

Werk

Label: Article **Jahr:** 1989

PURL: https://resolver.sub.uni-goettingen.de/purl?312901348_54-55|log14

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

UNIVERSITAS COMENIANA ACTA MATHEMATICA UNIVERSITATIS COMENIANAE LIV—LV—1988

ON CONCERNING A CERTAIN QUASIVARIATIONAL INEQUALITY

VALÉRIA SKŘIVÁNKOVÁ, Košice

One of the fundamental problems of renewal theory is to secure a smooth progress of production in such a way that the costs are minimal. In the renewal process with preventive replacements this means finding an optimal strategy which minimizes the average cost.

The optimality of such a replacement strategy, its construction and its asymptotic behaviour in a nonparametric situation (i.e. when the distribution function of failure times is unknown) were treated in [1], [2], [3]. The parametric situation (i.e. when the distribution function of failure times is specified up to an unknown parameter) was investigated in [5], [6].

This paper is connected with [5], [6], but uses another mathematical method for the minimization of the average cost. The average cost and the optimal stationary management of the replacement process are given here as a solution of a system of quasivariational inequalities.

1 Fundamental model

Consider two types of replacements:

- 1) service replacement after failure at the cost c_1 (type 1),
- 2) preventive replacement at the cost c_2 (type 2).

We assume $c_1 > c_2 > 0$.

The total cost accumulated up to time t is

$$C_t = c_1 N_t^1 + c_2 N_t^2, (1)$$

where N_i^i , i = 1, 2 is the total number of replacements of type i up to time t.

The average cost per unit time $\Theta(x)$ corresponding to the policy with a constant critical age $x \in [0, \infty)$ (age at which a component is replaced by a new one) is

$$\Theta(x) = (c_1 F(x) + c_2 \bar{F}(x)) / \int_0^x \bar{F}(y) \, dy,$$
 (2)

where F(x) is the distribution function of failure times,

$$\bar{F}(x) = 1 - F(x) = \exp\left\{-\int_0^x g(y) \, dy\right\},$$
 (3)

g(x) is the failure rate and the denominator in (2) is the mean time between replacements. We denote by f(x) the probability density of failure times. Then $f(x) = g(x)\bar{F}(x)$. About g(x) we assume the following.

Assumption 1.

- (i) g(x) is differentiable on $[0, \infty)$ and has no inflexion point,
- (ii) g(x) has at most one extreme and $g(\infty) = \infty$.

In general, the critical age is not a constant but a nonanticipative random function $\{Z_t, t \ge 0\}$ which assumes positive values and is left-continuous.

2 The Bellman equation for the expected discounted cost

The impulsive control of a Markov process consists in shifting instantaneously its trajectory to the selected position. In our case the process $\{X_t, t \ge 0\}$, the age of the component at time t, is a Markov process and the impulsive control defined by $\{Z_t, t \ge 0\}$ consists in the choice of an increasing sequence of stopping times at which the trajectory of the process is shifted to the zero-position (see Figure 1). $\{X_t, t \ge 0\}$ is assumed to be left-continuous.

 τ_j , j=1, 2, ... is the time of the j-th replacement (of type 1 or 2) σ_j , j=1, 2, ... is the time of the j-th preventive replacement given by the policy $\{Z_i, t \ge 0\}$. The optimality criterion is given by the expected discounted cost

$$E_x^Z \int_0^\infty e^{-\beta t} dC_t$$

(4)

where $\beta > 0$ is the discount-factor and x is the initial age. The minimum satisfies the quasivariational inequalities which we obtain assuming a random stopping of the process with a rate $\bar{r} < \infty$ and then letting $\bar{r} \to \infty$. The policy, here the selected value of the stopping rate,

$$R = \{R_t, t \ge 0\}, \quad 0 \le R_t \le \bar{r},$$

defines the process of preventive replacements.

To minimize the expected discounted cost (4) we apply the *Bellman principle*. We assume a suitable choice of the stopping rate on the interval $[0, \Delta]$ and then an optimal procedure with respect to the situation in time Δ , $\Delta \to 0_+$. Denote

$$\bar{u}(x) = \inf_{R} E_{x}^{R} \int_{0}^{\infty} e^{-\beta t} dC_{t}, \quad R = \{R_{t}, t \ge 0\}, \quad 0 \le R_{t} \le \bar{r}.$$

Then

$$\bar{u}(x) = \min_{0 \le r \le \bar{r}} \left[(1 - g(x)\Delta - r\Delta) e^{-\beta \Delta} \cdot \bar{u}(x + \Delta) + g(x)\Delta \cdot (c_1 + \bar{u}(0)) + r\Delta(c_2 + \bar{u}(0)) + o(\Delta) \right].$$

Hence,

$$0 = \Delta[\bar{u}'(x) + g(x)(c_1 + \bar{u}(0) - \bar{u}(x)) - \beta\bar{u}(x) + \min_{0 \le r \le \bar{r}} r(c_2 + \bar{u}(0) - \bar{u}(x))],$$

where

$$\bar{u}(x + \Delta) = \bar{u}(x) + \Delta \bar{u}'(x) + o(\Delta), e^{-\beta \Delta} = 1 - \beta \Delta + o(\Delta).$$

Thus, we get the Bellman equation

$$\bar{u}'(x) + g(x)(c_1 + \bar{u}(0) - \bar{u}(x)) + \min_{0 \le r \le \bar{r}} r(c_2 + \bar{u}(0) - \bar{u}(x)) - \beta \bar{u}(x) = 0.$$
 (5)

Next we find the limit solution of the Bellman equation (5) as $\bar{r} \to \infty$. Let a be a point where the term $c_2 + \bar{u}(0) - \bar{u}(x)$ changes its sign, i.e. $\bar{u}(a) = c_2 + \bar{u}(0)$. The function $\bar{u}(x)$ has at most one extreme and satisfies the inequalities

$$c_2 + \bar{u}(0) - \bar{u}(x) \ge 0$$
 for $x \in [0, a]$,
 $c_2 + \bar{u}(0) - \bar{u}(x) \le 0$ for $x \ge a$.

Denote $\bar{u}(0) = \bar{k}$, where \bar{k} is a constant and $\bar{v}(x) = \bar{u}(x) - \bar{u}(0)$. Then, from the Bellman equation (5) we get

1. For $x \ge a$

$$\begin{cases} \bar{v}'(x) - (g(x) + \beta + \bar{r})\bar{v}(x) = \beta \bar{k} - c_2 \bar{r} - c_1 g(x) \\ \bar{v}(a) = c_2. \end{cases}$$
 (6)

By solving (6) with initial condition $\bar{v}(a) = c_2$ we get

$$\bar{v}(x) = \left[c_2 + \int_a^x (\beta \bar{k} - c_2 \bar{r} - c_1 g(s)) e^{-\int_a^x (g(y) + \beta + \bar{r}) dy} ds\right] e^{\int_a^x (g(y) + \beta + \bar{r}) dy},$$

i.e.

$$\bar{v}(x) = \frac{c_2 \bar{F}(a) e^{-(\beta + \bar{r})a} - c_1 \int_a^x f(s) e^{-(\beta + \bar{r})s} ds + (\beta \bar{k} - c_2 \bar{r}) \int_a^x \bar{F}(s) e^{-(\beta + \bar{r})s} ds}{\bar{F}(x) e^{-(\beta + \bar{r})x}}.$$
(7)

To have the function $\bar{v}(x)$ bounded, it is necessary that

$$0 = c_2 \bar{F}(a) e^{-(\beta + \bar{r})a} - c_1 \int_a^{\infty} f(s) e^{-(\beta + \bar{r})s} ds + (\beta \bar{k} - c_2 \bar{r}) \int_a^{\infty} \bar{F}(s) e^{-(\beta + \bar{r})s} ds.$$
 (8)

Since

$$\int_a^\infty f(y) e^{-(\beta + \vec{r})y} dy = e^{-(\beta + \vec{r})a} \bar{F}(a) - \int_a^\infty (\beta + \vec{r}) e^{-(\beta + \vec{r})y} \cdot \bar{F}(y) dy,$$

from (8) we have for the constant

$$\bar{k} = \beta^{-1} \left[(c_2 - c_1)\bar{r} - c_1 \beta + (c_1 - c_2) \left(\int_a^\infty e^{-(\beta + \bar{r})(y - a)} \cdot \frac{\bar{F}(y)}{\bar{F}(a)} dy \right)^{-1} \right]. \tag{9}$$

Further,

$$\int_{a}^{\infty} e^{-(\beta+\bar{r})(y-a)} \frac{\bar{F}(y)}{\bar{F}(a)} dy = \frac{1}{\beta+\bar{r}} \left(1 - \frac{1}{\bar{F}(a)} \int_{a}^{\infty} e^{-(\beta+\bar{r})(y-a)} f(y) dy \right)$$

and

$$\frac{1}{\bar{F}(a)} \int_a^{\infty} e^{-(\beta + \bar{r})(y - a)} f(y) dy = \frac{1}{\beta + \bar{r}} \left(\frac{f(a)}{\bar{F}(a)} + o(1) \right) \text{ as } \bar{r} \to \infty.$$

From (9) we have

$$\bar{k} = \beta^{-1} \left\{ (c_1 - c_2) \left[(\beta + \bar{r}) \frac{1}{1 - \frac{1}{\beta + \bar{r}} \left(\frac{f(a)}{\bar{F}(a)} + o(1) \right)} - \bar{r} \right] - c_1 \beta \right\},\,$$

i.e.

$$\bar{k} = \beta^{-1}(c_1 - c_2) \left[(\beta + \bar{r}) \left(1 + \frac{1}{\beta + \bar{r}} \left(\frac{f(a)}{\bar{F}(a)} + o(1) \right) \right) - \bar{r} \right] - c_1 =$$

$$= \beta^{-1}(c_1 - c_2)g(a) - c_2 + o(1). \tag{10}$$

Denote $k = \lim_{\bar{r} \to \infty} \bar{k}$, then for $\bar{r} \to \infty$ we have

$$k = \beta^{-1}(c_1 - c_2)g(a) - c_2. \tag{11}$$

Now we modify the term (7)

$$\bar{v}(x) = \underbrace{\frac{c_1}{\bar{F}(x)} \int_x^{\infty} f(s) e^{-(\beta + \bar{r})(s - x)} ds}_{(i)} - \underbrace{\frac{\beta \bar{k}}{\bar{F}(x)} \int_x^{\infty} \bar{F}(s) e^{-(\beta + \bar{r})(s - x)} ds}_{(ii)} + \underbrace{\frac{c_2 \bar{r}}{\bar{F}(x)} \int_x^{\infty} \bar{F}(s) e^{-(\beta + \bar{r})(s - x)} ds}_{(iii)}.$$

We have (for $\bar{r} \to \infty$): (i) $\to 0$, (ii) $\to 0$, (iii) $\to c_2$. If we denote

$$v(x) = \lim_{\bar{t} \to \infty} \bar{v}(x), \quad u(x) = \lim_{\bar{t} \to \infty} \bar{u}(x), \tag{12}$$

we get the limit solution of the Bellman equation (for $\bar{r} \to \infty$) in the form

$$u(x) = c_2 + k, \quad x \ge a. \tag{13}$$

2. For $x \in [0, a]$

$$\min_{0 \le r \le \bar{r}} r(c_2 + \bar{u}(0) - \bar{u}(x)) = 0.$$

From (11), (12) and from the Bellman equation we get

$$\begin{cases} v'(x) - (g(x) + \beta)v(x) = -g(x)c_1 + g(a)(c_1 - c_2) - \beta c_2 \\ v(0) = 0. \end{cases}$$
 (14)

By solving (14) we get for $x \in [0, a]$

$$v(x) = e^{\int_0^x (g(y) + \beta) dy} \left(\int_0^x \left[-c_1 g(s) + g(a) (c_1 - c_2) - \beta c_2 \right] e^{-\int_0^s (g(y) + \beta) dy} ds \right) =$$

$$= \frac{-c_1 \int_0^x f(s) e^{-\beta s} ds + [g(a) (c_1 - c_2) - \beta c_2] \int_0^x \overline{F}(s) e^{-\beta s} ds}{\overline{F}(x) e^{-\beta x}}, x \in [0, a].$$

Thus, the limit solution of the Bellman equation (5) is

$$u(x) = \begin{cases} k + \frac{-c_1 \int_0^x f(s) e^{-\beta s} ds + \beta k \int_0^x \bar{F}(s) e^{-\beta s} ds}{\bar{F}(x) e^{-\beta x}} & \text{for } x \in [0, a] \\ k + c_2 & \text{for } x \ge a, \end{cases}$$
 (15)

where k is given by (11).

3 Quasivariational inequalities for the expected discounted cost

Theorem 1. The quasivariational inequalities for the expected discounted cost

(I')
$$u'(x) + g(x)(c_1 + u(0) - u(x)) - \beta u(x) \ge 0$$

(II')
$$c_2 + u(0) - u(x) \ge 0$$
 (16)

(III')
$$(c_2 + u(0) - u(x))[u'(x) + g(x)(c_1 + u(0) - u(x)) - \beta u(x)] = 0$$

have solution (15), where a is the unique solution of the equation

$$(c_1 - c_2)[\bar{F}(a)e^{-\beta a} + (g(a) + \beta) \int_0^a \bar{F}(y)e^{-\beta y} dy] = c_1$$
 (17)

and the constant is

$$k = \beta^{-1}(c_1 - c_2)g(a) - c_2$$
.

Proof. The proof will be performed in two steps:

1. The unicity of the solution of (17)

From (17) we get

$$\bar{F}(a) e^{-\beta a} + (g(a) + \beta) \int_0^a \bar{F}(y) e^{\beta y} dy = \frac{c_1}{c_1 - c_2}.$$

Now, we investigate the function

$$Q(x) = \bar{F}(x) e^{-\beta x} + (g(x) + \beta) \int_0^x \bar{F}(y) e^{-\beta y} dy, \ x \in [0, \infty).$$

By Assumption 1 the function g(x) has a derivative so that

$$Q'(x) = g'(x) \cdot \int_0^\infty \bar{F}(y) e^{-\beta y} dy.$$

Thus the functions Q'(x) and g'(x) have the same sign. By Assumption 1 there are two possibilities:

a) If g(x) has no local extreme, then g'(x) > 0 everywhere and Q(x) is increasing on $(0, \infty)$. Since $\lim_{x \to 0_+} Q(x) = 1$ and $\frac{c_1}{c_1 - c_2} > 1$ $(c_1 > c_2 > 0)$, the

graph of the function Q(x) crosses the line $y = \frac{c_1}{c_1 - c_2}$ in exactly one point.

b) If g(x) has an extreme, it is (by Assumption 1) a local minimum in some point $b \in [0, a]$. Thus Q(x) decreases on [0, b], increases on $[b, \infty)$ and its graph crosses the line $y = \frac{c_1}{c_1 - c_2}$ also in exactly one point.

- **2.** The fulfilment of the quasivariational inequalities (I')—(III') Ad (I')
- a) On the interval [0, a] in (I') equality holds, because for $x \in [0, a]$

$$u(x) = k + \frac{-c_1 \int_0^x f(y) e^{-\beta y} dy + \beta k \int_0^x \bar{F}(y) e^{-\beta y} dy}{\bar{F}(x) e^{-\beta x}}.$$

Substituting this into (I') we get

$$u'(x) + g(x)(c_1 + u(0) - u(x)) - \beta u(x) = 0.$$

b) On the interval $[a, \infty)$ we have

$$u(x) = k + c_2 = \beta^{-1}(c_1 - c_2)g(a),$$

so that

$$g(a)(c_1 + u(0) - u(x)) - \beta u(x) = g(a)(c_1 - c_2) + \beta(k + c_2) = 0.$$

Since g(x) is increasing for $x \ge a$ (i.e. $g(x) \ge g(a)$ for $x \ge a$), it holds

$$u'(x) + g(x)(c_1 + u(0) - u(x)) - \beta u(x) = g(x)(c_1 - c_2) - \beta(c_2 + k) \ge 0,$$

i.e. (I') holds.

Ad (II')

a) On the interval [0, a]

$$c_2 + u(0) - u(x) \ge 0$$

is equivalent to

$$c_2 \bar{F}(x) e^{-\beta x} + c_1 \int_0^x f(y) e^{-\beta y} dy - [g(a)(c_1 - c_2) - \beta c_2] \int_0^x \bar{F}(y) e^{-\beta y} dy \ge 0.$$
 (18)

Since

$$\int_0^x f(y) e^{-\beta y} dy = 1 - \bar{F}(x) e^{-\beta x} - \beta \int_0^x \bar{F}(y) e^{-\beta y} dy,$$

from (18) we get the condition

$$c_1 - (c_1 - c_2) \left[\bar{F}(x) e^{-\beta x} + (g(a) + \beta) \int_0^x \bar{F}(y) e^{-\beta y} dy \right] \ge 0,$$

or

$$\frac{c_1}{c_1 - c_2} - \left[\bar{F}(x) e^{-\beta x} + (g(a) + \beta) \int_0^x \bar{F}(y) e^{-\beta y} dy \right] \ge 0.$$
 (19)

Denote the left part of (19) by T(x). Then

$$T'(x) = f(x)e^{-\beta x} + \bar{F}(x)\beta e^{-\beta x} - (g(a) + \beta)\bar{F}(x)e^{-\beta x} = (g(x) - g(a))\bar{F}(x)e^{-\beta x},$$

i.e. T(x) is nonincreasing on [0, a], and nonnegative in virtue of T(a) = 0. Hence (II') holds on [0, a].

b) On the interval $[a, \infty)$, where $u(x) = c_2 + k$, we have $c_2 + u(0) - u(x) = 0$, i.e. in (II') the equality holds.

Ad (III')

(III') holds, because on [0, a] the equality holds in (I') and on $[a, \infty)$ in (II').

Theorem 2. The bounded solution of quasivariational inequalities (I')—(III') for the expected discounted cost is unique. It holds

$$u(x) = \inf_{Z} E_x^{Z} \int_0^{\infty} e^{-\beta t} dC_t, \quad x \in [0, \infty).$$

For the replacement age $\hat{Z}_t = a$, $t \ge 0$, where a satisfies (17)

$$u(x) = E_x^{\hat{Z}} \int_0^\infty e^{-\beta t} dC_t, \quad x \in [0, \infty).$$
 (20)

Proof. Consider an arbitrary bounded solution u(x) of the quasivariational inequalities (I')—(III'). Assume that u(x) has continuous derivatives and consider the integral

$$\int_0^T e^{-\beta t} (u'(X_t) - \beta u(X_t)) dt, \quad T > 0.$$

At the points τ_i , $i = 1, 2, ..., \tau_i \in [0, T]$, the trajectory of the process $\{X_i, t \ge 0\}$ jumps to the zero-position. Taking this into account we get

$$\int_0^T e^{-\beta t} (u'(X_t) - \beta u(X_t)) dt = e^{-\beta T} u(X_t^+) - u(X_0) + \int_0^T e^{-\beta t} (u(X_t) - u(0)) d(N_t^1 + N_t^2),$$

where X_t^+ is the right-continuous version of the age of the component at time t,

$$X_{i}^{+} = X_{i} \cdot \mathcal{X}_{\{N_{i}^{i} = N_{i}^{i}, i = 1, 2\}}$$

For $T \to \infty$ we get

$$u(X_0) - \int_0^\infty e^{-\beta t} (u(X_t) - u(0)) d(N_t^1 + N_t^2) + \int_0^\infty e^{-\beta t} (u'(X_t) - \beta u(X_t)) dt = 0.$$
(21)

By the definition of C_i and by adding the left part of (21) we obtain for the expected value

$$E_{x}^{Z} \int_{0}^{\infty} e^{-\beta t} dC_{t} = E_{x}^{Z} \int_{0}^{\infty} e^{-\beta t} d(c_{1}N_{t}^{1} + c_{2}N_{t}^{2}) = E_{x}^{Z} u(X_{0}) +$$

$$+ E_{x}^{Z} \int_{0}^{\infty} e^{-\beta t} (c_{1} + u(0) - u(X_{t})) (dN_{t}^{1} - g(X_{t}) dt) +$$

$$+ E_{x}^{Z} \int_{0}^{\infty} e^{-\beta t} (c_{2} + u(0) - u(X_{t})) dN_{t}^{2} +$$

$$+ E_{x}^{Z} \int_{0}^{\infty} e^{-\beta t} [u'(X_{t}) + g(X_{t})(c_{1} + u(0) - u(X_{t})) - \beta u(X_{t})] dt. \qquad (22)$$

We have $E_x^Z(u(X_0)) = u(x)$ for $X_0 = x$. By the martingale properties

$$E_{x}^{Z}\int_{0}^{\infty} e^{-\beta t} (c_{1} + u(0) - u(X_{t}))(dN_{t}^{1} - g(X_{t}) dt) = 0,$$
(iv)

namely, $N_t^1 - \int_0^t g(X_s) \, ds$, $s \in [0, t]$ is a martingale (see [6], Lemma 1) and (iv) is a martingale, too (see [6], Lemma 2). Since u(x) is a bounded solution of quasivariational inequalities (I')—(III'), the last two integrals in (22) are nonnegative and

$$E_x^Z \int_0^\infty e^{-\beta t} dC_t \ge u(x). \tag{23}$$

The equality in (23) is satisfied for the replacement age x such that $c_2 + u(0) - u(x) = 0$, i.e. for the age x = a.

Thus, we have (20) and simultaneously the unicity.
$$\Box$$

4 Quasivariational inequalities for the average cost

The transition from the discounted cost to the average cost is effected by the limit passage in the discount-factor $\beta \rightarrow 0_+$.

Denote $w(x) = \lim_{\beta \to 0_+} (u(x) - u(0))$, where u(x) is the limit solution of the Bellman equation (5) by $\bar{r} \to \infty$. Then by (15) we get

$$w(x) = \begin{cases} -c_1 \int_0^x f(y) \, dy + \left(\int_0^x \bar{F}(y) \, dy \right) \lim_{\beta \to 0_+} (\beta k) \\ \bar{F}(x) \cdot e^{-\beta k} \end{cases} \quad \text{for } x \in [0, a] \quad (24)$$

Obviously, $\int_0^x f(y) \, dy = F(x) = 1 - \overline{F}(x).$

We calculate $\lim_{\beta \to 0_{\mp}} (\beta k)$, where $k = \beta^{-1}(c_1 - c_2)g(a) - c_2$ is the unique solution of (17). By $\beta \to 0_+$ from (17) we get

$$(c_1 - c_2) \left[\vec{F}(a_0) + g(a_0) \int_0^{a_0} \vec{F}(y) \, \mathrm{d}y \right] = c_1, \tag{25}$$

where $a_0 = \lim_{\beta \to 0} a$.

Namely, from the definition of the average cost $\Theta(x)$ and from the condition that the optimal critical replacement age d minimizes the average cost, we get

$$\Theta'(d) = \frac{\left[(c_1 f(x) - c_2 f(x)) \int_0^x \bar{F}(y) \, dy - (c_1 F(x) + c_2 \bar{F}(x)) \right] \bar{F}(x)}{\left(\int_0^x \bar{F}(y) \, dy \right)^2} \bigg|_{x = d} = 0.$$

Hence

$$(c_1 - c_2) \left[\bar{F}(d) + g(d) \int_0^d \bar{F}(y) \, dy \right] = c_1,$$
 (26)

which is the analogy of the equation (25) for $a_0 = d$. Moreover, we have from (26)

$$(c_1 - c_2)g(d) = \Theta(d) = \Theta$$

and for the limit

$$\lim_{\beta \to 0} (\beta k) = (c_1 - c_2)g(d) = \Theta.$$
 (27)

We can write the relation (24) as

$$w(x) = \begin{cases} \left(-c_1 F(x) + \Theta \int_0^x \bar{F}(y) \, \mathrm{d}y \right) / \bar{F}(x) & \text{for } x \in [0, d] \\ c_2 & \text{for } x \ge d, \end{cases}$$
 (28)

where d is the unique solution of (26).

Now, we investigate the term $\beta u(x)$ in (I') by $\beta \to 0_+$, i.e. the limit

$$\lim_{\beta \to 0} \beta u(x) =$$

$$= \begin{cases} \lim_{\beta \to 0_{+}} [\beta k + \beta \frac{-c_{1} \int_{0}^{x} f(y) e^{-\beta y} dy + \beta k \int_{0}^{x} \overline{F}(y) e^{-\beta y} dy}{\overline{F}(x) \cdot e^{-\beta x}} & \text{for } x \in [0, d] \\ \lim_{\beta \to 0_{+}} \beta(c_{2} + k) & \text{for } x \ge d. \end{cases}$$

Obviously, by (27) we have

$$\lim_{\beta \to 0_{+}} \beta u(x) = \Theta \quad \text{for } x \in [0, \infty).$$
 (29)

Thus, the following theorem holds:

Theorem 3. The quasivariational inequalities for the average cost

(I)
$$w'(x) + g(x)(c_1 - w(x)) - \Theta \ge 0$$

(II)
$$c_2 - w(x) \ge 0$$

(III)
$$(c_2 - w(x))(w'(x) + g(x)(c_1 - w(x)) - \Theta) = 0$$
, $w(0) = 0$,

have a solution

$$w(x) = \begin{cases} \left(-c_1 F(x) + \Theta \int_0^x \bar{F}(y) \, \mathrm{d}y \right) / \bar{F}(x) & \text{for } x \in [0, d] \\ c_2 & \text{for } x \ge d, \end{cases}$$

$$\Theta = (c_1 F(d) + c_2 \overline{F}(d) / \int_0^d \overline{F}(y) \, \mathrm{d}y,$$

where d is the (unique) solution of the equation

$$(c_1-c_2)g(d)=(c_1F(d)+c_2\bar{F}(d))/\int_0^d \bar{F}(y)\,\mathrm{d}y.$$

Theorem 4. Number Θ for which there exists a bounded function w(x) satisfying the conditions (I)—(III) of Theorem 3 is unique.

Proof. Let $(w(x), \Theta)$ be a bounded solution of the quasivariational inequalities (I)—(III). Then for any replacement policy Z

$$w(X_T^+) - w(X_0) = \int_0^T w'(X_t) dt - \int_0^T w(X_t) d(N_t^1 + N_t^2).$$
 (30)

From the definition of the cost and by (30) we have

$$C_{T} = \Theta T - w(X_{T}^{+}) + w(X_{0}) + \int_{0}^{T} (c_{1} - w(X_{t})) (dN_{t}^{1} - g(X_{t}) dt) +$$

$$+ \int_{0}^{T} [w'(X_{t}) + g(X_{t})(c_{1} - w(X_{t})) - \Theta] dt + \int_{0}^{T} (c_{2} - w(X_{t})) dN_{t}^{2}, \quad T \ge 0. \quad (31)$$

Since w(x) is bounded, the first integral in (31) is a martingale which fulfils the law of large numbers (see [6], Lemma 3), i.e.

$$\lim_{T \to \infty} T^{-1} \int_0^T (c_1 - w(X_t)) (dN_t^1 - g(X_t) dt) = 0 \quad \text{a.s.}$$

The second and the third integrals are nonnegative; this follows from the quasivariational inequalities (I)—(III). Hence, from (31) we get

$$\lim_{T\to\infty}T^{-1}C_T\geq\Theta\quad\text{a.s.}$$

Introduce

$$c = \inf\{x: w(x) = c_2\}$$
 (32)

Received: 30. 10. 1986

and let Z be the policy with replacement age c. From (31) and from (III) it follows that under Z

$$\lim_{T\to\infty}T^{-1}C_T=\boldsymbol{\Theta}\quad\text{a.s.}$$

We conclude with regard to (32) that $\Theta = \inf \Theta(x) = \Theta(d)$.

REFERENCES

- Bather, J. A.: On the sequential construction of an optimal age replacement policy. Proc. 14th Session ISI, New Delhi 1977.
- Berg, M.: A proof of optimality of age replacement policies. J. Appl. Probability 13(1976), 751-759.
- Mandl, P.: On the sequential improvement of replacement policies. Proc. Second Prague Symp. on Asymptotic Statistics, JČSMF North-Holland, Prague, 1979, 277—290.
- Mandl, P.: Martingale methods in discrete state random processes. Príloha časopisu Kybernetika 18(1982).
- 5. Menyhértová, V.: A contribution to the theory of preventive replacement of machine part. (In Slovak), Thesis, Charles University, Prague 1979.
- 6. Menyhértová, V.: On adaptive replacement policies. Kybernetika 16(1980), 512-525.

Author's address:

Valéria Skřivánková Katedra matematickej analýzy PF UPJŠ Jesenná 5 041 54 Košice

SÚHRN

O JEDNEJ KVÁZIVARIAČNEJ NEROVNOSTI

Valéria Skřivánková, Košice

V tejto práci sa študuje proces obnovy s preventívnou výmenou. Optimálnosť stratégie spočíva v minimalizácii priemerného nákladu metódou kvázivariačných nerovností. Sleduje sa existencia a jednoznačnosť riešenia týchto nerovností.

РЕЗЮМЕ

ОБ ОДНОМ КВАЗИВАРИАЦИОННОМ НЕРАВЕНСТВЕ

Валерия Скриванкова, Кошице

В этой работе изучается процесс восстановления с предворительной заменой. Оптимальность стратегии замены заключается в минимизации средней стоимости методом квазивариационных неравенств.

Исследуется существование и единозначность решения этих неравенств.

