

Werk

Label: Article Jahr: 1989

PURL: https://resolver.sub.uni-goettingen.de/purl?312901348_54-55|log11

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

UNIVERSITAS COMENIANA ACTA MATHEMATICA UNIVERSITATIS COMENIANAE LIV—LV—1988

CRITERIA FOR DISCONJUGACY OF A DIFFERENTIAL EQUATION WITH DELAY

ALEXANDER HAŠČÁK, Bratislava

In [2], the autor has introduced the notion of a disconjugate differential equation with delay

$$x''(t) + N(t)x(t) + M(t)x(t - \Delta(t)) = 0$$
 (1)

and has proved that (1) is disconjugate on an interval I if and only if each boundary value problem associated with this equation has exactly one solution. In this paper we shall prove some criteria for disconjugacy of a differential equation with delay.

In the sequel we shall need the following theorem, which will enable us to compare the solution of (1) satisfying the initial conditions

$$x(A) = x_A, \quad x'(A) = x'_A$$

$$x(t - \Delta(t)) = \phi(t - \Delta((t)), \quad \text{if} \quad t - \Delta(t) < A$$
(2)

with the solution of the differential equation

$$y''(t) + N(t)y(t) + M(t)y(t - \tau(t)) = 0,$$
(3)

satisfying the initial conditions

$$y(A) = y_A, \quad y'(A) = y'_A$$

$$y(t - \tau(t)) = \psi(t - \tau(t)), \quad \text{if} \quad t - \tau(t) < A.$$
(4)

We shall suppose that the coefficients N(t), M(t) and the delays $\Delta(t) \ge 0$, $\tau(t) \ge 0$ are continuous functions on an interval $\langle a, b \rangle$, $b \le +\infty$ and that the functions $\phi(t)$, $\psi(t)$ are defined and continuous on the initial sets

$$E_A = \{t - \Delta(t) : t - \Delta(t) < A \text{ and } t \in \langle A, b \rangle\} \cup \{A\}$$

and

$$E'_A = \{t - \tau(t): t - \tau(t) < A, t \in (A, b)\} \cup \{A\}$$

respectively. This theorem is proved in [3] for the case of the differential equations of the form

$$x_i''(t) = \int_0^{\sigma_i(t)} x_i(t-\tau) \, \mathrm{d}r_i(t,\,\tau), \quad a \le t < +\infty, \quad i = 1,\,2$$

under some additional assumptions. The proof of our theorem is analogous to that of the above mentioned result.

Theorem 1. Suppose that x(t) and y(t) are solutions of (1) and (3) respectively, satisfying the initial conditions (2) and (4), respectively. Let

$$M(t) \geqslant 0 \quad \text{for} \quad t \in \langle A, b \rangle,$$
 (5)

$$\Delta(t) \geqslant \tau(t) \geqslant 0 \quad \text{for } t \in \langle A, b \rangle$$
 (6)

and

$$\phi(t) \leqslant \psi(\bar{t}) \quad \text{for} \quad t \leqslant \bar{t} \quad (t, \, \bar{t} \in E_A \cap E_A'),$$
 (7)

$$x(A) = \phi(A) = \psi(A) = y(A) \ge 0, \quad x'(A) \ge y'(A).$$
 (8)

Finally, let

$$y'(t) > 0$$
 for $t \in \langle A, b \rangle$.

Then

$$\frac{x'(t)}{x(t)} \geqslant \frac{y'(t)}{y(t)} \quad \text{for} \quad t \in (A, b), \tag{9}$$

and

$$x'(t) \geqslant y'(t)$$
, for $t \in \langle A, b \rangle$.

Now we are able to prove the following criterion.

Theorem 2. Suppose that the differential equation

$$y''(t) + p(t)y(t) = 0 (10)$$

is disconjugate on an interval $(a, +\infty)$ and the solution satisfying the initial conditions

$$y_o(a, a) = 0, \quad y'_o(a, a) = 1$$

satisfies the inequality

$$y_n'(t, a) > 0$$
 for $t \in \langle a, +\infty \rangle$.

Then the differential equation

$$x''(t) + N(t)x(t) + M(t)x(t - \Delta(t)) = 0,$$

where

$$M(t) \ge 0, \quad N(t) + M(t) = p(t),$$
 (11)

is disconjugate on $\langle a, +\infty \rangle$.

Proof. Let the assumptions of the theorem be satisfied. Then the equation (2), with $\tau(t) \equiv 0$ is disconjugate on the interval $\langle a, +\infty \rangle$ and

$$y_o'(t, a) > 0$$
, for $t > a$

holds.

Further,

$$y_o(t, A) = y_o(A, a) \left[y_o(t, a) \int_A^t \frac{ds}{v_o^2(s, a)} \right], \text{ for } t \ge A (a < A < +\infty).$$

Thus

$$y'_o(t, A) = y_o(A, a) \left[y'_o(t, a) \int_A^t \frac{\mathrm{d}s}{y_o^2(s, a)} + y_o(t, a) \frac{1}{y_o^2(t, a)} \right] > 0 \quad \text{for} \quad t \ge A.$$

The assertion of the theorem follows now from Theorem 1.

Example 1. The differential equation

$$v''(t)=0$$

is disconjugate on an interval $\langle a, +\infty \rangle$, $a \in R$ and the coefficients of the equation

$$x''(t) - \frac{1}{2}x(t) + \frac{1}{2}x(t - 3\pi) = 0$$
 (12)

fulfil (11). Thus the assumptions of Theorem 2 are fulfilled, therefore equation (12) is disconjugate on $\langle a, +\infty \rangle$.

Example 2. The differential equation

$$x''(t) + \frac{1}{2}x(t) - \frac{1}{2}x(t - 3\pi) = 0,$$
(13)

for a = 0 has the solution

$$x_o(t, 0) = \sqrt{2} \sin \frac{\sqrt{2}}{2} t, \quad \text{for } t \ge 0$$

and thus (13) is disconjugate at most on the interval $(0, \sqrt{2\pi})$. (On this interval it is equivalent to the differential equation without delay. Thus it is really

disconjugate on $\langle 0, \sqrt{2\pi} \rangle$.) But in this case the inequality from (11) is not fulfilled. Thus the assumption $M(t) \ge 0$ in Theorem 2 cannot be omitted.

In the next theorem we shall consider the differential equation of the form

$$x''(t) + k(t)x'(t) + l(t)x(t) + m(t)x(t - \Delta(t)) = 0,$$
(15)

where k(t), l(t), m(t) and $\Delta(t) \ge 0$ are continuous functions on an interval $\langle a, b \rangle$, $b \le +\infty$. The initial value problem for (15) as well as the definition of the disconjugacy are the same as for (1).

Theorem 3. Suppose that

$$l(t) \leq 0$$
, $m(t) \leq 0$ for $t \in \langle a, b \rangle$.

Then the differential equation (15) is disconjugate on $\langle a, b \rangle$.

Proof. Let us multiply the equation (15) by the function $\exp\left(\int_a^t k(s) \, \mathrm{d}s\right) > 0$. Then we get

$$\left[\exp\left(\int_{a}^{t}k(s)\,\mathrm{d}s\right)x'(t)\right]'+N(t)x(t)+M(t)x(t-\Delta(t))=0,$$
 (16)

where

$$N(t) = l(t) \exp\left(\int_{a}^{t} k(s) \, ds\right) \le 0$$

$$M(t) = m(t) \exp\left(\int_{a}^{t} k(s) \, ds\right) \le 0.$$
(17)

It is easy to see that it is sufficient to show that the equation (16) with the coefficients satisfying (17) is disconjugate on the interval $\langle a, b \rangle$.

We have to prove that no solution $x_o(t, A)$, $A \in \langle a, b \rangle$ of (16) has any zero on (A, b). For this purpose, let us multiply the equation (16) by $x_o(t, A)$ and then integrate it by parts from A to t. We get

$$x_{o}(t, A)x'_{o}(t, A) \exp\left(\int_{a}^{t} k(s) \, ds\right) =$$

$$= -\int_{A}^{t} [N(s)x_{o}^{2}(s, A) + M(s)x_{o}(s, A)x_{o}(s - \Delta(s), A)] \, ds +$$

$$+ \int_{A}^{t} \exp\left(\int_{a}^{s} k(\tau) \, d\tau\right) (x'_{o}(s, A))^{2} \, ds.$$
(18)

Suppose now, on the contrary, that $x_o(t, A)$ has a zero in (A, b). Then there is a point $T \in (A, b)$ such that

$$x'_o(T, A) = 0$$
, $x'_o(t, A) > 0$ for $t \in \langle A, T \rangle$

and with respect to the initial conditions fulfilled by $x_o(t, A)$ we have

$$x_o(t, A) > 0$$
, $x_o(t - \Delta(t), A) \ge 0$ for $t \in (A, T)$.

By this fact and by the assumptions of the theorem we get that the left-hand side of (18) is equal to zero at the point t = T, while the right-hand side of (18) at t = T is a positive number. This is a contradiction.

With the aid of Theorem 3 we shall prove

Theorem 4. Suppose that the equation

$$x''(t) + N(t)x(t) = 0 (19)$$

is disconjugate on an interval $\langle a, b \rangle$ and

$$M(t) \le 0 \quad \text{for } t \in \langle a, b \rangle.$$
 (20)

Then the equation (1) is disconjugate on $\langle a, b \rangle$.

Proof. We shall prove this theorem by contradiction. Let the equation (1) be not disconjugate on $\langle a, b \rangle$. Then there is a point t = A such that for the first conjugate point c_A to the point A (i. e. for the first zero of $x_o(t, A)$) with respect to the equation (1) we have

$$c_A < b. (21)$$

On the other hand, since the equation (19) is disconjugate on $\langle A, B \rangle$ ($c_A < B < b$), there is a solution v(t) of (19) such that

$$v(t) \neq 0$$
 for $t \in \langle A, B \rangle$.

Let u(t) be the function defined by

$$u(t) = \left\langle v(t) \text{ for } t \in \langle A, B \rangle \atop \max(0, v(t)) \text{ for } t < A. \right.$$
 (22)

Then the differential education (1) is transformed by the substitution

$$x = u(t)y$$

into the differential equation

$$y''(t) + 2\frac{u'(t)}{u(t)}y'(t) + M(t)\frac{u(t - \Delta(t))}{u(t)}y(t - \Delta(t)) = 0$$
 (23)

for $t \in \langle A, B \rangle$.

By the definition of u(t) and by (20), we have

$$M(t) \frac{u(t - \Delta(t))}{u(t)} \le 0$$
 for $t \in \langle A, B \rangle$.

Thus the assumptions of Theorem 3 are fulfilled and hence the equation (23) is disconjugate on $\langle A, B \rangle$. But this is a contradiction with the definition of the point B.

Theorem 5. Suppose that N(t), M(t) are nonnegative functions defined on the interval $\langle a, +\infty \rangle$ and

$$\int_{a}^{+\infty} \left[(s-a)N(s) + (s-\Delta(s)-a)^{+}M(s) \right] \mathrm{d}s < 1, \tag{24}$$

where $(s - \Delta(s) - a)^+ = \max(0, s - \Delta(s) - a)$.

Then the equation (1) is disconjugate on the interval $\langle a, +\infty \rangle$.

Proof. By integrating the equation (1) from A to t we get

$$x'_{o}(t, A) = 1 - \int_{A}^{t} [N(s)x_{o}(s, A) + M(s)x_{o}(s - \Delta(s), A)] ds$$

for $t \ge A$ and hence follows the inequality

$$x_o(t, A) \le (t - A)$$
 for $a \le A \le t \le c_A$ (25)

if there is a conjugate point c_A to the point A. If such a point does not exist, then (25) holds for $t \ge A$.

Further, by (25) and the initial condition fulfilled by $x_o(t, A)$, we have

$$x_o(t - \Delta(t), A) \leqslant (t - \Delta(t) - A)^+. \tag{26}$$

Now we shall prove the theorem by contradiction. Suppose that the assumptions of the theorem are fulfilled and the equation (1) is not disconjugate on the interval $\langle a, +\infty \rangle$. Then there is a point $A \in \langle a, +\infty \rangle$ such that its conjugate point c_A lies in the interval $(A, +\infty)$. By Rolle's Theorem, there is a point

$$T \in (A, c_A)$$

such that

$$x_o'(T, A) = 0.$$
 (27)

On the other hand,

$$x'_{o}(T, A) = 1 - \int_{A}^{T} [N(s)x_{o}(s, A) + M(s)x_{o}(s - \Delta(s), A)] ds,$$

which by (25) and (26) gives

$$x'_o(T, A) \ge 1 - \int_{A}^{T} [N(s)(s - A) + M(s)(s - \Delta(s) - A)^+] ds.$$

From this fact, since $a \le A < T < c_A$, it follows that

$$x'_{o}(T, A) \ge 1 - \int_{a}^{T} (N(s)(s-a) + M(s)(s-\Delta(s)-a)^{+}] \, \mathrm{d}s \ge$$

$$\ge 1 - \int_{a}^{+\infty} [N(s)(s-a) + M(s)(s-\Delta(s)-a)^{+}] \, \mathrm{d}s.$$

The last inequality together with the inequality (24) yields

$$x'_{o}(T, A) > 0$$

which is a contradiction with (27).

REFERENCES

- Coppel, W. A.: Disconjugacy. Lecture Notes in Mathematics, Springer-Verlag, Berlin— Heidelberg—New York 1971.
- Haščák, A.: Disconjugacy of Differential Equations with Delay. Acta Mathematica Universitatis Comeniae, Bratislava (1988), 73—80.
- Мышкис, А. Д.: Линейные дифференциальные уравнения с запаздывающим аргументом. Наука, Москва 1972.
- 4. Норкин, С. В.: Дифференциальные уравнения второго порядка с запаздывающим аргументом. Наука, Москва 1965.

Author's address:

Received: 11. 6. 1986

Alexander Haščák Katedra Matematickej analýzy MFF UK Mlynská dolina 842 15 Bratislava

SÚHRN

KRITÉRIA DISKONJUGOVANOSTI PRE DIFERENCIÁLNU ROVNICU S ONESKORENÍM

Alexander Haščák, Bratislava

V práci sú dokázané kritéria diskonjugovanosti pre diferenciálnu rovnicu tvaru

$$x''(t) + N(t)x(t) + M(t)x(t - \Delta(t)) = 0.$$
 (1)

Pojem diskonjugovanej diferenciálnej rovnice tvaru (1) bol zavedený v práci [2], kde je aj dokázaný vzťah medzi diskonjugovanosťou diferenciálnej rovnice (1) a existenciou riešenia okrajových úloh pre túto rovnicu.

РЕЗЮМЕ

ДОСТАТОЧНЫЕ УСЛОВИЯ ДЛЯ ТОГО, ЧТОБЫ ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ С ЗАПАЗДЫВАНИЕМ БЫЛО БЕЗ СОПРЯЖЁННЫХ ТОЧЕК

Александер Хащак, Братислава

В работе даны достаточные условия для того, чтобы дифференциальное уравнение вида

$$x''(t) + N(t)x(t) + M(t)x(t - \Delta(t)) = 0$$
 (1)

было без сопряжённых точек. Понятие дифференциального уравнения вида (1) без сопряжённых точек было введено в работе [2], в которой также доказана связь между свойством, что дифференциальное уравнение (1) является без сопряжённых точек, и существованием решения краевых задач для этого уравнения.