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DISCONJUGACY OF DIFFERENTIAL EQUATIONS WITH DELAY

ALEXANDER HASCAK. Bratislava

The notion of disconjugacy plays an important role in the theory of ordinary
differential equations. There are many papers and one nice monograph (see [1]
and the References in it) devoted to these topics. The corresponding theory for
the differential equations with delay has not built up yet. The purpose of this
paper is to generalize the notions of a conjugate point, and a disconjugate
differential equation, and to show that the interval of disconjugacy of each
differential equation with delay does not degenerate into a one-point set (a
generalization of de la Valée Poussion’s theorem) and to show the connection
between the disconjugacy of the differential equation with delay and the sol-
vability of the boundary value problem.

In this paper we shall deal with the differential equation

x"(t) + N(Ox(®) + M(1)x(t — A(r)) =0, 1)

where N(¢), M(t) and A(¢) > 0 are defined and continuous on the interval {a, b),
(b < ).

The underlying initial value problem for this differential equation is defined
as follows (see [11]):

Let the continuous function ¢(¢) be deffined on the initial set
E,={t—A():t— Al)<a and tela, b)}u{a}.

Let x, = ¢(a) and let x, be an arbitrary real number. We have to find the
solution x(#) of (1) satisfying

x(a) =x,, x'(a+)=x,,
x(t — A®®) = ¢(t — A1), as t— A(t) < a.

By the derivative at the end point a of the interval {a, b) we shall mean the
right-hand point derivative and instead of x’(a+) we shall simply write x’(a).
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Under the above assumptions, the initial value problem (1), (2) has exactly
one solution on the interval {a, b) (see [11] p. 20), which we shall denote by x,(z,
a, X,s X.).

Since some special solutions will often occur, we shall use a short notation:

By x,(t, a) we shall denote the solution of (1) which satisfies the initial
conditions

x,(a,a) =1, xj(a,a)=0,
x,(t—A@),a)=1, if t— A@F) <a.

Further, by x,(z, a) we shall denote the solution of (1) which satisfies the
initial conditions

x,(a,a) =0, x.(a,a) =1,

. (2)
x,(t— A1), a)=0, if t—A@F) <a.

Finally, by x,(t, @) we shall denote the solution of (1) which satisfies the initial
conditions

x,(a,a) =0, xy(a,a)=0,

x(t = A1), a) = (1 — A1) = ¢t — A1) — ¢(a),

if t — A(t) < a.
It is easy to see that the relation

X (L, 4, X4 x) = X, % (1, @) + x,x,(¢, a) + x, (1, a) A3)

holds.
Further, it is easy to prove

Theorem 1. The set B(a) of all solutions of (1) with the initial function
¢(t) =0 and x,e(— o0, +o0) is a one-dimensional vector space.

Definition 1. Let 4 € {a, b). By conjugate points to the point 4 with respect
to (1) we shall mean the zeros of the solution x,(z, 4) e B(A) which are on the
right of 4. A point ¢, (4 < c}) will be called the i-th conjugate point to the point
A with respect to (1) iff it is the i-th zero of the solution x,(z, A) on the right of
A.

The following theorem gives an estimate for the distance between the point
A and its first conjugate point ¢}, and is a generalization of the well-known de
la Valle’e Poussin’s theorem from the theory of ordinary differential equations.

Theorem 2. Let J be a subinterval of the interval {a, b) and assume that the
inequalities

INOI<N, M) <M, 0<A(t) <A for tela,b) 4
hold.
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Suppose that 4 € J and c}eJ. Then for the distance & = c; — A4 of the points
A, c; we have

ps —3MA+ VI M + 24N + M) _
- AN + M)

d &)

Proof. Let us observe that, for an arbirary function u(¢) with a con-
tinuous derivative, the identity

1 h h
hu(t) = '[ su'(s)ds — J (h— s)u’(s)ds + J u(s)ds (6)
0 !

0

holds on the interval <0, /).

To prove (6), it suffices to calculate the first and second integrals on the
right-hand side of the identity by parts.

Without loss of generality we shall assume that 4 = 0. Then ¢} = h. Apply
now the identity (6) to the function u(t) = x/(¢, 0). Since

h
J x,(s, 0)ds = x,(h, 0) — x,(0, 0) =0,

o

by (6) we get

t h
hx.(t, 0)= J sxo(s, 0)ds — j (h — s)x(s, 0)ds

and, because x,(s, 0) is a solution of (1), we have

o

hx,(t,0)= — J”S(N(s)x,,(s, 0) + M(s)x,(s — A(s), 0))ds +

h
+ J (h— 5)(N()x,(s, 0) + M(s)x,(s — A(s), 0))ds. )

Denote by

k = max |x,(z, 0)] > 0.
te0, h)

Then, since ¢t = 0 and ¢ = h are zeros of x,(t, 0), the inequalities
Ix,(s, 0)| < ks, for se0, h)
and
|x,(s, 0)] < k(h —s5), forse<0, h)
hold. From this fact we have

0<sx,(5,0)<sk(h—s) for se<0,h) (8)
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and
0<(h—9s)x,(s,0) <sk(th—ys) if se0, h). 9)
Now, as the solution x, (¢, 0) satisfies the initial conditions (2") with a = 0, we
get
0<sx,(s — A(s), 0) < sk(h— s+ A(s)) for s5€e€<0, h) (10)
and
0 < (h—s)x,(s — A(s), 0) < (h — s)k|s — A(s)] forse<0, h).

From this we deduce:
If s— A(s) =0 for se<0, h), then

0 < (h—s)x,(s — A(s), 0) < sk(h — s + A(s)) for se<0, h). (11

Because of (2'), this inequality also holds for s — A(s) < 0. Now, by (7) owing
to inequalities (8), (9), (10), (11) and (4), we obtain

t

h|x.(t, 0)] < ka

o

s(h—s)ds+kMJ sth—s+ A)ds +

h h
+ka s(h—s)ds—{-ij sth—s+ AQ)ds =

h h

sth — s)ds + kMAf sds,

o

h
=kNJ s(h—s)ds+ij

o

or

3 2
hIx.(, 0)) < k (N + M) % + kAM%, for &, k.

From this we have
k(N + M) B+ kAM
2
Inequality (12) also holds at the point at which
Ixo(2, 0)] = k
(such a oint exists in {0, 4») and if we divide this inequality by k > 0, we get

1<N;Mh2+A;wh,

Ix2(t, 0)] < h, for te<0, h. (12)

i.e.
N+Mh2
6 2

h—12>0.
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Therefore, # must not be from the interior of the interval the end point of
which are the roots of the equation

N+M, M, | _o
6 2

i.e.

—3AM — \J9A M? + 24(N + M)
2(N + M) ’
—3AM + J9A*M? + 24(N + M)
2(N + M) '

From this fact we have the conclusion of Theorem 2.
Definition 2. The equation (1) is said to be disconjugate on the interval
J(J = {a, b)), iff
AeJ=ci¢J.

As a consequence of Theorem 2, we have

Theorem 3. The differential equation (1) is disconjugate on every interval
J < {a, b) whose length is less that d(d is defined in (5)).

Suppose now that 4 € {a, b) and ¢(?) is a given initial function defined on E,
and such that ¢(A4) = 0. Let us consider the following set of solutions of (1)

{x(): x(t) = x(t, @): = x,(t, A) + ax,(t, A), ae(—o00, +00)}. (13)
It is easy to see that x(r) e (13) satisfies the conditions
x(4) =0, x'(4)=a.
Lemma 1. Two different solutions from (13) intersect each other in the points
(4 x(x4, A))

only.

Lemma 2. By every point of the stripe

P={tx):ci<t<cit', —o0 <x< +x},

i=0,1,2, ... (where cj= A)
passes exactly one solution of (1) from (13).

Proof. Let (z,, x,) € P. This point lies on such a solution of (1) of the form (13)

for which

a= Xo — xg(to, A)

x,(t,, A)
(x,(t,, A) # 0 since ¢, # c). By Lemma 1 there is only one such solution.
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Let us define now the boundary value problem for (1):
Let a<a <a,<b and x,, x, be real numbers. Suppose that ¢(7) is a
continuous function defined on the initial set E, and such that ¢(a,) = x,. We

have to find a solution x(¢) of (1) defined on <{q,, b) and satisfying
x(a) =x,, x(a) = x,,
x(t— A1) = ¢t — A@), if t— A@) <a,.

Lemma 3. Let Cul: be the first conjugate point to a, with respect to (1).

Suppose that a < a, < a, < ¢, and @(7) is a continuous function defined on
the initial set £, satisfying ¢(a,) = x,. Then there is exactly one solution x(7) of
(1) satisfying (14).

Proof. By (3) each solution of (1) which fulfils the condition

x(a) = x;; x(1 = A0) = ¢t — A1), if 1— A@t) <a, (14)

can be written in the form

(14)

x(1) = x;x, (1, @) + vx, (2, a)) + x,(¢, a)), 39

where y is a real number.
Further we have

(1) — x,%,(t, @) = x,(t, @) + 7,(1, @) e(13).

Now by Lemma 2 there is exactly one value y such that x(¢) fulfils also the
condition x(a,) = x,.

Theorem 4. The equation (1) is disconjugate on an interval J < {a, b) if and
only if every boundary value problem (1), (14) for a,, a,€J, a, < a, has exactly
one solution.

Proof. i) If the equation (1) is disconjugate on an interval J, then the
existence and the unicity of the solution of the given boundary value problem
follows from Lemma 3.
if) Let every boundary value problem (1), (14) for q,, a,eJ have exactly one
solution. Suppose that the equation (1) is not disconjugate on the interval J.
Then there exists a point 4 € J such that its first conjugate point c, also lies in J.
Let ¢(t) # 0 be a continuous function defined on the initial set E, such that
#(4) =0 (i.e. ¢ = ¢). Then the boundary value problem (1), (15)

x(A) =0, x(c,)=x,

(15)
x(t— A1) = d(t — A1), ift— AW < A4

has infinitely many solutions (if x, = x,(c,, 4)) or no solution at all (if
X, # x,(c4, A)). But this is a contradiction with the assumption.
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It is clear from the definition of the disconjugate ordinary differential equa-
tion that no solution of the disconjugate linear differential equation can oscil-
late. But this is not valid for disconjugate linear differential equations with delay
as shown by the following example.

Example. The differential equation

Y1) — M)yt — A1) =0, (16)

where M(r) > 0 for ¢t > a is disconjugate on the interval {a, + o) due to the
inequality

Yo(t, A)y=(t— A) + '[I(t — S)M(s)y,(s — A(s), A)ds >0 for 1> A4 >a.

But if M(¢) = 1 and A(t) = «, the equation (16) has oscillating solutions sin ¢
and cos?.
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SUHRN
DISKONJUGOVANOST DIFERENCIALNEJ ROVNICE S ONESKORENIM
A. Hascak, Bratislava

Pojem diskonjugovanej obycajnej linearnej diferencialnej rovnice je definovany pomocou nu-
lovych bodov jej rieSeni. Zo zrejmych dévodov nemozno formalne zovseobecnit tento pojem pre
rovnice s oneskorenym argumentom (nulové body rieSenia zavisia od zaciatocnej funkcie). V praci
je ukazané, Ze existuje akasi mnozina rieseni diferencialnej rovnice

x"() + N(1)x(1) + M(0)x(t — A1) = 0, e))

pre ktoré plati zovieobecnena de la Valle’e Poussinova veta (je dokazana v praci). Pomocou tychto
rieSeni je zavedeny pojem konjugovaného bodu ako aj pojem diskonjugovane;j linearnej diferencial-
nej rovnice s oneskorenym argumentom na intervale J. V praci je dalej dokdzana veta: Rovnica (1)
je diskonjugovana na intervale J prave vtedy ak kazda okrajova tloha (1), (14) ma prave jedno
rieSenie.

PE3IOME

ANOPEPEHLIMAJIBHBIE YPABHEHUA
C 3AITA3ABIBAHMEM BE3 COINPAXEHHBIX TOYEK

Anexcaunep Xawak, Bpatucnasa

IMonsTHe OOBLIKHOBEHHOro JHHEHHOro auddepeHIManbHOrO ypaBHEHHS 6e3 CONpPSKEHHBIX
TOYEK JAeTCA C MOMOILBIO Hy el ux perennid. [1o H3BeCTHBIM NPHYHHAM HEBO3MOXHO HOpMabHO
Pa3LIMPUTE ITO MOHATHE Ha Clly4ail ypaBHEHHH C 3aMa3/IbIBAIOIIMM apryMEHTOM (HY/IH pelleHHs
3aBHCHMBI OT HayasbHOM GyHKuuH). B paboTe nokaszaHo, 4TO CylIECTBYET HEKOTOPOE MHOXECTBO
peweHuit nuddepeHnanbHOrO ypaBHEHHS

x"() + N(Ox() + M(0)x(t — A(2)) = 0, (1

KOTOpO€E ynoBieTBOpseT 06001eHHOM Teopeme Basute [lycceHa (nocnenHss K0Ka3bIBaeTCa B pa-
60T1e). C MOMOILBIO ITHX PELICHHH MAETCSA KaK MOHATHE CONMPSKEHHOH TOYKM, TaK M MOHATHE
JHHEHHOro auddepeHIHaTBHOr0 ypaBHEHHS C 3aMa3AbIBAIOILAM apryMeHTOM 0e3 CONpsXeHHbIX
Touek Ha uHTepBasie J. Kpome Toro, B pobore nokasaHa Teopema: YpaBHenue (1) siBnsercs
ypaBHeHHEM 6e3 conpsixeHHbIX TO4eK Ha J TOrAa ¥ TOJILKO TOrja, Koraa kpaesas 3anaua (1), (15)
HMEET €IMHCTBEHHOE PEILCHHE.
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