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ON CONCERNING A CERTAIN QUASIVARIATIONAL INEQUALITY

VALERIA SKRIVANKOVA, Kosice

One of the fundamental problems of renewal theory is to secure‘a smooth
progress of production in such a way that the costs are minimal. In the renewal
process with preventive replacements this means finding an optimal strategy
which minimizes the average cost.

The optimality of such a replacement strategy, its construction and its
asymptotic behaviour in a nonparametric situation (i.e. when the distribution
function of failure times is unknown) were treated in [1], [2], [3]. The parametric
situation (i.e. when the distribution function of failure times is specified up to
an unknown parameter) was investigated in [5], [6].

This paper is connected with [5], [6], but uses another mathematical method
for the minimization of the average cost. The average cost and the optimal
stationary management of the replacement process are given here as a solution
of a system of quasivariational inequalities.

1 Fundamental model

Consider two types of replacements:
1) service replacement after failure at the cost ¢, (type 1),
2) preventive replacement at the cost c, (type 2).
We assume ¢, > ¢, > 0.
The total cost accumulated up to time ¢ is

C:=C|N:‘+02N;2, (1)

where N/, i = 1, 2 is the total number of replacements of type i up to time .

The average cost per unit time @(x) corresponding to the policy with a
constant critical age x€[0, o) (age at which a component is replaced by a new
one) is
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Ox) = (¢, F(x) + ¢, F()/ j “Fo)dy, @)
0

where F(x) is the distribution function of failure times,

Fi) = 1 — F(x) = exp{— f &) dy}, 3)
0

g(x) is the failure rate and the denominator in (2) is the mean time between
replacements. We denote by f(x) the probability density of failure times. Then
f(x) = g(x)F(x). About g(x) we assume the following.

Assumption 1.

(1) g(x) is differentiable on [0, c0) and has no inflexion point,

(ii)) g(x) has at most one extreme and g(o0) = 0.

In general, the critical age is not a constant but a nonanticipative random
function {Z,, t > 0} which assumes positive values and is left-continuous.

2 The Bellman equation for the expected discounted cost

The impulsive control of a Markov process consists in shifting instantaneously
its trajectory to the selected position. In our case the process {X,, ¢ > 0}, the age
of the component at time ¢, is a Markov process and the impulsive control
defined by {Z,, t > 0} consists in the choice of an increasing sequence of stopping
times at which the trajectory of the process is shifted to the zero-position (see
Figure 1). {X,, 1 > 0} is assumed to be left-continuous.

00 T, 6 Ty TG, Ty ¢
Fig. 1

7,J = 1,2, ... is the time of the j-th replacement (of type 1 or 2) g}, j =1, 2, ...
is the time of the j-th preventive replacement given by the policy {Z,, ¢t > 0}.
The optimality criterion is given by the expected discounted cost

E? '[) e Pdc,, C))
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where f > 0 is the discount-factor and x is the initial age. The minimum satisfies
the quasivariational inequalities which we obtain assuming a random stopping
of the process with a rate 7 < oo and then letting 7 — oo. The policy, here the
selected value of the stopping rate,

R={R,t>0}, 0<R <F

defines the process of preventive replacements.

To minimize the expected discounted cost (4) we apply the Bellman principle.
We assume a suitable choice of the stopping rate on the interval [0, A] and then
an optimal procedure with respect to the situation in time 4, A — 0, . Denote

ﬁ(x)=ir;fEfJ e#dC,, R={R,1>0}, 0<R <F.

0

Then
i(x) = oTiE (1 — g(x)A —rdye P a(x + A) +
+ g(x)A. (¢, + u4(0)) + rA(c, + a(0)) + o(4)].
Hence,

0 = A[i'(x) + g(x) (e, + #(0) — @(x)) — ia(x) + min_r(c, + a(0) — a(x))),

where
a(x + A) = a(x) + Aw'(x) + o(A), e P =1 — BA + o(4).
Thus, we get the Bellman equation

@' (x) +g(x) (¢, + @(0) — a(x)) + min_r(c, + a(0) — #(x)) — fi(x) = 0. (5)

Next we find the limit solution of the Bellman equation (5) as 7 — co. Let a
be a point where the term ¢, + #(0) — #(x) changes its sign, i.e. #(a) = ¢, + u#(0).
The function #(x) has at most one extreme and satisfies the inequalities

¢, + u(0) — a(x) 20 for xel0, a],
c,+u0) —a(x) <0 for x>a.
Denote #(0) = k, where £ is a constant and #(x) = #(x) — #(0). Then, from the

Bellman equation (5) we get
1. Forx>a

{5'()6) — (g(x) + B+ Pi(x) = Pk — crF — ¢,8(x) ©)

v(a) = c,.
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By solving (6) with initial condition ¥(a) = ¢, we get

b

~[l@0)+ B+ nay ] [ 0)+ B+ ndy
s|e

8) = [cz + f (B — cof — i) e

c,Fla)e=F+™ _ ¢, J‘ f(s)e= PP ds + (Bk — c,F) j F(s)e~ B+ ds

i(x) =

(7

Fx). e #+7
To have the function #(x) bounded, it is necessary that
0 = c,F(a)e ¥+ — ¢, J‘if(s)e""””"ds + (Bk — c,P) jw F(s)e ®+Mds. (8)
Since

[rwesmay—evimr@ - [C e net o Fo g,

from (8) we have for the constant

f= ﬁ-'[(cz ) — et (e~ ) (Fe*‘ﬂ*'w-“’ - @dy)—']. ©)

a F(a)
Further,
’ _”’*’““""E&y—)d = <1— 1 Jw B+ —a) d)
J:z ¢ F(a) 4 B+F F(a) A € f(»)dy
and
YNNI /. D PP
F@ . € f(y)dy Y F(a)+o() as F— o0

From (9) we have

] _
k=pB")(c,—c)| B+7 —F|—aB|,
1 (f(a)
- (L9 sa
{ [ B+ F<F(a)+0( )) }

— A1 __ y .__!__ M l —-T —_ =
fF=B'(c Cz)[(ﬂ+’)<1+B+F(F(a)+0( ))) 7=
— B (c, — c)g(@) — ¢ + o(1). (10)

ie.
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Denote k = lim k, then for 7 — oo we have

k=pB"(c,—c)gla) —c,. (n
Now we modify the term (7)

(x) =}:~:c(‘_;_) J;wf(s) e~ B+NG-x d:S _‘% J;w F(s) e~ (B+NGs—x d“f +
@) (i)
+ -czr' jwf'(s) e~ B+Rt—2qs,
F(X) x

(i)
We have (for 7 — o) : (i) = 0, (ii) = 0, (iii) — c,.
If we denote
v(x) = lim #(x), u(x)= lim &(x), (12)
we get the limit solution of the Bellman equation (for 7 — o) in the form
ux)=c,+k, x=>a. (13)
2. For x€[0, a] .
omin r(c; + u(0) —a(x)) = 0.

From (11), (12) and from the Bellman equation we get
v'(x) — (g(x) + Po(x) = —g(x)c, + g(a) (¢, — ¢;) — Be,
v(0) =0.
By solving (14) we get for x€[0, a]
j; &) + Bdy / (X = _‘.0’ &0 + Ady
o) = ([T~ +z@c = er - pes]e ds) =

0

(14)

—q fo(s)e“ﬂ‘ds + [g(@) (¢, — ¢) — Bc,) J“ F(s)e Pds
- : F(x)e # :
Thus, the limit solution of the Bellman equation (5) is
- fo(s)e"”‘ds + ﬂij F(s)e Ads
: F(x)e :

k+c¢, for x>a,
where & is given by (11).

, x€[0, a].

u(x) = k + for xe[0, a] (15)

111



3 Quasivariational inequalities for the expected discounted cost

Theorem 1. The quasivariational inequalities for the expected discounted cost
(I") u'(x) + g(x) (¢; + u(0) — u(x)) — Pu(x) = 0
(1) ¢, + u(0) — u(x) > 0 (16)
(1Y) (c; + u(0) — u(x))[u’(x) + g(x) (c; + u(0) — u(x)) — Pu(x)] =0
have solution (15), where a is the unique solution of the equation
(€= NF@e™ + 6@ +B) | FyeP ] = an

and the constant is

k = ﬂ—l(cl —¢)gla) — ¢,.

Proof. The proof will be performed in two steps:
1. The unicity of the solution of (17)
From (17) we get

4

Fl@)e ™ + (g(a) + f) J "Foyerdy =
. 0

G—6

Now, we investigate the function

000 = Fe ™ + ¢ + ) [ FO)edy, xel0, o)
By Assumption 1 the function g(x) has a derivative so that
0 =g (- | Fo)edy,
Thus the functions Q’(x) and g’(x) have the same sign. By Assumption 1 there
are two possibilities:

a) If g(x) has no local extreme, then g’(x) > 0 everywhere and Q(x) is

€,

increasing on (0, o0). Since lir‘x)l QO(x)=1 and > 1 (¢; > ¢, > 0), the

+ CI — Cz
C

C| = 62
b) If g(x) has an extreme, it is (by Assumption 1) a local minimum in some

point b€ [0, a]. Thus Q(x) decreases on [0, b], increases on [b, c0) and its graph

¢

graph of the function Q(x) crosses the line y =

in exactly one point.

crosses the line y = also in exactly one point.

GG — 6
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2. The fulfilment of the quasivariational inequalities (1')—(I1I")
Ad (I
a) On the interval [0, 4] in (I’) equality holds, because for xe[0, a]

_a f Foe Py + Bk f “Fo)em ay
0 0

=k
u(x) + FoyoF

Substituting this into (I') we get
u'(x) + g(x) (¢, + u(0) — u(x)) — Pu(x) = 0.
b) On the interval [a, co)we have
u(x) =k + ¢, = p~'(c, — c,)g(a),
so that
g(@) (¢, + u(0) — u(x)) — Pu(x) = g(a)(c; — ¢)) + Pk + ¢;) = 0.
Since g(x) is increasing for x > a (i.e. g(x) = g(a) for x > a), it holds

u'(x) + g(x) (¢, + u(0) — u(x))— Pu(x) = g(x) (¢, — ¢;) — Ble; + k) 2 0,

i.e. (I') holds.
Ad (II)
a) On the interval [0, q]

¢, + u0) — u(x) >0

is equivalent to

e F(x)e P + ¢, J::f(y)e"”dy — [g(@) (¢, — ¢;) — Bei) J:F(y)e‘”-"dy >0. (18)
Since

[ 100e 4y =1 - Fyem - p[ Forem ey,
from (18) we get the condition

= — cz)[ﬁ(x)e-ﬂ' (@) + ﬂ)f‘ Fl)e? dy] >0,
0

or
Cy

= [F(x)e““r + (g(a) + ﬂ)J‘x F(y)e“’»“dy] > 0. (19)
0

G— G
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Denote the left part of (19) by T(x). Then
T'(x) = f(x)e™ ™ + F(x)Be ™ — (g(a) + HF(x)e ™ = (g(x) — g(@)F(x)e 7,
i.e. T(x) is nonincreasing on [0, @], and nonnegative in virtue of 7(a) = 0. Hence
(IT") holds on [0, a].
b) On the interval [a, ®©), where u(x) = ¢, + k, we have ¢, + u(0) — u(x) =0,
i.e. in (II) the equality holds.
Ad (IIT")
(ITT’) holds, because on [0, a] the equality holds in (I’) and on [a, o) in (IT").
: ' , O
Theorem 2. The bounded solution of quasivariational inequalities (1")—(11I")
for the expected discounted cost is unique. It holds

u(x) = ir71f EfJ- e #dC,, xel0, o).

0
For the replacement age Z, = a, t > 0, where a satisfies (17)
u(x) = EZ j e #dC,, xel0, ). (20)
0

Proof. Consider an arbitrary bounded solution u(x) of the quasivaria-
tional inequalities (I")—(I11"). Assume that u(x) has continuous derivatives and
consider the integral

.[Te'“(u'(X,) — Pu(X)))dt, T>0.
0

At the points 7, i = 1, 2, ..., 1,€[0, T, the trajectory of the process {X,, ¢t > 0}
jumps to the zero-position. Taking this into account we get

.[Te_&(u’(X,) — Pu(X))dt = e Tu(X;") — u(X,) +
0

+ fre"”(u(x,) — u(0))d(N} + N?),
0

where X" is the right-continuous version of the age of the component at
time ¢,

X,* =X, Xivi=nii=1,2).
For T — o0 we get

u(Xo) — J'

0

oo'i‘f’”(u(z\f,) —u(0)d(N, + N?) + Jwe_ﬂ'(u’(z\’.) — Pu(X))dt = 0.
0
(e2))
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By the definition of C, and by adding the left part of (21) we obtain for the
expected value

oxX

EZJI e #dC, = Eff e "d(e, N, + ¢,N}) = Efu(X,) +
0 0
+ Effxe‘ﬂ’(c, + u(0) — u(X))(dN,; — g(X)dr) +
0
+ EfLI e P(c, + u(0) — u(X,))dN} +
+ EZ Lx e Mu(X) + g(X)(c; + u0) — u(X,)) — Pu(X)]dt. (22)
We have EZ(u(X,)) = u(x) for X, = x. By the martingale properties

Efrv e (¢, + u(0) — u(X))(dN, — g(X,)dr) =0,
0 = -

(iv)

namely, N — j g(X,)ds, se€]0, 7] is a martingale (see [6], Lemma 1) and (iv) is
0

a martingale, too (see [6], Lemma 2). Since u(x) is a bounded solution of
quasivariational inequalities (I')—(III"), the last two integrals in (22) are non-
negative and

E7j e MdC, > u(x). 23)
0

The equality in (23) is satisfied for the replacement age x such that
¢; + u(0) — u(x) =0, i.e. for the age x = a.
Thus, we have (20) and simultaneously the unicity. O

4 Quasivariational inequalities for the average cost

The transition from the discounted cost to the average cost is effected by the
limit passage in the discount-factor §— 0, .

Denote w(x) = ﬂlino1 (u(x) — u(0)), where u(x) is the limit solution of the Bell-
man equation (5) by 7 — co. Then by (15) we get
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—c. f “10)dy + ( j “Fo) dy) lim (8k)
0 0 -0,
F(x).e %

¢, forx=>a.

w(x) = for x€[0, a] (24)

Obviously, f f()dy = F(x) = 1 — F(x).
0
We calculate ﬁlino1 (Bk), where k = B~'(c, — c,)g(a) — c, is the unique solution
BAe: .

of (17). By f— 0, from (17) we get

)
(e~ )| Fla) + (@ | FOIay| =, 25)

0

where g, = lim a.
B0,
Namely, from the definition of the average cost @(x) and from the condition
that the optimal critical replacement age d minimizes the average cost, we get

[(c.f(x) — e () L FO)dy — (¢, F(x) + czF(x»]F(x)
X 2
( j Fo) dy)

o= c»[F(d) + 8(d) j Fo) dy] -, (26)

0'(d) =

x=d

Hence

which is the analogy of the equation (25) for a, = d. Moreover, we have from
(26)

(¢, — c)g(d) = &d) = ©
and for the limit
ﬂlij}} (Bk) = (¢, — c)g(d) = ©. (27)

We can write the relation (24) as
—¢,F(x) + © J F() dy)/F(x) for x€[0, d]
w(x) = ( ‘ o (28)
¢, forx>d,

where d is the unique solution of (26).
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Now, we investigate the term fu(x) in (I') by f— 0,, i.e. the limit
ﬁlll'& Pu(x) =
—a [ 10y + [ Forem ey
0

lim [Bk + g — for xe[0, d
B0, B+ F F(x).e F 0. 4]

pﬁT B(c, + k) for x>d.

Obviously, by (27) we have
ﬂlirg Pu(x) = @ for xe(0, o0). (29)

Thus, the following theorem holds:
Theorem 3. The quasivariational inequalities for the average cost

I w'x) + g(x)(c, — w(x)) — @ >0
() ¢, —w(x) >0
() (c; — wx)(W'(x) + g(x)(c; — w(x)) — @) =0, w(0) =0,

have a solution

(—c, F(x) + @J“ 20)) dy)/F(x) for xe[0, d]

w(x) = 0

¢, forx>d,
O=(c,Fd)+ czi(d)/J:F(y) dy,
where d is the (unique) solution of the equation
(€= ee(d) = @ F@ + R | Fo)ay.

Theorem 4. Number O for which there exists a bounded function w(x) satisfy-
ing the conditions (1)—(111) of Theorem 3 is unique.

Proof. Let (w(x), ®) be a bounded solution of the quasivariational inequali-
ties (I)—(III). Then for any replacement policy Z

T T

w/(X,)dt — J w(X,)d(N! + N?). (30)
0

w(X7) — w(X,) =j

0
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From the definition of the cost and by (30) we have

T
Cr = O — w(Xi) + w(Xy) + j (c1 = w(X)) (AN — g(X)di) +
0

+ J [w(X) + g(X)(c, — w(X)) — Oldr + J (c; — w(X))dN?, T=>0. (31)
0 0

Since w(x) is bounded, the first integral in (31) is a martingale which fulfils the
law of large numbers (see [6], Lemma 3), i.e.

T—x

T
lim 7! j (¢, — w(X)) (AN — g(X)d) =0 a.s.
0

The second and the third integrals are nonnegative; this follows from the
quasivariational inequalities (I)—(III). Hence, from (31) we get

lim 77'C, > @ as.

T—-

Introduce .
¢ =inf{x: w(x) = ¢,} 32)

and let Z be the policy with replacement age ¢. From (31) and from (III) it
follows that under Z
lim 7°-'C, =@ as.

T-

We conclude with regard to (32) that @ = inf @(x) = O(d). O
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SUHRN
O JEDNEJ KVAZIVARIACNEJ NEROVNOSTI
Valéria Skfivankova, KoSice
V tejto praci sa Studuje proces obnovy s preventivhou vymenou. Optimalnost stratégie spociva
v minimalizécii priemerného nakladu metoédou kvazivariaénych nerovnosti. Sleduje sa existencia a
jednoznacnost rieSenia tychto nerovnosti.
PE3IOME
OB OJHOM KBA3WBAPUALIMOHHOM HEPABEHCTBE
Banepus Cxpusankosa, Koumue
B 310ii paboTe H3ydaeTcs NpPOLEcC BOCCTAHOBJIEHHUS C NPEABOPUTENbHOIM 3amMeHoi. OnTHMaIb-
HOCTb CTPATErMH 3aMeHbl 3aKJIIOYAETCS B MUHUMHM3AIMH CPeAHEH CTONMOCTH METONOM KBa3HBa-

PHALlMOHHBIX HEPABEHCTB.
“CCJICJI}’CTCZ CYLLIECTBOBAHHE H €HHO3HAYHOCTh PCLLICHUSA 3THX HEPABCHCTB.
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