not converge in Z.

In the general case correspondent families $M(Y_a, Z)$ for different compactifications (α, Y_a) of a topological space Y may by different.

Theorem 3. Let γ , Y_{γ} , be compactification of a topological space Y. If Y_{γ} is a Hausdorff topological space, then for every compactification (α, Y_{α}) $M(Y_{\alpha}, Z) \subset M(Y_{\gamma}, Z)$ holds.

Proof. Let the function $f \notin M(Y_{\gamma}, Z)$. There is a net $\{y_i, i \in I\}$, $y_i \in Y$ such that the net $\{\gamma(y_i) \to \tilde{y} \in Y_{\gamma} - \gamma(Y) \text{ and the net } \{f(y_i), i \in I\} \text{ converges to a point } z \in Z$. The topological space Y_{γ} is Hausdorff, then any subnet of the net $\{y_i, i \in I\}$ does not converge in Y. However there is a subnet $\{y_{i_j}, j \in J\}$ such that $\alpha(y_{i_j})$ converges to the point $\tilde{y}_0 \in Y_a - \alpha(Y)$. The net $\{f(y_{i_j}), j \in J\}$ converges to the point $z \in Z$, i.e. the function $f \notin M(Y_a, Z)$, which finishes the proof.

Remark. If $\varphi: Y_1 \to Y_2$ is a homeomorphism of topological spaces Y_1, Y_2 , then from Theorem 1 it is clear that $f(\varphi) \in U(Y_1, Z)$ if and only if $f \in U(Y_2, Z)$. Therefore if below (α, Y_α) will be a compactification of a topological space Y, without loss of generality we can assume that $Y \subset Y_\alpha$.

Lemma 1. Let (α, Y_{α}) be a compactification of a topological space Y. If the function $f \in U(X, Y)$ is discontinuous at a point $x_{\alpha} \in X$, then there is a net $\{x_i, i \in I\}$, $x_i \to x_{\alpha}$ such that $f(x_i) \to \tilde{y} \in Y_{\alpha} - Y$.

Proof. If f is discontinuous at a point x_o , then there is a net $\{x_j, j \in J\}$, $x_j \to x_o$ for which $f(x_j)$ $f(x_o)$ and an open neighborhood V of the point $f(x_o)$ such that the net $\{f(x_j), j \in J\}$ is frequently in $Y_a - V$. Since $Y_a - V$ is compact, we may choose a convergent subnet $\{f(x_{j_i}), i \in I\}, f(x_{j_i}) \to \tilde{y} \in Y_a - V$. The point \tilde{y} is a member of $Y_a - Y$, because the opposite assertion contradicts the fact that $f \in U(X, Y)$.

Theorem 4. Let X, Y, Z be topological spaces and $Y_{\alpha} \supset Y$ a compactification of the topological space Y. Then for every function $f \in M(Y_{\alpha}, Z)$ and every $g \in U(X, Y)$ it holds that $f(g) \in U(X, Z)$, i.e. $M(Y_{\alpha}, Z) \subset M^{out}(X, Y, Z)$.

Proof. Let g be any function of the family U(X, Y). If $f \in U(Y, Z)$ is constant, then $f(g) \in U(X, Z)$, since $\{f(y)\}$ is a closed set in Z for every $y \in Y$ (Theorem 1 [5]).

If $f \in M(Y_a, Z)$ is not constant, then if a net $\{(x_i, f(g(x_i))), i \in I\}$ converges to a point $(x_o, z) \in X \times Z$, the net $\{(x_i, g(x_i)), i \in I\}$ converges to the point $(x_o, g(x_o))$. If that is not the case, there is a subnet $\{x_{i_j}, j \in J\}$ (Lemma 1) such that $g(x_{i_j}) \to \emptyset \in Y_a - Y$. Since $\{f(g(x_{i_j})), j \in J\}$ converges to $z \in Z$, we have a contradiction

with the assumption $f \in M(Y_a, Z)$. Because the net $\{(g(x_i), f(g(x_i))), i \in I\}$ converges to the point $(g(x_o), z) \in Y \times Z$ and $f \in U(Y, Z)$, it holds that $z = f(g(x_o))$, i.e. $f(g) \in U(X, Z)$.

Let M(Y, Z) be a union of all families $M(Y_a, Z)$. If a topological space Y is Tychonoff, then for Stone-Cech compactification (β, Y_{β}) is holds, that $M(Y, Z) = M(Y_{\beta}, Z)$.

Corollary. For any topological space X, Y, Z it holds that $M(Y,Z) \subset M^{out}(X, Y, Z)$.

In the present section we construct topological spaces X, Y, Z for which $C(X, Y) \cap U(X, Y) \subsetneq M^{in}(X, Y, Z) \subsetneq U(X, Y)$, or $M(Y, Z) \subsetneq M^{out}(X, Y, Z) \subsetneq U(Y, Z)$ respectively.

Example 1. Let us give topological spaces (X, T_x) , where X = N and $T_x = \{A \in P(N), N - A \text{ is finite}\} \cup \{\emptyset\}, (Z = \{z_1, z_2\}, P(Z)) \text{ and } (Y = \{y_o, y_o', y_1, y_1', \ldots\}, T_y)$, where the subbase for the topology T_y is the family of all subsets of the forms $\{y_o, y_i\}$ or $\{y_o', y_i'\}$, $i = 1, 2, \ldots$. It is easy to verify that the following propositions hold.

Proposition 1: A function $f \in U(X, Y)$ if and only if $f(X) \cap \{y_o, y_o'\} = \emptyset$ and f satisfies any from the following conditions:

i) f is constant, ii) card $f^{-1}(y) < +\infty$ for every $y \in Y$.

Proposition 2^1 . U(Y, Z) = C(Y, Z) and $f \in C(Y, Z)$ if and only if $f(y_i) = f(y_o)$, $f(y_i') = f(y_o')$ for every i = 1, 2, We are going to show that:

a) $U(X, Y) \supseteq M^{in}(X, Y, Z)$.

We define the function $f: X \to Y$ by

$$f(x) = \begin{cases} y_n, & \text{if } x = 2n - 1 \\ y'_n, & \text{if } x = 2n \end{cases}$$

and the function $g: Y \rightarrow Z$ by

$$g(y) = \begin{cases} z_1, & \text{if } y \in \{y_o, y_1, \ldots\} \\ z_2, & \text{if } y \in \{y_o', y_1', \ldots\}. \end{cases}$$

Evidently $f \in U(X, Y)$ (Proposition 1¹) and $g \in U(Y, Z)$ (Proposition 2¹), but $g(f) \notin U(X, Z)$ because the net $\{(2n, g(f(2n))), n = 1, 2, ...\}$ converges to the point $(1, z_2)$ but $g(f(1)) = z_1 \neq z_2$. Thus the function $f \in U(X, Y) - M^{in}(X, Y, Z)$.

b) There is a function $f \in U(X, Y) - C(X, Y)$ such that $g(f) \in U(X, Z)$ for every $g \in U(Y, Z)$.

We define a function $f: X \to Y$ by $f(n) = y_n$, n = 1, 2, The function $f \in U(X, Y)$ (Proposition 1¹) and f is discontinuous in every point $n \in X$. For every function $g \in U(Y, Z)$ g(f) is a constant (Proposition 2¹) and so $g(f) \in U(X, Z)$, that is $f \in M^m(X, Y, Z) - C(X, Y)$.

In Example 2 we shall use the Sierpinski theorem ([2], p. 440).

The Sierpinski theorem. If a continuum X (a connected and compact topological space) has a countable cover $\{F_i\}_{i=1}^{\infty}$ by pairwise disjoint closed subsets, then at most one of the sets F_i is non-empty.

Remark. The assertion of the Sierpinski theorem holds for a set $\emptyset \neq A = \bigcup_{i=1}^{\infty} A_i$ too, where $A_1 \subset A_2 \subset ...$ is a sequence of continua.

Example 2. Let
$$X = [0, 1]$$
, $Z = [0, 1)$ and $Y = \left\{ \left(x, \sin \frac{1}{x} \right), x \in \left(0, \frac{1}{\pi} \right] \right\} \cup \left\{ (x, 0), x \in \left[0, \frac{1}{\pi} \right] \right\}$ with the relative topology of $[0, 1]^2$.

For given topological spaces it holds:

Proposition 1². If $f \in U(X, Y)$ is discontinuous at a point x_o , then $f(x_o) = (0, 0)$.

Proof. Assume that $f(x_o) \neq (0, 0)$. Then for every sequence $x_i \to x_o$ the sequence $\{f(x_i)\}_{i=1}^{\infty}$ does not converge to the point (0, 0). Thus there is a neighbourhood $U = (x_o - \delta, x_o + \delta)$ of the point x_o and a neighbourhood $V = (-\varepsilon, \varepsilon)^2 \cap Y$ of the point (0, 0) such that $f(U) \cap V = \emptyset$. The set Y - V may be expressed as a countable union of closed, pairwise disjoint sets

$$Y - V = \bigcup_{i=1}^{\infty} A_i$$
. Because A_i , $i = 1, 2, ...$ is compact, the set $f^{-1}(A_i)$ is closed

(Theorem 3.6 [3]). Evidently $\bigcup_{i=1}^{\infty} f^{-1}(A_i) \supset U$ and according to the remark above exactly one set $f^{-1}(A_i)$ is not empty. From this and from Theorem 4 [5] it follows that f is continuous in the point x_o , which contradicts the assumption. We shall show that:

a) $U(Y, Z) \supseteq M^{out}(X, Y, Z)$, that is we choose a function $f \in U(Y, Z)$ and $g \in U(X, Y)$ for which $f(g) \notin U(X, Z)$.

Define the function $f: Y \to Z$ by $f(x, y) = \frac{1}{2}|y|$ and the function

$$g: X \to Y \text{ by } g(x) = \begin{cases} \left(x, \sin \frac{1}{x}\right) & \text{if } x \neq 0 \\ (0, 0) & \text{if } x = 0. \end{cases}$$

The function $f \in U(Y, Z)$, $g \in U(X, Y)$ but $f(g) \notin U(X, Z)$, because the sequence $\left\{ \left(\frac{2}{(4n+1)\pi}, f\left(g\left(\frac{2}{(4n+1)\pi}\right)\right) \right) \right\}_{n=1}^{\infty}$ converges to the point $\left(0, \frac{1}{2}\right)$ but $f(g(0)) = 0 \neq \frac{1}{2}$.

b) $M^{out}(X, Y, Z) \supseteq M(Y, Z)$, that is there is $f \in U(Y, Z) - M(Y, Z)$ such that $f(g) \in (X, Z)$ for every $g \in U(X, Y)$.

Define the function $f: Y \to Z$, $f(x, y) = -x\left(x - \frac{1}{\pi}\right)$. The function $f \in U(Y, Z) - M(Y, Z)$, since the sequence $\left\{\left(\frac{2}{(4n+1)\pi}, 1\right)\right\}_{n=1}^{\infty}$ converges to the point $(0, 1) \in Y_{\beta} - Y$ and the sequence $f\left(\frac{2}{(4n+1)\pi}, 1\right) \to 0 \in Z$. Let $g \in U(X, Y)$ be any function and let a sequence $\{(x_i, f(g(x_i))), i = 1, 2, ...\}$ converge to a point $(x_o, z) \in X \times Z$. We shall show that $z = f(g(x_o))$.

If x_o is a point of continuity of the function g, then f(g) is continuous at x_o and thus $z = f(g(x_o))$.

If x_o is a point of discontinuity of the function g, then the set of accumulation points of the sequence $\{g(x_i)\}_{i=1}^{\infty}$ is a subset of $\{(x, y), x = 0 \text{ and } y \in [-1, 1]\}$. Because $f \in C([0, 1]^2, \mathbb{Z})$, the sequence $\{f(g(x_i))\}_{i=1}^{\infty}$ converges to z = 0. From Proposition 1² it follows that $g(x_o) = 0$ and so $f(g(x_o)) = 0$, i.e. $f(g(x_o)) = z$.

REFERENCES

- 1. Bruckner, A. M.: Differentation of real functions, Berlin Heidelberg New York 1978.
- 2. Engelking, R.: General topology, Warszawa 1977 PWN.
- 3. Fuller, R. V.: Relations among continuous and various non-continuous functions, Pacific Math. J. 25 (3), (1968), 495—509.
- 4. Kelley, J. L.: General topology, New York 1955.
- 5. Kostyrko, P.: A note on the functions with closed graphs, Časopis pro pěstování matematiky, roč. 94 (1969), 202—205.
- 6. Kostyrko, P.—Neubrunn, T.—Šalát, Т.: О функциях, графы которых являются замкнутыми множествами II, Acta fac. rer. nat. Univ. Com., (1965), 51—61.
- 7. Menkyna, R.: The maximal additive and multiplicative families for functions with closed graph, Acta fac. rer. nat. Univ. Com., (1987).

Author's address:

Received: 14. 5. 1987

Robert Menkyna Cédrová 490/5. 031 01 Liptovský Mikuláš

SÚHRN

MAXIMÁLNA TRIEDA FUNKCIÍ VZHĽADOM NA SKLADANIE FUNKCIÍ S UZAVRETÝM GRAFOM

Robert Menkyna, Liptovský Mikuláš

Nech X, Y, Z sú topologické priestory. Označme U(X, Y) triedu všetkých funkcií $f \colon X \to Y$ s uzavretým grafom v $X \times Y$. V článku sa zaoberám triedou všetkých funkcií $f \in U(x, Y)/f \in U(Y, Z)$ / takých, že $g(f) \in U(X, Z)/f(g) \in U(X, Z)/f(g)$ pre každú funkciu $g \in U(Y, Z)/g \in U(X, Y)/g$.

РЕЗЮМЕ

МАКСИМАЛЬНАЯ СИСТЕМА ОТОБРАЖЕНИЙ ПО ОТНОЩЕНИЮ К КОМПОЗИЦИИ ОТОБРАЖЕНИЙ С ЗАМКНУТЫМ ГРАФИКОМ

Роберт Менкина, Липтовски Микулаш

Пусть X, Y, Z являются топологическими пространствами. Обозначим U(X, Y) систему всех тех отображений пространства X в пространство Y, графики которых являются замкнутыми подмножествами в $X \times Y$. В этой работе автор рассматривает систему всех отображений $f \in U(X, Y)/f \in U(Y, Z)/$, для которых имеет место $g(f) \in U(X, Z)/f(g) \in U(X, Z)$ для любого $g \in U(Y, Z)/g \in U(X, Y)$.