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OSCILLATORY PROPERTIES OF THE SOLUTIONS OF
THREE-DIMENSIONAL NONLINEAR DIFFERENTIAL
SYSTEMS WITH DEVIATING ARGUMENTS

EVA SPANIKOVA, Zilina

Introduction

In this paper we consider a nonlinear differential system with deviating
arguments:

) ¥i() = (= 1)"pi ()£, 02 (B (1))
y3(0) = (= 1)*po(0) L3 (13 (1))
yi0 = (=D"p,(0fs0n(h (@), 120, ve{0, 1}, i=1,2,3.

The following conditions are always assumed to be fulfilled:
(@) pi: [0, 0) = [0, ), i = 1, 2, 3, are continuous and not identically zero on

any subinterval of [T, o) < [0, o); f p(Hdt=o00,i=1,2;

(b) A;: [0, ©) > R, i=1,2, 3, are continuous and lim hi(t) = o0;
11—

(©) i R>R,i=1, 2, 3, are continuous and nondecreasing, u f;(u) > 0 for
u#0.
Denote by W the set of all solutions y(2) = {y,(2), y,(2), »3(#)} of (S) which

3
exist on some ray [7,, o) < [0, o0) and satisfy sup{z yi()l: t> T} >0
i=1
forany T>T,.

Definition 1. A solution ye W is called oscillatory (resp. weakly oscillatory)
if each of its components (resp. at least one component) has arbitrarily large
zeros. A solution ye W is called nonoscillatory (resp. weakly nonoscillatory) if
each of its components (resp. at least one component) is eventually of a constant
sing.
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The oscillation theory of nonlinear differential systems with deviating argu-
ments has been developed by many authors; see, for example, Kitamura and
Kusano [1], Marusiak [2], Seda [3] and Shevelo, Varech and Gritsai [4]. Our
paper extends some of the results stablished in [4] to the system (S).

Oscillation theorems

We introduce the following notations:
h¥() = min{h(2), t}, i=1,2,3,
yi() =sup{s >0, h}¥(s) <t} fort>0, i=1,2,3,

y(t) = max {y, (1), 7,(0), v;(0)}.

Lemma 1. Let y(¢) = {y,(?), y,(?), y;(t)} € W be a weakly nonoscillatory solu-
tion of (S). Then there exists a #, > 0 such that each of its components is
monotone and of a constant sign on [¢,, 00).

Proof. Suppose that y,(¢) is a nonoscillatory component of a solution
y(0) = (1), y2(0), y3(0)}e Wand y,(t) # 0 for t > T, > 0. (In the case that y, ()
or y;(t) are nonoscillatory components of a solution y(z), we can proceed
analogously.) In view of (a), (b), (c), the third equation of (S) implies that either
y3(t) =0 or y;(1) <0 for t > YT) =T, and y;(1) #0 for t > T,>T,. (If
y;(t) = 0for t > T,, then p;(¢f) = 0 for ¢ > T, and the third equation of (S) gives
that p,(¢) = 0 for all 1 > T,, which contradicts assumption (a)). We get that y;(?)
is a monotone function and there exists a 7; > T, such that either y,(z) > 0 or
y;(1) < 0 for all 1 > T;. Analogously we can prove that y,(¢) and y,(¢) are
monotone functions of a constant sign on [¢,, c0), where ¢, > T;.

Theorem 1. Let the following conditions be satisfied:

hy(h,(h,(1))) < t, h,(t) are nondecreasing functions i = 2, 3 (1)
xyfixy) = Kxyfi(x)fi(y) O<K=const.) i=1,2,3 )
~ hy (1) hy(5)
f Ps(t)fa[ j PSS, ( f (%) dx) ds] di= oo @)
0 0 0 y
rpszz( j . p,(s)ds)dt e )
0 hy(0)

Jw__ﬂ‘___<oo J._al___<oo 5)
o L@ T Jo ARL®)) |

for every constant a > 0.
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If vi + v, + v; = | (mod 2), then every solution ye W is either oscillatory or
y:(t) (i =1, 2, 3) tend monotonically to zero as t — 0.

Proof. Suppose that (S) has a weakly nonoscillatory solution y(¢) = {y,(¢),
¥,(8), y;(1)}e W. Then with regard to Lemma 1, each of its components is a
monotone function of a constant sign on [¢,, c0). Without loss of generality we
may suppose that y,(z) > 0 for ¢ > ¢,. Then the third equation of (S) implies that

(—1)"y,(¢) is nondecreasing for ¢ > ¢, and either (—1)"y;(¢) > 0 for 1 > ¢, or
(=D%p()<0fort>t,.

I) Let (—=1)"p;(t) > 0 for ¢t > ¢,. Then (—1)"y;(1) > (= 1)"y;3(t;) = C, >0
for t > t,. In view of (b), there exists a ¢, = y(t,) such that (—1)"y,(h(1)) > C,,
t > t,. According to (c) the last inequality implies

(=D f03h () =2 C, >0, t=1 (6)

where C, = min{f,(C)), —f,(—C))}.
Multiplying the second equation of (S) by (—1)"? " ", integrating from ¢, to ¢ and
then using (6), we get

D00 = 3012 G [ ) ds 120 ™)
H
With regard to (a) and the monotonicity of y,(f), (7) implies:

lim (= 1) "y,(t) = o and
— t

(—1** "y (h(0) > (— i ") =C>0, t=4 ®)

holds. From (8), in view of (c), we get

(=D [ 0n(@®) 2 C,> 0, 121, ©

where C, = min{f,(C;), —f,(—C3)}.
Multiplying the first equation of (S) by (—1)" """ ", integrating from ¢, to
t and then using (9), we have

1
~BO =212 C [ pOds 120, (10)
f
In view of (a) and the monotonicity of y,, (10) implies:
lim y,(f) = — oo, which contradicts the assumption y,(f) > 0 for ¢ > ¢,. The case
I) cannot occur.

II) Let (—1)"y,(¢) <0 for ¢t > t,. Then from the second equation of (S) we
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obtain that (—1)2""y,(r) is nonincreasing on [t, oo) and either
(=D ") <0 or (—=1)2 "y, (1) > 0 for 1> 1,.
I1a) Let (—1)?" "y,(r) < 0 for t > t,. Then the system (S) implies:

n>0 (=17 "y,(1) < 0] (= 1)"y;(1) <0

] X : . fort>1t,.
nondecreasing nonincreasing nondecreasing e

In view of the assumption (1), the function (—1)"y,(h,(?)) is negative and
nondecreasing on [z,, 00). Multiplying the second equation of (S) by (—1)2""
and then integrating from 1, to ¢, we have

(—l)vzw"b’z(t)—yz(tz)]=Jpz(S)(—1)”’]3(y3(h3(8)))ds, tztn. (1)

2

From (11), with regard to (—1)?"""'y,(,) >0, the monotonicity of

(=D £2(3(h3(9))), we get

hy ()
(=17, (hy(0) < (_VI)Vsz(.Vs(hz(hz(t)))) : f pa(s)ds, (12)

Using the assumptions (c) and (2) we shall prove that (12) implies

hy (1)
(=D L3 (1)) < Cs(— 1)/ (/03 (s (e (D)) .y (j p2(s) dS>, (13)
for ¢t > t;, where 0 < Cs = min{K, — K*f,(—1)}.

Multiplying the first equation of (S) by (—1)" """, integrating from ¢, to
t and then using (13), y,(#;) > 0, we obtain

=00 < Cs(=1D" | pr&) /LG hs (1 (9)))) %

112 (s)

Xf‘(,[ pz(x)dx>ds, 1> 1. (14)

From (14), in view of the fact that (— 1), (f,(»;(h;(h,(s))))) is the nondecreas-
ing function on [¢;, o), we get

n( () = Cs(= 1" fi (/03 (s (i (hy (1)) X
hy (1) hy(s)
X J (8 fi <I P>(x) dx) ds, fort=>1t, = y(t,). (15)
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By virtue of (1) and the monotonicity of (—1)"* If| (f5(r5(s))), from (15) we
have

i (0) 2 Cs(— 1" £(LGs(0) X
hy (1) hy(5)
X J PI(S)fI(J‘ pz(x)dx)ds, L21. (16)

2

Using (2) and (c), (16) implies
L0000 (1) = Cofs(/L(/203(0)) %

hy (1) hy(s)
Xﬁ(f p.(s)f.(f pz(x)dx)ds), (> 1, a7)

2
where C, = K2 £,(C5(— 1) ).

Multiplying (17) by (—1)"py()Lf; (f; (f2(y3(1))))] " and using the third equa-
tion of (S), we get

y, (t) hy (1) hy ()
__ B0 ____cpofn ( f oY ( f Pa(x) dx) ds), (21, (18)
FACACACAY)))] Iy n
where C, = (—1)"*'.C, > 0.
Integrating (18) from ¢, to ¢ and then using (5) we get a contradiction to (3).
IIb) Let (—1)2" "y,(¢) > 0 for ¢ > t,. The system (S) implies

»n(@®>0 (=1 "yy(0) > 0] (= 1)"y3()) < 0

. : ; : . fort>1,.
nonincreasing nonincreasing nondecreasing =

In this case lim y,(?) (i = 1, 2, 3) is finite. We shall prove that lim y,(f) = 0
t— =00

(i=1,2,3). Let lim [(—1)"y,()] = —k;, k; > 0. Then
t—

(=1)"%yy(h;()) < —k,, fort>1t,= y(t) holds (19)
and (19) in view of (c) implies
(=D"L050) < (=D folky(= D™, 121, (20)

Multiplying the second equation of (S) by (—1)"" ", integrating from f, to r and
then using (20), we get ’

{— 1)v2+ (1) — ya ()] < (— D™ fo (ks (— 1)VJ+ |) ’ I p(8)ds, t=>1. (21)
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vi+l

Using (a) and (—1)"f,(k;(—1)" ") <0, from (21) we get

lim (=1)*""p,(1) = — o0,

which contradicts the assumption (—1)?*"y,(f) > 0 on [z, o). Therefore

lim y,(¢) = 0. Similarly, we shall prove that lim y,(¢) = 0.
Let lim y,(¢) = k,. Then

2. (0) = k,, for t> t, holds. @
In view of (c), (22) implies
Lo (D)) = f3(ky), 1=, (23)

Multiplying the third equation of (S) by (— 1), integrating from ¢, to ¢ and
then using (23), we have

(1 @) 2 k) [ pi9) s 4
Because (24) is valid for arbitrary ¢ > ¢,, we get
(—=n"" I}’J(hs(t)) > f3(ky) pi(s)ds, = t;= (). (25)

hy(1)

It is easy to prove that from (25), in view of (2) and (c), we obtain

o0

(=150 < ~ ot |

hy(0)

P5(s) ds), t>t, (26)

where 0 < Cg = min{—Kf,(—f3(k))), Kf,(f;(k))}-
Multiplying the second equation of (S) by (—1)"?" ™, integrating from ¢, to
t and then using (26) we obtain

0

(=1 5 1(0) = 9a(19)] < — Gy f pz(s)fz(j p;(x)dx)ds, ~

hg(-‘)

By virtue of (4), the last inequality implies for  — oo that lim (—1)2" "y,(7) =
11—

= —oo, which contradicts the assumption (—1)2""y,(1)>0 for t>1,.

Therefore lim y,(#) = 0. The proof of Theorem 1 is complete. Theorem 1

generalizes Theorem 2.9 in the paper [4].
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Theorem 2. Suppose that (1), (2), (4) hold and in addition
LN (L) =x (27)

© hl(l) hz(s) 1—¢
J- p,(t){f{j IAONE (J‘ P> (x) dx) ds]} dt=o0 (0<e<1). (28)
0 0

0

If vy + v, + vy = 1 (mod 2), then the conclusion of Theorem 1 holds.

Proof. Let y € W be a weakly nonoscillatory solution of (S). Then with regard
to Lemma 1, each of its components is a monotone function of a constant sign
on [z, 00). Suppose that y,(f) > 0 for # > ¢,. As in the proof of Theorem 1, we
get three cases: I) I1a) and IIb). In the cases I) and IIb) we proceed in the same
way as in the proof of Theorem 1. Consider now the case Ila). In this case the
inequality (17) holds. Using (27), (17) implies

hy (1) hy(s)
f;(y.(h.(r»)zcﬁys«z)f,( j ey ( f pz<x)dx)ds)>o; t> 1. (29)

2

Raising (29) to the (1 — &) power, we obtain

hy (1) hy(s) l—¢
[cﬁys(t)l'—”.{f,(f p.(s)f.(f Pz(x)dx)ds)} .

<50 @)Y 5, 1>, (30)

Using (c) and the fact that the function y, (¢) is positive and nondecreasing on
[t,, ©0), we have

LO@O) 2 f01(1) = Cy>0, 1>, (31
Now (31) implies

BomONY < K00 (1), 121, (32)

where K, = Cy ¢ > 0.
Combining (30) with (32), we get

[Cons (]!~ {f( | :'mp. 1 f :,mpz(x) ax) ds)}' e

<KL0@), t=1,. (33)

Multiplying (33) by p;()[Csy; ()]~ ', using the third equation of (S) and then
integrating from ¢, to ¢, we get

J:P; ) {fs [J:l ? P9, <J:2(x) p2(x%) dx) ds]}l iz @

< (=1)°Ki(6C) ' [(Cops () — (Cops (L)) < 0, 121,
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which contradicts (28). Therefore the case Ila) cannot occur. The proof of
Theorem 2 is complete. Theorem 2 generalizes Theorem 2.10 in the paper [4].
Theorem 3. Suppose that (2), (4), (5) hold and in addition

hy(t) >t hy(r) <t 34)

% g(n) K
f m(z)f,U m(s)f.(f pz(x)dx)ds]dz=oo, (35)
0 0 0

where g(1) = mirol {t, h,(1)}.

If vi + v, + vy = 1 (mod 2), then the conclusion of Theorem 1 holds.

Proof. Let y e W be a weakly nonoscillatory solution of (S). Further proceed-
ing in the same way as in the proof of Theorem 2, we consider only the case I1a).
Ich view of the assumption (34), we modify the system (S) to the form

(S*) —yi(0) < (= 1) "p (1) f1(0,(2)
(= 1)) < (= D" pa(0) f(r5 (1))
(— 1)“3)’3(0 > pi () 0, (g(0), t=1t=y().

Integrating the first inequality of (S*) from ¢, to ¢ and then using y,(z,) > 0,
we obtain

) < (= 1) f PO 0N ds, 120 (36)

Integrating the second inequality of (S*) from ¢, to s and using
(—1)"" "y (t,) > 0, we obtain

(1)) < (=) | p (A0 dx, s< b, (37)

Because the function (—1)" f,(y;(#)) is nondecreasing on [t,, ), the inequal-
ity (37) implies

(=1)** *5,(5) < (= D S 05(5)) f pdx, s> 0. (38)
In view of (c) and (2), (38) implies

(=) 5 f0a() < (= D CA LGOS, ( j 2 dx), s> 0, (39)

L

where 0 < C; = min{K, —K*f,(—1)}.
180



Combining (36) with (39), we get

—n( < (=1 Csf 2 ()L (L0 f (J. p(x) d-") ds, t>1. (40)

fh
Using g(1) = mig {h,(¢), t} and the fact that (—1)"f,( f2(y;(¢))) is nondecreas-
1<

ing on [f,, o), the inequality (40) implies
g(r) s
nEO) = (-1 ¢, (fo’g(’)))J ey (f i dx) @@
for t > t; = y(1,).
With regard to (2) and (c), from (41) we get
L01(&(0) = Cofs (/1 (/2(03(D)) %

x fs[ f Y. ( f () dx) ds], ~ 42)

where Co = K2 £,(Cs(— 1) ).

Multiplying (42) by p;(D[Cefs (f, (f,(7:(9)))] ', using the third inequality of
(S*) and then integrating from ¢, to ¢ we have

! £(2) s
J p:(2) fs [I pi(9)f (J P2(x) dx) ds] dz <

v+ 1 paral)
<D J ‘d &
R N A AC))]

which contradicts (35) and therefore the case Ila) cannot occur. The proof of
Theorem 3 is complete. Theorem 3 generalizes Theorem 2.12 in the paper [4].
Theorem 4. Suppose that (2), (4), (27), (34) hold and in addition

o g(1) s 1—¢
f ps(t)-{fz(f m(s)f.(j m(x)dx)ds)} di—w, @)
0 0 0

0 <ée< 1, where g(1) = mi? {t, hy(0)}.
t>

> t3,

E) e

If vy + v, + vy = 1 (mod 2), then the conclusion of Theorem 1 holds.

Proof. Let y e W be a weakly nonoscillatory solution of (S). Further proceed-
ing in the same way as in the proof of Theorem 2, we consider only the case I1a).
Analogously as the inequalities (31) and (32) we prove the following ones

L0E0) 2 Gy 12 10,= (1) (44)
LY < Kifs(n @), 21 (45)
181



Proceeding the same way as in the proof of Theorem 3 we derive the system
(S*) and (42). Combining (27) with (42), we get

g(1)
F0nED) = c(,yg(sz (9, ( j

! 2

() dx) ds] >0, t>1,. (46)

Raising the inequality (46) to the 1 — &£ power and using (45), we obtain

g(1) s 1—¢
[Con (] {f[ j oY ( j pz(X)dX) ds]} -

<K /fi0n@®), t=t,. (47)

Multiplying (47) by p;()[Cey;(£)]°~ ', using the third inequality of (S*) and
then integrating from ¢, to ¢, we have

t g(z) s l—¢
J 7 {f“ P, (f i) dx) ds]} dz <

< (=)7K (6Co) "' (Coy3())* — (Ceps ()] < 00, 121,

which contradicts (43). Therefore the case Ila) cannot occur. The proof of
Theorem 4 is complete. Theorem 4 generalizes Theorem 2.13 in the paper [4].
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SUHRN
OSCILATORICKE VLASTNOSTI RIESENI 3-DIMENZIONALNYCH
NELINEARNYCH DIFERENCIALNYCH SYSTEMOV S POSUNUTYMI
ARGUMENTAMI
Eva Spanikova, Zilina
V praci su uvedené postacujuce podmienky pre to, aby kazdé rieSenie systému (S) bolo bud
oscilatorické, alebo kazda jeho komponenta monoténne konvergovala k nule pre t —» oo.
PE3IOME
OCLIMJUJIATOPHBIE CBOMCTBA PEMIEHUM TPEX-JUMEH3UOHAJIBHBIX
HEJIMHEMHBIX JUOOEPEHLIMAJIBHBIX CUCTEM C OTKJIOHSAIOUUMCSA
APT'YMEHTOM .
EBa IlInanukoBa, XXunnHa
B craTtbe goka3aHbl JOCTATOYHBIE YCIIOBUA JUIS TO YTOOBI KaXa0e pelieHne cucteMsl (S) 6b110

OCHMJUTMPYIOLIIMMCS, HJIM XK€ KaXJass €ro KOMIIOHEHTAa MOHOTOHHO CTPEMHJIACh K HYJIIO NPH
m — 0.

183






	
	Article


