

Werk

Label: Article Jahr: 1989

PURL: https://resolver.sub.uni-goettingen.de/purl?312901348_54-55|log16

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

UNIVERSITAS COMENIANA ACTA MATHEMATICA UNIVERSITATIS COMENIANAE LIV-LV-1988

THE CONSTRUCTION OF A VECTOR MEASURE FROM A CONTENT

ERVÍN HRACHOVINA, Bratislava

Introduction

The construction of a measure from a content is well-known in the case of a real-valued measure. In [2] we can find the case when X is a locally compact Hausdorff space. The papers by Neubrunn [4] and Kalas [3] are generalizations of [2]. If X is a compact Hausdorff topological space and the content is vector valued, then a construction of a measure from this content can be found in [6]. In that paper the extended vector measure is finite and it is supposed that the valued vector lattice is weakly (σ, ∞) -distributive. The assertions are proved by the Stone representation theorem. In this paper we suppose that X is an arbitrary set and the vector lattice is weakly σ -distributive. We use Theorem 1, which was proved in [1] and [5].

Some notions and notes.

Troughout the paper W will denote a boundedly complete vector lattice and X and arbitrary non-empty set. Supremum of any unbounded set of positive elements in W is taken to be infinity and the infinity is denoted by " ∞ ". Let *U*, *B* be systems of subsets of X with the following properties:

- (A) $\emptyset \in \mathscr{U} \cap \mathscr{B}$;
- (B) If $A_1, A_2 \in \mathcal{U}$, then $A_1 \cup A_2 \in \mathcal{U}$;

- (E) if $A \in \mathcal{U}$, $A \subset \bigcup_{n=1}^{\infty} B_n$, $B_n \in \mathcal{B}$, then there exists $k \in N$ such that $A \subset \bigcup_{n=1}^{k} B_n$;

- (F) if $B \in \mathcal{B}$, $C \in \mathcal{U}$, then $B C \in \mathcal{B}$, $C B \in \mathcal{U}$;
- (G) if $A \in \mathcal{U}$, then there exist $B \in \mathcal{B}$, $C \in \mathcal{U}$ such that $A \subset B \subset C$. **Definition 1.** A triple sequence $(a_{n,i,j})$ has the P-property iff:
- (i) $a_{n,i,j} \ge 0$ for each $n, i, j \in N$;
- (ii) $(a_{n,i,j})$ is bounded from upper;

(iii)
$$a_{n,i,j} > 0 \text{ for } j \to \infty, n, i = 1, 2, 3, \dots$$
 (i.e. $a_{n,i,j} \ge a_{n,i,j+1} \text{ and } \bigwedge_{j=1}^{\infty} a_{n,i,j} = 0$).

For each f: $N \to N$ we denote $\bigvee_{i=1}^{\infty} a_{n,i,f(n+i)}$ by $a_{f,n}$. Analogously we define the

P-property for double sequences $(a_{i,j})$ and we denote $\bigvee_{i=1}^{\infty} a_{i,f(i)}$ by a_f .

Definition 2. A boundedly σ -complete vector lattice W is weakly σ -distributive if for an arbitrary sequence $(a_{i,j})$ with the P-property the equality

$$\bigwedge_{f \in N^N} \bigvee_{i=1}^{\infty} a_{i,f(i)} = 0 \tag{1}$$

is satisfied.

Theorem 1. Let $(a_{n,i,j})$ be a sequence in W with the P-property. Then for each $a \in W$, $a \ge 0$, there is a sequence $(a_{i,j})$ with the P-property such that

$$a \bigwedge \sum_{n=1}^{\infty} a_{f,n} \leq a_f$$
.

The proof of Theorem 1 can be found in [1] and [5].

A content and a measure

Let $c: \mathcal{U} \to W$ be a content on \mathcal{U} , i.e. it holds

- (I) $c(A) \ge 0$ for each $A \in \mathcal{U}$;
- (II) $c(A) \leq c(B)$ if $A, B \in \mathcal{U}$ and $A \subset B$;
- (III) if $A, B \in \mathcal{U}$, then $c(A \cup B) \leq c(A) + c(B)$;
- (IV) if $A, B \in \mathcal{U}, A \cap B = \emptyset$, then $c(A \cup B) = c(A) + c(B)$;
- (V) for $A \in \mathcal{U}$ there exists $(a_{i,j})$ with the P-property such that for each $f \in \mathbb{N}^N$ there exist $B_f \in \mathcal{B}$, $C_f \in \mathcal{U}$ such that

$$A \subset B_f \subset C_f$$
, $c(A) \ge c(C_f) - a_f$.

Evidently, $c(\emptyset) = 0$.

Lemma 1. If $A \in \mathcal{U}$ and W is weakly σ -distributive, then

$$c(A) = \bigwedge \{ c(C) \colon C \in \mathcal{U}(A) \},\$$

where $\mathcal{U}(A) = \{C \in \mathcal{U} : \text{ there exists } B \in \mathcal{B} \text{ such that } A \subset B \subset C\}.$

Proof. From (II) we have that c(A) is a lower bound of the set $\{c(C): C \in \mathcal{U}(A)\}$. Let w be another lower bound of the set $\{c(C): C \in \mathcal{U}(A)\}$.

From (V) we have $C_f \in \mathcal{U}(A)$ and

$$c(A) \ge c(C_{\rm f}) - a_{\rm f}$$
.

We consider

$$w - c(A) \le c(C_f) - c(A) \le a_f$$
.

With respect to the weak σ -distributivity we obtain

$$w \leq c(A)$$
.

Q.E.D.

We define the mapping $\hat{c}: \mathcal{U} \cup \mathcal{B} \to W \cup \{\infty\}$ in the following way: $\hat{c}(B) = \bigvee \{c(C): C \subset B, C \in \mathcal{U}\}.$

Evidently, \hat{c} is non-negative.

Lemma 2. \hat{c} has the following properties:

- (i) if $A \in \mathcal{U}$, then $\hat{c}(A) = c(A)$;
- (ii) if $A \subset B$, A, $B \in \mathcal{U} \cup \mathcal{B}$, then $\hat{c}(A) \leq \hat{c}(B)$;
- (iii) \hat{c} is σ -subadditive on \mathcal{B} .
- (iv) \hat{c} is σ -additive on \mathcal{B} .

Proof. (i) and (ii) are evident.

(iii) Let B_1 , $B_2 \in \mathcal{B}$, $C \in \mathcal{U}$, $C \subset B_1 \cup B_2$. Then there are C_1 , $C_2 \in \mathcal{U}$ such that $C_1 \subset B_1$, $C_2 \subset B_2$ and $C = C_1 \cup C_2$. Thus

$$c(C) \le \hat{c}(B_1) + \hat{c}(B_2) .$$

and therefore \hat{c} is subadditive on \mathcal{B} . Let now $B_n \in \mathcal{B}$, $C \in \mathcal{U}$ and $C \subset \bigcup_{n=1}^{\infty} B_n$. Then

there exists $k \in N$ such that $C \subset \bigcup_{n=1}^{k} B_n$. We obtain

$$c(C) \le \hat{c}\left(\bigcup_{n=1}^k B_n\right) \le \sum_{n=1}^k \hat{c}(B_n) \le \sum_{n=1}^\infty \hat{c}(B_n)$$

and thus \hat{c} is σ -subadditive.

(iv) Let B_1 , $B_2 \in \mathcal{B}$, $B_1 \cap B_2 = \emptyset$, C_1 , $C_2 \in \mathcal{U}$ and $C_1 \subset B_1$, $C_2 \subset B_2$. Then $C_1 \cap C_2 = \emptyset$,

$$c(C_1) + c(C_2) \leq \hat{c}(B_1 \cup B_2)$$

and with respect to (iii) we obtain that \hat{c} is additive. Let $B_n \in \mathcal{B}$ (n = 1, 2, ...) and $B_i \cap B_j = \emptyset$ $(i \neq j)$. Then for each $n \in N$

$$\sum_{i=1}^{n} \hat{c}(B_i) = \hat{c}\left(\bigcup_{i=1}^{n} B_i\right) \leq \hat{c}\left(\bigcup_{n=1}^{\infty} B_n\right)$$

and therefore \hat{c} is σ -additive.

Q.E.D.

Lemma 3. If $B \in \mathcal{B}$, $C \in \mathcal{U}$, $B \supset C$ and W is weakly σ -distributive, then

$$\hat{c}(B) = \hat{c}(B - C) + c(C).$$

Proof. Let $C_1 \subset B - C$, $C_1 \in \mathcal{U}$, then $C \cup C_1 \subset B$ and $C_1 \cap C = \emptyset$. Therefore

$$c(C) + c(C_1) \leq \hat{c}(B)$$

and hence

$$c(C) + \hat{c}(B - C) \leq \hat{c}(B)$$
.

With respect to (V) we have $C \subset B_f \subset A_f$ and

$$c(C) \ge c(A_{\rm f}) - a_{\rm f}$$
.

Also

$$\hat{c}(B_{\rm f}) \le c(A_{\rm f}) \le c(C) + a_{\rm f}.$$

Then

$$\hat{c}(B) \leq \hat{c}(B-C) + \hat{c}(B_f) \leq \hat{c}(B-C) + c(C) + a_f.$$

Since W is weakly σ -distributive we obtain

$$\hat{c}(B) = \hat{c}(B - C) + c(C).$$

Q.E.D.

Definition 3. A set L belongs to \mathscr{P} if there is a sequence $(a_{i,j})$ with the P-property and for each $f \in \mathbb{N}^N$ there is $B_f \in \mathscr{B}$, $C_f \in \mathscr{U}$ such that

$$C_{\rm f} \subset L \subset B_{\rm f}, \ \hat{c}(B_{\rm f} - C_{\rm f}) \leq a_{\rm f}.$$

Further, let W be weakly σ -distributive. Evidently, $\hat{c}(B_f) \in W$ for the set B_f in Definition 3, since

$$0 \le \hat{c}(B_f) \le \hat{c}(B_f - C_f) + c(C_f) \le a_f + c(C_f) \in W.$$

Let $L \in \mathcal{P}$ and put

$$w = \bigwedge \{\hat{c}(B) : B \supset L, B \in \mathcal{B}\}.$$

Then $w \in W$.

The proofs of the following theorems are easy.

Theorem 2. $\mathscr{U} \subset \mathscr{P}$ if W is weakly σ -distributive.

Theorem 3. \mathcal{P} is a ring.

Lemma 4. If $L \in \mathcal{P}$, then $w = \bigvee \{c(C): C \subset L, C \in \mathcal{U}\}$.

Proof. Evidently, w is an upper bound of the set

$$\{c(C): C \subset L, C \in \mathcal{U}\}.$$

Let z be another upper bound. Then $z \ge c(C_f)$. We consider

$$w-z \leq w-c(C_f) \leq \hat{c}(B_f-C_f) \leq a_f$$

From the weak σ -distributivity we obtain $w \leq z$.

Q.E.D.

Definition 4. We define on \mathcal{P} a mapping m in the following way

$$m(A) = \bigvee \{c(C): C \subset A, C \in \mathcal{U}\}\$$

for $A \in \mathcal{P}$.

Furthermore, the following lemmas can be easily proved.

Lemma 5. m is finite.

Lemma 6. $L \in \mathcal{P}$ if and only if there is $(a_{i,j})$ with the *P*-property and for each $f \in N^N$ there are $B_f \in \mathcal{B}$, $C_f \in \mathcal{U}$ such that $\hat{c}(B_f) < \infty$, $C_f \subset L \subset B_f$ and $\hat{c}(B_f) - a_f \leq m(L) \leq c(C_f) + a_f$.

Theorem 4. The mapping m is non-negative, monotone and σ -subadditive. **Proof.** It can be easily proved that m is non-negative and monotone. We

prove the σ -subadditivity. Let $A_n \in \mathcal{P}$, $A = \bigcup_{n=1}^{\infty} A_n \in \mathcal{P}$. If

$$\sum_{n=1}^{\infty} m(A_n) = \infty,$$

then the corresponding inequality holds. Let

$$\sum_{n=1}^{\infty} m(A_n) = z \in W.$$

By Lemmas 4, 5 and 6 there exists $(a_{n,i,j})$ with the *P*-property, $B \in \mathcal{B}$ with $\hat{c}(B) < \infty$ and $A \subset B$ and for each $f \in N^N$ there are $B_{n,f} \in \mathcal{B}$ such that $\hat{c}(B_{n,f}) < \infty$, $A_n \subset B_{n,f} \subset B$ and

$$m(A_n) \geq \hat{c}(B_{n,f}) - a_{f,n}$$
.

Put $a = z \vee \hat{c}(B)$. Evidently, $m(A) \leq a$ and

$$m(A) \leq \hat{c}\left(\bigcup_{n=1}^{\infty} B_{n,f}\right) \leq \bigvee_{n=1}^{\infty} \sum_{i=1}^{n} \hat{c}(B_{i,f}).$$

Then

$$m(A) \leq \bigvee_{n=1}^{\infty} \left[a \bigwedge \left(\sum_{i=1}^{n} m(A_i) + \sum_{i=1}^{n} a_{f,i} \right) \right] \leq$$
$$\leq \bigvee_{n=1}^{\infty} \sum_{i=1}^{n} m(A_i) + a \wedge \sum_{n=1}^{\infty} a_{f,n} \leq \sum_{n=1}^{\infty} m(A_n) + a_f.$$

Since

$$m(A) \leq \sum_{n=1}^{\infty} m(A_n) + a_f$$

holds for each $f \in N^N$, thus by the weak σ -distributivity we obtain that m is σ -subadditive.

Q.E.D.

Theorem 5. m is additive.

Proof. Let $A, B \in \mathcal{P}$ and $A \cap B = \emptyset$. Then there is $a_{i,j}$ with the P-property such that for each $f \in N^N$ there are $C, D \in \mathcal{U}$ such that $C \subset A, D \subset B$ and

$$c(C) + a_f \ge m(A), c(D) + b_f \ge m(B).$$

Evidently, $C \cap D = \emptyset$. Then

$$c(C \cup D) + a_f \ge m(A) + m(B)$$
.

Hence

$$m(A \cup B) + a_f \ge m(A) + m(B)$$

for each $f \in N^N$. Therefore by the weak σ -distributivity and by Theorem 4 m is additive.

O.E.D.

Theorem 6. m is σ -additive.

Proof. Let $A_n \in \mathscr{P}$, $A = \bigcup_{i=1}^{\infty} A_i \in \mathscr{P}$ and $A_i \cap A_j = \emptyset$ for $i \neq j$. Then for each n

$$\sum_{i=1}^{n} m(A_i) = m\left(\bigcup_{i=1}^{n} A_i\right) \leq m(A)$$

holds. Therefore,

$$\sum_{n=1}^{\infty} m(A_n) = \bigvee_{n=1}^{\infty} \sum_{i=1}^{n} m(A_i) \leq m(A).$$

Hence by Theorem 4 m is σ -additive.

Q.E.D.

Theorem 7. $\hat{c}(B) = m(B)$ for each $B \in (\mathcal{B} \cup \mathcal{U}) \cap \mathcal{P}$.

The proof of this theorem is easy.

We have constructed the measure m on the ring \mathcal{P} and this measure is an extension of the content c. By [8] there is a measure μ defined on the σ -ring generated by \mathcal{P} , which is an extension of m. Thus the following theorem holds.

Theorem 8. Let X be an arbitrary set, W be a boundedly complete weakly σ -distributive vector lattice, \mathcal{U} , \mathcal{B} be systems of subsets of X with the properties (A)—(G) and c be a content defined on \mathcal{U} with the properties (I)—(V). Then there exists a measure μ defined on a σ -ring generated by \mathcal{U} such that μ is an extension of c.

REFERENCES

- Fremlin, D. H.: A direct proof of the Mathes-Wright integral extension theorem, J. London Math. Soc., 11, 1975, 276—282.
- 2. Halmos, P. R.: Measure Theory, Springer Berlin 1974.
- 3. Kalas, J.: O postrojenii mery iz objema, AMUC, 34, 1979, 7-19.
- 4. Neubrunn, T.: O konštrukcii miery z objemu, AFRNUC, 6, 1961, 301-317.
- 5. Riečan, B.—Volauf, P.: On technical lemma in lattice ordered groups, AMUC, 44—45, 1984, 31—36.
- 6. Samira, S. Ali: Generation of Borel measures, preprint.
- 7. Vulich, B. Z.: Vvedenie v teoriu poluuporiadočennych prostranstv, Moskva 1961.
- 8. Wright, J. D. M.: Extension of infinite vector lattice measures, The Quarter J. of Math., 23, 1972, 259—265.

Author's address:

Received: 6. 12. 1986

Ervín Hrachovina Katedra pravdepodobnosti a mat. štatistiky MFF UK Mlynská dolina 842 15 Bratislava

SÚHRN

KONŠTRUKCIA VEKTOROVEJ MIERY Z VEKTOROVÉHO OBJEMU

Ervín Hrachovina, Bratislava

V práci konštruujeme mieru z objemu. Miera i objem nadobúdajú hodnoty v podmienene úplnom slabo σ -distributívnom zväze. Objem, s ktorým sa pracuje je naviac regulárny.

РЕЗЮМЕ

ПОСТРОЕНИЕ ВЕКТОРНОЙ МЕРЫ ИЗ ВЕКТОРНОГО ОБЪЕМА

Эрвин Храховина, Братислава

В статье мы занимаемся продолжением регулярного объема в меру. Эти изображения принимают значения в условно полной векторной структуре.

