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Introduction

In this paper we deal with the notion of graph convergence of functions,
which was introduced in the paper [9]. Graph convergence of functions was
studied also by Beer in [2], [3], [4].

The paper has three parts. In the first part we complete and generalize some
results of [9]. In the second part we give a characterization of compact metric
spaces by using the notion of graph convergence of functions and by using
Dini’s theorem about convergence of sequences of functions. In the third part
we give a characterization of compact metric spaces by using the notion of
quasi-uniform and continuous convergence.

1 Graph convergence

Let X be a topological space and {S,} be a sequence of subsets of X. In
accordance with [9] denote by Lim inf S, the set of all points xe X each
neighbourhood of which meets all but finitely many sets S,, and Lim sup S, the
set of all points xe X each neighbourhood of which meets infinitely many
sets S,.

It is obvious that

Lim inf S, = Lim sup S,,. (1)
If these two sets coincide we say that the sequence {S,} converges and the set
Lim S, = Lim inf S, = Lim sup S, is said to be the limit of the sequence {S,}.

Let X, Y be topological spaces and f: X — Y. The graph of f is the set
G(N) ={(x»)eX x Y:y=[f(x)}

121



Consider X x Y with the product topology. Letf,f,: X > Y(n=1,2,...). We

say that the sequence {f,} graph converges to f if there exist Lim G(f,) and
LimG(f,) = G(/).

We shall write f,, =3 if the sequence {f,} pointwise converges to f'and f,,—;‘;-> f

if the sequence {f,} does not pointwise converge to f. If Y is a metric space, we
shall similarly write f, =3 f if {f,} uniformly converges to f, and 1, &8 f if { £, } fails
X X

to uniformly converge to f.

We shall often use the following theorem proved in the paper [9]. This
theorem is a basic result about graph convergence of functions.

Theorem A. Let X and Y be compact metric spaces and f,: X—> Y
(n=1,2,...). Then Lim G(f,) exists and is the graph of a function f'if and only
if {f,} converges uniformly to f and f is continuous.

The following theorem is a theorem of “Dini’s type”.

Theorem 1.1. Let X be a topological space and f,: X >R (n=1, 2, ...).
Suppose that the sequence {f,} pointwise converges to a continuous function
f: X — Rand for any x € X the sequence { f,(x)} monotonically converges to f(x).
Assume that for any x € X infinitely many functions f, are upper semicontinuous
at x and infinitely many functions are lower semicontinuous at x. Then the
sequence {f,} graph converges to f.

Proof. The assumption f, —X—>fimplies that G(f) < Lim inf G(f,). It is suf-
ficient to prove (see (1)) that

Lim sup G(f,) < G(f). (2

Choose (x, y)e Lim sup G(f,). We prove that (x, y)e G(f).
Suppose (x, y)¢ G (f). Then f(x) # y. Thus one of the two following possi-
bilities holds:

a) y>f(x b) y <f(x).
In case of a) choose £ > 0 such that
y—€>f(x)+ e 3)

Since - /, there exists me N such that f,, is upper semicontinuous at x and

Jn(%) < f(x) + €/2. @

The continuity of the function f at x and the upper semicontinuity of the
function f,, at x imply that there exists a neighbourhood V = V(x) of the point
x such that

for any ze V(x) we have f(z)e(f(x) — &, f(x) + &) (5
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and
for any ze V(x) we have f,,(z) < f,.(x) + &2. (5)

From (3), (4) and (5) we get f,,(z) < f(x) + € < y — efor any ze V(x). Thus
for any ze V(x) we have f,,(z) < y — €. (6)

Since (x, y)eLim sup G(f,), there exists p > m such that G(f,) N V(x) x
X (y — & ) # 0. Choose (s, f,(s))e V(x) x (y — & o). From (3) and (5) we
have f,(s) > y — £ > f(x) + £ > f(s) and so

1o (8) > f(9). (7)

Since the sequence { f,(x)} monotonically converges to f(x), the inequality (7)
implies that {f,(s)} is a non-increasing sequence. Thus from (6) we have
12(8) < f,.(s) <y — ¢ for any n > m. In particular, f,(s) <y — ¢ and that con-
tradicts (s, f,(s)) € V(x) x (y — &, o).

b) The proof follows from a) if we consider functions —f,, f instead of f,, f.

The proof of Theorem is finished.

By using Theorem A and Theorem 1.1 we obtain the following result.

Theorem 1.2. Let X be a compact metric space and f,: X > R(n=1,2, ...),

J/* X — R. Suppose that the function f and the sequence {f,} satisfy the assump-
tions of Theorem 1.1. Then f, =3 f.
X

Proof. We show that all but finitely many functions £, are bounded. Suppose
that infinitely many functions are unbounded.

There exists L > 0 such that |f(x)| < L for every xeX. There exists an
incresing sequence {n,} of positive numbers and a sequence {x,} of points of X
such that |f, (x,)| > L for every k. We have two possibilities:

a) for infinitely many k Jo () > L

b) for infinitely many & So () < —L

a) Without loss of generality we can suppose that Ju (%) > L for any k and
that the sequence {x,} converges to a point xe X.

Since the sequence {f,(z)} monotonically converges to f(z) for every ze X,
{/2(x,)} is a non-increasing sequence for every k.

There exists je N such that f; is upper semicontinuous at x and fi(x) < L. The
upper semicontinuity of f; at x implies, that there exists a neighbourhood
V = V(x) of the point x such that f(z) < L for every ze V.

Let /e N be such that n, > jand x,e V. Then Ju (1) < fj(x;) < L and that is a
contradiction.

The proof of b) is similar.

Let me N be such that f, is a bounded function for any n > m.
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Put K = (mi)r(lf(x), ma}g&f(x)) v (ingfm(x), sup f,.(x)>. By theorem 1.1 we
xe X€ xe xeX
have Lim G(f) = G(f) and by Theorem A we get f, =3 f.
X

2 Characterization of compactness by using graph convergence

In this part of the paper we give a characterization of compact metric spaces
in the class of all metric spaces by using Theorem A and Theorem 1.2.

We shall use these usual notations:
If (X, d) is a metric space, xe X and € > 0, then K(x, €) = {ye X: d(x, y) < €}
denotes the open &-ball with the centre x. If 4 = X, then A denotes the closure
of Ain X.

If (X, d)), (Y, d,) are metric spaces, we shall consider X x Y as a metric space
with the metric d = d, + d, (d((x,, y\), (x5, 1)) = di(x;, X3) + d, (01, ¥)).

Theorem 2.1. A metric space (Y, d) is compact if and only if for any compact
metric space X with infinitely many points and for any sequence {f,} of functions
fi: X—->Y (n=1,2,..) the following statement holds:

The sequence {f,} graph converges to a function f'if and only if £, ? fand f

is continuous on X.

Proof. 1. If (Y, d) is a compact metric space, the assertion follows from
Theorem A.

2. Suppose that (Y, d) is not a compact space. Then there exists a one-to-one
sequence {y,} of points from Y which has no cluster point in Y. Choose & > 0
such that K(y,, &) n{y,:n=2,3, ...} =0.

Since X has infinitely many points, there exists a one-to-one sequence {x,} of
points from X.

Define the functions f,: X - Y (n =1, 2, ...) as follows:

fo(x) =y, for x # x,

and f,(x,) = y,(n = 1, 2, ...). The function f| is identically equal to y,. It is easy
to verify that f,,T* fi- This fact implies

G(f) < Lim inf G (f,). (13)
We show that the following inclusion holds
Lim sup G(f,) < G(f). - (13)

Let (x, y) e Lim sup G(f,). The definition of Lim sup G(f,) implies that there
exists a sequence n, < n, < ... n; < ... of the positive integers and a sequence {z;}
of points of X such that (z;, f,,j(z,-)) = (x, y) (j — ).
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That means z, —» x (j - ) and
5,(2) =y (= o). (14)

The function f,,j takes only on the values y, and Vn: If f,,j(z,-) = Yu, for infinitely
many j, the point y will be a cluster point of the sequence {y,}. That means, there
exists j,€ N such that f,,j(zj) =y, for j > j,. From (14) we get y = y,.

The validity of (13’) is proved.

The relations (13) and (13") imply that Lim G(f,) = G(f,). Thus the sequence
{/.} graph converges to the continuous function f; = y,. But f, ;? £, since for

any n > 2 we have d(f,(x,), f(x,) =d(,, y)) > & .

The proof of Theorem is over.

Theorem 2.2. A metric space (X, d,) is compact if and only if for any metric
space (Y, ;) which contains at least two points and for any sequence {f,} of
functions f,: X - Y (n = 1, 2, ...) the following statement holds.

Lim G(f,) = G(f) if and only if f, ?fanff: X — Y is a continuous function
on X.

Proof. 1. If X is a compact metric space, then the assertion follows from
Theorem A.

2. Suppose that X is not a compact space. There exists a sequence {x,} of
points of X which has no cluster point in X. Choose a, be Y such that a # b.
Define functions f,: X > Y (n=1, 2, ...) by

fix)=aforx# x,and f,(x,)=b(n=1,2,..).

It is easy to see that the sequence {f,} pointwise converges to the function f,
which is identically equal to a. From this fact we have

G(f) < Lim infG(f,). (15)
We show that the inclusion
Lim sup G(f,) = G(f) holds. (15)

Let (x, y) € Lim sup G(f,). The definition of Lim sup G(f,) implies that there
exists a sequence of positive integers n, < n, < ... n; < ... and a sequence of
points of X {z;} such that {(z;, ﬁ,j(zj))} converges to (x, y).

Thus {z;} converges to x and { f"/(zf)} converges to y. It is easy to verify
(similarly as in the proof of Theorem 2.1.) that there exists j, such that
f,,j(zj) = a,j 2 j, and thus y = a. Then (x, y) = (x, @) G(f). The inclusion (15")
is proved. The relations (15) and (15") imply that Lim G(f,) = G(f). Thus the
sequence {f,} graph converges to the function f. Since for any n > 1 we have
d,(f,(x,), f(x,)) = dy(a, b) > 0, f, 7;{ /. The proof of Theorem is finished.
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Theorem 2.3. A metric space (X, d) is compact if and only if the following
implication holds: If g, g,: X > R (n =1, 2, ...) are continuous functions and
{g,(x)} monotonically converges to g(x) for any xe X, then g, 3 g.

X

Proof.1. If X is a compact metric space, the assertion follows from Theo-
rem 1.2

2. Suppose that X is not a compact space. Choose a one-to-one sequence
{x,}, x,€ X, which has no cluster point in X and choose g, > 0(n = 1, 2, ...) such
that the family {K(x,, ¢,): ne N} is pairwise disjoint. Define the functions g;:
X->R(G=12,..)by

1 - (d(xm x)/e,,) for XEK(X,,, 8"), n 2]
g(x) = <
0

for other x.

The functions g, (j = 1, 2, ...) are continuous and g7 8= 0. For any x€ X the

sequence {g;(x)} is decreasing. Since |g;(x;) — g(x)| = lg;(x) =1 (= 1,2,...),
we have g, 8 g.
X

The proof of Theorem is over.

The following theorem shows that Theorem 2.3 cannot be extended for
topological spaces. : '

Theorem 2.4. Let X be a topological space such that any sequence of points
of X contains a convergent subsequence. Letf,: X > R(n=1,2,...),f/: X> R

be continuous functions and f, - /- Suppose that for any xe X the sequence
{f,(x)} is monotone. Then f, 3 f.
X

Remark 2.1. There exists a non-compact topological space for which any
sequence of its points contains a convergent subsequence (see [5], 5D p 220).
Proof of Theorem. Suppose that f, &8 f. Then the following statement holds:

X

There exists € > 0 such that for any n,e N there exist n > n, and a point x such
that | f,(x) — f(x)] > &. This fact implies that there exist a sequence n, < n, < ...
... of positive integers and a sequence {x, } of points of X such that the following
inequalities hold:

1o () —fx)l 2 & (k=1,2,..). (16)

We can already assume (owing to the assumption of Theorem) that there
exists x € X such that {x,} converges to x.

There are two possibilities:

a) x = x, for infinitely many ke N,

b) x # x, for infinitely many ke N.
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In the case of a) the assumption of Theorem implies that f,,i(x) — f(x). Let
my <m,<..besuchthatx=x, (i=1,2,..). Thenf,,,i(x,,,j) —+f(x,,,l_) and that
is a contradiction to (16).

In the case of b) let v, < v, < ... be such that x # X%, G=1, 2, ...). Put
4 = {30 {x,; X,,; - Xy ...}. It is easy to verify that the set 4 with the induced
topology from X is a metrizable compact space. The functions f,,llA G=12,..)
and f]4 satisfy the assumptions of Theorem 1. 2. By this Theorem we obtain
/|43 f14 and that is a contradiction to (16).

The proof of Theorem is finished.

3 Characterization of compactness by using quasi-uniform
and continuous convergence

Let X be a topological space and f, f,: X - R (n = 1, 2, ...). We say that the
sequence {f,} of functions converges quasi-uniformly to a function f (we write

[, 3f)on Xiff, Tfand the following statement is true:

Fo(; each £¢>0 and each meN, m >0 there exists a peN such that
min {|f,, . (x) = f), ..., |f,,(x) —f(X)} <& for each xeX (see [l],
p. 334—335, [6] p. 143).

If X is a compact metric space and {f,} is a sequence of continuous functions
J.: X—> R (n=1,2, ...) pointwise convergent to a function f: X — R, then fis
a continuous function if and only if £, =3 f (see [6], p. 143).

This result can be extended for functqionsf,,: X->Yn=1,2,..), where Y
is a metric space and X is a compact metric space.

The foregoing result suggests the following characterization of compact
metric spaces.

Theorem 3.1. A metric space (X, d) is compact iff and only if the following
assertion holds:

(V) Iff,f,: X > R(n = 1,2, ...) are continuous functions on X and f, 7f’ then

L3

(i’roof. 1. If (X, d) is a compact metric space, then (V) holds (see [6] p. 143,
[1] p. 334—335).

2. Suppose that (X, d) is not a compact space. Then there exists a one-to-one
sequence {x,} of points of X such that there exists no convergent subsequence
of {x,}. Itis obvious that any point of the set {x,, x,, ... X,, ...} is an isolated point
of the set {x;, x,, ..., x,, ...}. That means there exist §, > 0 (k = 1, 2, ...) such
that
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6 -0 (k- ) 17
and the closed balls K(x,, J,) = {xe X: d(x, x;) < 6,} (k = 1,2, ...) are pairwise
disjoint. Put H = U K(x,, 6,). We show that H is a closed set.

k=1

Let y,e H(n=1,2,...) and y,— ye X. There are two possibilities:

a) There exists a me N such that y,e K(x,,, 8,) for infinitely many n.

b) Such a m does not exist.

In the case of a) we have ye K(x,,, §,,) = H and so ye H.

In the case of b) there exist two sequencesn; < n, < ...n;, 5 < 5, < ...§5; < ...
of positive integers such that y,,je[?(xsj, 6_&) G=1, 2, ...). Then d(xs,,,
y,,l_) < 5,3 — 0 (j— o0) (see (17)). But Yo, =¥ (j = o0) and therefore also X, =y
(j = o). However this contradicts the fact that the sequence {x,} has no conver-
gent subsequence. That means the statement a) is valid and so ye H. The
closedness of the set H is proved.

Define a sequence {f,} of real functions on the set {x;, x, ... x,, ...} by

filx,)=0(m=1,2,...) and for p > 1

LE)=QAQ =11~ f(x) =1 =1/2¢7", ... f(x,_0) =
=0 =1Yp—=1¢"" f(x,) =0 = 1pY ", f,(x,. ) =F(x) (=12, ...
Put for peN: fXx) =0 if x¢ H and fXx) = f,(x;).(5;—d(x, x;))/§; if
xeK(x;, 6) (=12, ..).

It is easy to see that the function £* is a nonnegative continuous extension of
S, p=1,2,..) from the set {x,, x, ... X,, ...} on the whole X and

O<f)<(1-1lpy—"' @22).

The function £,*(x) takes on its global maximum at the point x,. We show that
the sequence {f*} pointwise converges to f, = 0.

Let x¢ H. Then f;*(x) =0 (p = 1, 2, ...) and hence £,*(x) - fo(x) = 0.

Let xe H. Then there exists a me N such that xe K(x,,, d,,). Then for any
p > m we have 0 < £*(x) < f¥(x,,) =f,(x,,) = (1 = 1/my'"" and (1 — 1/my=—'—
— 0 (p — 00). Thus again f,*(x) = fo(x) = 0 (p — ).

We prove that the sequence {/,*} does not converge quasi-uniformly to f,.

Suppose the contrary, i.e. f,,*—q+ fo- Put

a,=(—1/py-"' forp>1.

Then a, = (p — 1)/p)*~' = 1/(1 + 1/p — 1y,
It is well-known that (1+ 1/p—1y~'fe. Hence (18) a,—e™' (e
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o >a>..a :

— R e~ '). Choose ¢ = ¢!, m = 1 in the definition of a quasi-
uniform convergence. Then there exists p > 1 such that for each xe X the

following inequality holds:
min {fA(x), ... fi*, (0} <e”". (19)

For x = x,, , we obtain from (19) that a,, , < e~ ' and that is a contradiction
to (18).
The proof of Theorem is finished.

Another characterization of compact metric spaces we obtain by using the
notion of a continuous convergence of functions.

Let X be a metric space and f, f,: X - R (n =1, 2, ...). The sequence {f,} is
said to continuously converge to the function f if for any xe X and for any
sequence {x,} of points of X convergent to x we have f,(x,) = f(x) (see [7], [8],
p. 103).

It is known (see [8], p. 106) that if X is a compact metric space, then the
continuous convergence of functions {f,} to fimplies a uniform convergence of
{f.} to f. By using this fact we can give the following characterization of compact
metric spaces.

Theorem 3.2. A metric space (X, d) is compact if and only if the following
statement holds for functions f, f,: X > R (n=1, 2, ...):

(W) If {f,} continuously converges to f, then f, :Xk f.

Proof. 1. If X is a compact metric space, then (W) holds by the result [8],
p. 206.

2. Suppose that X is not a compact metric space. Let £*(p = 1, 2, ...) be the
functions from the proof of Theorem 3.1. Then f *—» fo=0,butf; *tz fo and thus

by 1:; fo. We prove that the sequence {f,*} contmuously converges to fo.
Let ¥. = Yo First, suppose that y,¢ H. Since the set H is closed, there exists

n e N such that y,¢ H for any m > n,. Then f*(y,) =0 (n > n,) and thus

¥ =0 = fy0u). ]

Second, suppose that y,e H. There exists me N such that y,e K(x,,, J,).
There are two possibilities:

a) yo€ K(x,,, 6,),

b) yoe{xeX: d(x, x,,) = d,,}.

In case of a) there exists n,€ N such that y,e K(x,,, 6,,) for any n > n,. Then
for any n > max {n,, m} we have

0 < f*(pa) < fi¥(x) = (1 = 1/m)"~' >0 (n > o0);

thus £*(y,) = 0 = £,(»o)-
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In case of b) there are two possibilities:

b, y.€K(x,, d,) for all but finitely many n’s,

b,) y.¢ K(x,,, 6,) for infinitely many n’s.

In case of b;) using the same method as in case of a) we obtain that
SHO)=0=foo.

b,) Notice that if y,e K(x,,, J,)\K(x,,, J,), then by the definition of the
function f*we have f*(y,) = 0 (since d(y,, X,) = 0,,)-

Because of a) we can assume that y, ¢ K(x,,, 8,)) (n =1, 2, ...). Since y, = y,,
yo€ K(x,,, 8,) the consideration analogous to that used in the proof of closed-
ness of H (see the proof of Theorem 3.1.) we can check that the set {y,,
Y35 --- Yns ...} has a non-empty intersection only with a finite number of balls
K(x;, d;) (j = m) and each such intersection is a finite set. Hence there exists
ny€ N such that y,¢ H for any n > n,. Then f*(y,) = 0 for any n > n, and so
SXG.) = 0 = fi(yo)

The proof of Theorem is finished.

The question arises whether Theorem 3.1. can be extended for the topological
spaces. We show that it is impossible.

It is known that there exists a non-compact, locally compact topological
space in which any sequence of its points has a cluster point. Such a space is a
space of all ordinal numbers less than the smallest uncountable ordinal numbers
(see [5] p. 220 5 D).

Theorem 3.3. Let X be a locally compact topological space, in which any
sequence of points of X has a cluster point. Let £, f/,: X > R (n=1, 2, ...) be
continuous functions on X. If f, 2 f, then f, 3 f.

Proof. Suppose that f, ~ f, but f, & f Then,
q

there exist & > 0 and m, > 0 such that for any pe N there exists x, for which

min {Ifm0+ I(xp) —f(xp)l’ |fm0+p(xp) _f(xp)l} 2 &. (20)

Construct the sequence {x,}. By assumption of Theorem there exists a cluster
point x,e X of this sequence. The local compactness of X implies that there
exists a compact neighbourhood U(x,) of x,. The sequence {f,|U(x,)} of con-
tinuous functions on the compact space U(x,) pointwise converges to f, (U(x,)
and f]U(x,) is continuous on U(x,). By [1], p. 334—335, the sequence { f,|U(x,)}
converges quasi-uniformly to f|U(x,) on U(x,). The definition of the quasi-
-uniform convergence implies that

for any £€>0 and for any m > 0 there exists ke N such that for any

x€ U(xo) min{|f,, . 1(x) = f(X)], ... |fmiu(¥) —f} < & @1

Choose in (21) ¢ = g and m = m,. There exists ke N such that for any
xe U(x,) we have
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min{|f, . 1(X) =S, .. g+ £ (x) = fO} < &. (21)

Since x, is a cluster point of the sequence {x;}, there exists i > k such that
x;€ U(x,). By using (20) we have

min {| f, o1 () = DN, oo 1oy 4 i) — F(x)I} 2 &. (22)

Since for i > k we have min{| £, .1 (x;) — f(x)l, ...llf,,,0+k(x,-) —f(x), ...

v Sy +i(x:) — f(x)]} < min { S+ 1G6) —F ()l - | fon + 6 (i) = S DI}, (22)
contradicts (21°).
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PE3IOME

CXOOAUMOCTb IT'PA®UKOB, PABHOMEPHA S, KBASUPABHOMEPHAA
WU HENPEPBIBHASA CXOOUMOCTb U XAPAKTEPUCTUKA KOMITAKTHOCTH

JIrobuna I'ona — Tubop Mlanar, Bpatucnasa

PaboTta ucxomut u3 cratbu [9] B. LI. Bateproyca, B KOTOpO# TOXe HaXOIUTCH NMOHATHE CXOHU-
MOCTH rpaukoB (PyHKLHOHANIbHBIX NMOCAEN0Ba — TeJbHOCTEH. [l 3TOro THMa CXOAMMOCTH B
pabote moka3aHa Teopema Tuna «unu» (Teopema 1.1.). Kpome Toro, B paboTe naHbl HEKOTOpPhIE
XapaKTEPHCTHKH KOMNAKTHOCTH METPHYECKHX MPOCTPAHCTB MPH MOMOLIM Pa3HbIX THIOB CXOMH-
MOCTH (YHKIHOHAJIbHBIX NMOCJIEA0BATEIbHOCTEM.

SUHRN

GRAFOVA KONVERGENCIA, ROVNOMERNA, KVAZIROVNOMERNA
A SPOJITA KONVERGENCIA A CHARAKTERIZACIE KOMPAKTNOSTI

Lubica Hola — Tibor Salat, Bratislava
Praca nadvazuje na ¢lanok [9] W. C. Waterhousea, z ktorého je prevzaty pojem grafovej
konvergencie. Pre tento typ konvergencie konkcionalnych postupnosti je v praci dokdzana veta

Diniho typu (veta 1.1). Okrem toho su v praci podané viaceré charakterizacie kompaktnosti
metrickych priestorov pomocou réznych typov konvergencie funkcionalnych postupnosti.
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