

Werk

Label: Article **Jahr:** 1989

PURL: https://resolver.sub.uni-goettingen.de/purl?312901348_54-55|log17

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

UNIVERSITAS COMENIANA ACTA MATHEMATICA UNIVERSITATIS COMENIANAE

LIV-LV-1988

A GENERALIZATION OF THE KOLMOGOROV CONSISTENCY THEOREM FOR VECTOR MEASURES

ERVÍN HRACHOVINA, Bratislava

Introduction

In the present paper we generalize the well-known Kolmogorov consistency theorem. The proof of this theorem can be found in the case of weakly regular lattice group-valued measures in [3]. In this paper we shall prove the Kolmogorov theorem for vector lattice measures. The inner regularity in this paper is generalized of the inner regularity in [3]. We also deal with measures defined on rings.

Throughout the paper V will denote a boundedly σ -complete vector lattice, N the set of all positive integers. We shall say that V is weakly σ -distributive, if whenever $(a_{i,j})_{i,j\in N}$ is a bounded family of V such that $a_{i,j} > 0$ $(j \to \infty; i = 1, 2, ...)$, then

$$\bigwedge_{f\in N^N}\bigvee a_{i,f(i)}=0.$$

The following lemma is proved in [4].

Lemma 1. Let $(a_{n,i,j})_{n,i,j\in N}$ be a triple bounded sequence such that $a_{n,i,j} \le 0$ $(j \to \infty; n = 1, 2, ...; i = 1, 2, ...)$. Then for each $a \in V$, $a \ge 0$ there is a double bounded sequence $(a_{i,j})_{i,j\in N}$ such that

$$a_{i,j} > 0 \quad (j \to \infty; i = 1, 2, ...)$$

and

$$a \wedge \sum_{n=1}^{\infty} \bigvee_{i=1}^{\infty} a_{n, i, f(n+i)} \leq \bigvee_{i=1}^{\infty} a_{i, f(i)}$$

for each $f \in N^N$.

Let (X, \mathcal{S}) be a measurable space, i.e. X be an arbitrary non-empty set and \mathcal{S} be a ring of subsets of X. A system \mathcal{C} of subsets of X is called a compact system, if to any sequence $(C_n)_n$ of sets from \mathcal{C} such that

$$\bigcap_{n=1}^{\infty} C_n = \emptyset$$

there exists $k \in N$ such that

$$\bigcap_{n=1}^k C_n = \emptyset.$$

Definition 1. An additive non-negative set mapping $m: \mathscr{S} \to V$ is called compact if there is a compact system \mathscr{C} and if for each $E \in \mathscr{S}$ there is a bounded sequence $(a_{i,j})$ of points from V such that $a_{i,j} \setminus 0$ $(j \to \infty; i = 1, 2, ...)$ and to any $f \in \mathbb{N}^N$ there are $K \in \mathscr{C}$, $F \in \mathscr{S}$ such that it holds:

$$F \subset K \subset E$$
, $m(E - F) \leq \bigvee_{i=1}^{\infty} a_{i,f(i)}$.

Lemma 2. Let $m: \mathcal{S} \to V$ be a compact additive non-negative set mapping and V be weakly σ -distributive. Then m is σ -additive.

Proof. By [4] it is sufficient to prove that m is continuous from above in \emptyset . Let $E_n \setminus \emptyset$, $E_n \in \mathscr{S}$ and \mathscr{C} be a compact system. Then there exists a bounded triple sequence $(a_{n,i,j})$, $a_{n,i,j} \setminus 0$ $(j \to \infty; n, i = 1, 2, ...)$ such that for each $f \in \mathbb{N}^N$ there exist $K_n \in \mathscr{C}$, $F_n \in \mathscr{S}$ that

$$F_n \subset K_n \subset E_n, m(E_n - F_n) \leq \bigvee_{i=1}^{\infty} a_{n,i,f(n+i)} \leq m(E_1).$$

Since

$$m\left(\bigcap_{i=1}^n E_i - \bigcap_{i=1}^n F_i\right) \leq \sum_{i=1}^n m(E_i - F_i),$$

then

$$m\left(\bigcap_{i=1}^{n} E_{i} - \bigcap_{i=1}^{n} F_{i}\right) \leq m(E_{1}) \wedge \sum_{n=1}^{\infty} \bigvee_{i=1}^{\infty} a_{n, i, f(n+i)} \leq \bigvee_{i=1}^{\infty} a_{i, f(i)},$$

where $(a_{i,j})$ is a sequence from Lemma 1 depending on $m(E_1)$. Because $E_n \searrow \emptyset$, then

$$\bigcap_{n=1}^{\infty} K_n = \emptyset$$

and therefore there is $k \in N$ such that

$$\bigcap_{n=1}^k K_n = \emptyset.$$

And so

$$\bigcap_{n=1}^{r} F_n = \emptyset$$

for $r \ge k$. Therefore

$$m\left(\bigcap_{n=1}^{r} E_{n}\right) = m(E_{r}) \leq \bigvee_{i=1}^{\infty} a_{i,f(i)}$$

for each $f \in N^N$. With respect to the weak σ -distributivity we obtain

$$\bigwedge_{n=1}^{\infty} m(E_n) = 0.$$
 Q.E.D.

The Kolmogorov theorem

Let I be an index set, T be a set of all finite subsets of I and $(X_i)_{i \in I}$ be a system of topological spaces. Let us define

$$X' = \sum_{i \in t} X_i$$
, for each $t \in T$;

$$X = \sum_{i \in I} X_i.$$

We denote the projection of X^t into X^s by p_{ts} for any $s, t \in T$, $s \subset t$ and the projection of X into X^t by p_t for any $t \in T$. Further, let \mathcal{C}_t be a system of all compact sets of a topological space X^t and $(\mathcal{S}_t)_{t \in T}$ the system of rings with the following properties:

- (i) \mathcal{S}_{t} is a ring of subsets of X^{t} ;
- (ii) $\mathscr{C}_{\iota} \subset \mathscr{S}_{\iota}$;
- (iii) for any $(s, t) \in T \times T$ there is $r \in T$ such that $s \cup t \subset r$ and

$$p_t^{-1}(\mathscr{S}_t) \cup p_s^{-1}(\mathscr{S}_s) \subset p_t^{-1}(\mathscr{S}_t),$$

where

$$p_k^{-1}(\mathcal{S}_k) = \{ p_k^{-1}(E); E \in \mathcal{S}_k \}$$

for each $k \in T$. Put

$$\mathscr{B}_{t} = p_{t}^{-1}(\mathscr{S}_{t}), \text{ for each } t \in T,$$

$$\mathscr{V} = \bigcup_{t \in T} \mathscr{B}_{t}.$$

Then the proof of the following lemma is easy.

Lemma 3. \mathcal{B}_t is a ring for each $t \in T$ and \mathscr{V} is a ring, too.

Definition 2. Let $m_t: \mathcal{S}_t \to V$ be a measure for each $t \in T$. A system of measures $(m_t)_{t \in T}$ will be called consistent if for every $s, t \in T$, $s \subset t$ and $E \in \mathcal{S}_s$ it holds

$$m_t(p_{ts}^{-1}(E)) = m_s(E).$$

Lemma 4. Let $A \in \mathcal{B}_t \cap \mathcal{B}_s$ and $(m_t)_{t \in T}$ be consistent system of measures, then

$$m_t(p_t(A)) = m_s(p_s(A)).$$

Proof. Let $A \in \mathcal{B}_t$, i. e. $A = p_t^{-1}(E)$ for some $E \in \mathcal{S}_t$. Put $r = s \cup t$. Since

$$p_{i}(A) = E$$

$$p_r(p_t^{-1}(E)) = p_{rt}^{-1}(E)$$

and the system of measures is consistent, we have

$$m_t(p_t(A)) = m_r(p_{rt}^{-1}(E)) = m_r(p_r(A)).$$

We prove

$$m_s(p_s(A)) = m_r(p_r(A))$$

analogously.

Q.E.D.

Definition 3. Let $A \in \mathcal{V}$, i. e. $A \in \mathcal{B}_t$ for some $t \in T$. Then we define a mapping $m: \mathscr{V} \to V$ as

$$m(A) = m_{\iota}(p_{\iota}(A)).$$

Evidently, m is a nonnegative and additive mapping. Put $\mathscr{C} = \{p_t^{-1}(C): \}$ $C \in \mathscr{C} \in I$, $t \in T$. Then \mathscr{C} is a compact system. (see [3], p. 348).

Theorem (Kolmogorov). Let V be a boundedly σ -complete weakly σ -distributive vector lattice, $(m_t)_{t \in T}$ consistent system of measures and m_t be compact with respect to \mathscr{C}_t for each $t \in T$. Then there exists a measure $\mu: s(\mathscr{V}) \to V$, where $s(\mathscr{V})$ is a σ -ring generated by \mathscr{V} , such that

$$m_{\iota}(E) = \mu(p_{\iota}^{-1}(E))$$

for any $t \in T$, $E \in \mathcal{S}_{t}$.

Proof. We have the mapping m on \mathscr{V} , which is non-negative and additive. From the additivity we have $m(\emptyset) = 0$, too. Let now $A \in \mathcal{V}$, $A = p_t^{-1}(E)$. Since m_i is compact, there exists a bounded double sequence $a_{i,j} > 0$ $(j \to \infty)$ i = 1, 2, ...) such that for each $f \in N^N$ there is $C \in \mathscr{C}_i$, such that

$$C \subset E, m_t(E-C) \leq \bigvee_{i=1}^{\infty} a_{i,f(i)}.$$

Put
$$D = p_i^{-1}(C)$$
. Then $D \subset A$ and
$$m(A - D) = m_i(E - C) \le \bigvee_{i=1}^{\infty} a_{i,f(i)}$$

and therefore m is compact. By Lemma 2 m is a measure on \mathscr{V} and by [7] there exists a measure μ defined on $s(\mathcal{V})$ such that is an extension of m.

REFERENCES

- 1. Halmos, P. R.: Measure Theory, Springer Berlin 1974.
- 2. Kelley, J. L.: General topology, New Jersy, 1957.
- 3. Riečan, B.: On the lattice group valued measures, Čas. pěst. mat. 101, 1976, 343-349.
- 4. Riečan, B.: Notes on lattice-valued measures, AMUC 42-43, 1983, 181-192.
- Riečan, B.—Volauf, P.: On technical lemma in lattice ordered groups, AMUC 44—45, 1984, 31—36.
- 6. Riečan, J.: On projective limits of small systems, AMUC 44-45, 1984, 203-213.
- 7. Wright, J. D. M.: Extensions of infinite vector lattice measures, The Quarter J. of Math., 23, 91, 1972, 259—265.
- 8. Yeh, J.: Stochastic processes and the Wiener integral, New York 1973.

Author's address:

Ervín Hrachovina Katedra pravdepodobnosti a mat. štatistiky MFF UK Mlynská dolina 842 15 Bratislava

SÚHRN

ZOVŠEOBECNENIE KOLMOGOROVOVEJ KONZISTENTNEJ VETY PRE VEKTOROVÉ MIERY

Ervín Hrachovina, Bratislava

V práci je zovšeobecnená Kolmogorovova konzistentná veta. Miery, s ktorými sa v práci pracuje, nadobúdajú hodnoty v slabo σ-distributívnom podmienene σ-úplnom vektorovom zväze.

РЕЗЮМЕ

ОБОБЩЕНИЕ КОНСИСТЕНТНОЙ ТЕОРЕМЫ КОЛМОГОРОВА ДЛЯ МЕР СО ЗНАЧЕНИЯМИ ВО ВЕКТОРНОЙ СТРУКТУРЕ

Эрвин Храховина, Братислава

В статье доказывается консистентная теорема Колмогорова. Меры, с которыми здесь работается, принимают значения в условно σ -полной слабо σ -дистрибутивной векторной структуре.

Received: 15. 12. 1986

