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1 Introduction

In this paper we construct and test an algorithm for solving the three-point
boundary value problem, which is from the class of such algorithms as the one
described for the two-point boundary value problem by Tewarson and Huslak
[3]. The exact formulation of the problem and the used notation are given in §2.
The proposed method is described in detail in §3. The numerical aspects of the
method are considered in §4. Here are also given some results obtained from
computational experiments.

2 The formulation of the problem

We consider the numerical solution of the three-point boundary value pro-
blem for the system of s non-linear differential equations

Y(x) —f(x,y(x))=0 )]
with linear boundary value conditions
g (@), y(®),y() =0, (2

where y, fand g are functions with values in R, anda< x<c,a< b <c. We
assume that the problem (1), (2) has an isolated solution and the function fis
sufficiently smooth.

Let us subdivide the x range [a, b] into m equal parts and the x range [b, c]
into n equal parts, such that & = (b — a)/m and k = (¢ — b)/n. Then the interval
[a, ] is subdivided into m + n subintervals [x;, x;,,],i=0,1,2, ....m+n—1,
where
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x,=a+i.h fori=0,1,2,....,m—1
and
xi=b+({—-—m).k fori=mm+1,m+2, ...m+n—1.

Let us denote the exact value of the solution of the problem (1), (2) at point
x;as y (x;), the approximation of y (x;) as y;, and f; = f(x;,, y,). Now Y is a vector
with m + n 4+ 1 components y;. Every component y, is a vector containing s
components. If we integrate the equation (1) in the interval [x;, x, ], then we
have

Y(xi) —yx) — J ) S, y(@0))dr=0. 3)

Let us evaluate the integral in (3) by a numerical rule H, We obtain the
following integration formulae:

Yisei—yi—h.H;=0, i=0,1,....m—1, (4.2)
Yis1—Vi—k.H=0, i=mm+1,...m+n—1. (4.b)

If the integral in (3) is evaluated by the trapezoidal rule with the local order
of accuracy 3, then we have

HiT=(fi ‘+‘fi+|)/2' )

If the considered integral is evaluated by either the Simpson rule (with the
local order of accuracy 5) or the Newton-Cotes rule (with the local order of
accuracy 7), then analogously to (5) we get

HP = (fi+4fi,p+ £ )6 (6)
and
HiN=(fi+32fi+|/4+ lzfi+l/2+32fi+3/4 +f.'+|)/90- @)
In formulae (6) and (7) we have used the values of the function f at the added
POINtS X; | /45 X; 4 125 Xi 4 34 (i-€. Values fi oy, fiy 10 fis 34)» Where

Xipg=Xi+q.h fori=0,1,..,m—1,
and
Xip,=X+q.k fori=mm+1, ..., m+n—1.

Now we use the trapezoidal and the Simpson formula on the subintervals [x;,
X;+12] and [x;, 1, x;]. On the whole interval [x;, x;,,] we get the composite
trapezoidal formula

HE" = (fi+2fip+ fi0)/4 @®)
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and the composite Simpson formula

HiCS:(f;’+4.fi+|/4+2f;'+l/2+4ﬁ+3/4 + /i )12 ©)

of orders 3 and 5 respectively.
Now we can consider our method in detail.

3 The description of the method

The evaluation of the integral in (3) by (4.a—b) leads to a system of
s.(m + n) equations in s.(m + n + 1) variables. From (2) we get

g(yO’ Ym>s ym+n)=09 (10)

which is now a system of s functions in 3.s variables. Because g is a linear
function, we can express s variables from (10) in terms of the other 2. s variables
and then utilize them to eliminate s variables from the system obtained by using
(4.a—4.b). The resulting system of s. (m + n) non-linear equations in s. (m + n)
variables can be written as

F(Y)=0. (11)

If the function F satisfies the sufficient conditions for the convergence (see e.g.
in [2], Chapter 10), then we can use the Newton Iterations Method in such a
modified form:

To solve (11), we select a starting vector Y® and proceed iteratively, obtain-
ing refined approximations Y® to the solution vector. An iteration consists of
three steps:

a. The choice of the numerical formula which will be employed in (3).

b. A repeated bisection of certain subintervals until the local error tolerance
is met (only in the case of precluding the selection of the integration formulae
by the estimated error).

c. A Newton step to update the current approximation Y®,

Now we describe this algorithm in greater mathematical detail. Let € be a
given local absolute error tolerance and Y* ~" an approximate solution vector
for (1), (2). First we calculate the values of the formulae H" and H} for all i.
If the difference

HET(Y ") — HS(Y“ ), (12)

which is an estimate of the local error and is of the order 3, is less than ¢ for
any i, then we use H(Y*~") in (11); otherwise the estimate of the order 5

HE(Y* =) — H}Y =) (13)
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is calculated and compared with €. If it is less than g then the value of
HM(Y%="Y) is used as the value of H,in (11); otherwise the use of the step b is
necessery.

Thus we can write the calculation of the value H; (actually the step a of the
iteration) in the form

HS(Y® ) Af|HST(Y ") — HS(Y“ ) <&
H,=< HYY* ") if|[HS(Y* ") - HNY* D) < e (14)
see step b otherwise

fori=0,1,2,...,m+ n— 1, where H? is given by (6), H" is given by (7), HF"
is given by (8), and H S is given by (9).

If the estimate (13) is greater than or equal to & then we start the step b of
the iteration, else we go to the step c.

If the use of step b is necessery, we add point x; , |, to the original mesh and
instead of the interval [x;, x;,,] we consider the subintervals [x,, x;, ;] and
[x;i 4 120 X; 4 1]. We apply the step a of the iteration on both subintervals. We
repeatedly bisect all such intervals which do not satisfy the local error tolerance
until the above-mentioned tolerance is met or too many bisections take place.
In the first case we give the sum of the partial values of H obtained by a repeated
bisection at the place of H,in (11):

Hi=ZHii(Y("—')) (15)

forall suchjthati < i <i+ 1andon [x,./_ ' X, ] the local error tolerance is met.
In the latter case the use of this method does not lead to the successful finish.
The both above-described steps give the local error control of computations.
The final step, step c, is the Newton step to update the current approximation

) 4l
YO = YU — EY )R EY), (16)

where J(F(Y*~")) denotes the Jacobian of F with respect to Y evaluated at
Y*=D. The Jacobian in (16) can be computed by the consistent discrete ap-
proximation [2]:

JF(Y* =), ~ (F(Y*™V + 8e;) — F(Y*~1))/8, ))

where ¢; is the j-th column of the identity matrix of the order s.(m + n) and &
is a suitable small number. By the Discrete Newton Theorem [2] the convergence
of (16) is not affected by the use of the approximation (17).
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4 Numerical aspects and experiments

The last problem we have not touched yet in the description of our method
is the calculation of the approximate values of the solution inside the mesh-
points and the appropriate values of f. Various interpolation formulae are
available to satisfy the error criterion. The used formula must be at least of the
order 7, because the use of lower order formulae does not lead to significiantly

better results.

The algorithm was tested on some three-point boundary value problems. All
computations were performed in double precision arithmetics on a SM 4/20
using FORTRAN 1V. In Table 1 we have given the results obtained by solving

the problem

Vi=Ys Yi=Yu Yi=y+2p, (18)
})3(0) = ls
yi(1) =e” (19)
yi(1,5) = e "
Table 1
DNUber et m =100, n = 50 m = 1000, n = 500
mesh-points
Absolute accuracy 100°% 107" 107" 107" 10°*f 107" 107" 107"
Numer of iterations 9 12 14 16 6 10 10 12
Number of added points 23 23 23 23 16 18 19 19

In Table 2 we have given the results which are obtained by solving the

problem :
Vi=Yn ¥2=Js
(20)
<x4 x2
Vi=xp+y—\o+—pt+x
12 6
yi(=1) =172,
»3(0) =0, @21
y3(1) =1/2.
Table 2
Number of mesh-points m=n=100 m=n= 1000
Absolute accuracy 10°%] 107" 107" 107" 107*| 107" 107} 107"
Number of iterations 8 il 15 18 6 9 11 15
Number of added points 17 19 23 26 11 15 16 18
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Sufficient conditions for the existence and uniqueness of the solution of our
three-point boundary value problem for a differential equation of the third
order are given in [1]. We can formulate them as follows:

Let the function f satisfy the Lipschitz condition

Lf (X, 315 200 W) = f(x, 3, 20, W)l £
S Lolyy — yol + Lijzy — 25 + Lylw, — wy

and the conditions (i), and (ii):
1) Vi 2 Vs 2, < z, implies

S p1, 21, W) < f(x, ¥y, 25, W) on (a, b]
and
(i1) Y1 =y, 2y <z, implies

S(x, yy, 20, W) < f(x, i 25, W) on [b, ¢)
at point b in (a, ¢).

If hy = b — a and h, = ¢ — b satisfy the condition

‘l‘Lohi3+'1'L|hi2+zL2hi< ], l= 1, 2,
60 6 3

then the boundary value problem

y'=f 5,y
(@) =y, yb) =y, y)=y.

has a unique solution.

Since the functions on the right-hand side of the equations of the third order
corresponding to the systems (18) and (20) satisfy these conditions, both pro-
blems (18), (19) and (20), (21) have a unique solution.

In both cases a starting vector was used which was obtained by choosing all
y-values equal to the relevant boundary values. For all the needed interpolations
the Newton forward and the Newton backward rules of the 7-th order were
used.
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SUHRN

ALGORITMUS NA RIESENIE TROJBODOVEJ OKRAJOVEJ ULOHY
PRE OBYCAJNE DIFERENCIALNE ROVNICE

Jan Pekar, Bratislava
V ¢lanku je skonstruovany a otestovany algoritmus na riesenie trojbodovej okrajovej ilohy pre
systém obycajnych diferencialnych rovnic y* = f(x, y) s linedrnymi okrajovymi podmienkami, ktory
je zaloZeny na newtonovskych iteraciach.

PE3IOME

AJITOPUTM IS PEHMIEHUS TPEXTOYEYHOM KPAEBOM 3AJJAUYU
AJIAA OBbIKHOBEHHbBIX ITU®®EPEHLIMAJIBHbIX YPABHEHUM

SAH Ilekap, Ebamcnaaa

B pa6oTe nocTpoeH M Ha IpUMepax NPOBEPAETCS ANTOPUTM DEILCHHS TPEXTOYEYHON KpaeBoit

3a/la4i Ui OOBIKHOBEHHBIX NH(GEpeHIHANbHbIX yPaBHEHUH, OCHOBAHHBIN Ha H/IEe MTEPALMHA
HsroToHa.
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