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TRANSFORMATIONS OF SETS IN TOPOLOGICAL GROUP
SADASIV CHAKRABARTI — B. K. LAHIRI, India

Abstract. In this paper, along with some new results, we prove generalisations of some of the
results proved in [4] in a topological group. Steinhaus’ theorem on distance sets has been generalised
by many mathematicians in various directions. We prove further generalisations of Steinhaus’
theorem in a topological group.

1 Introduction
Let X be a locally compact Hausdorff topological group and S be the o-ring
generated by all compact subsets of X. Lot m be a regular Haar (left) measure
on S. In the sequel, we shall assume also that X is compact, because in that case
when we restrict our considerations to Baire sets only, the left Haar measure
coinsides with the right Haar measure {p 262, [2]}. We shall need this fact very
often. If E be any subset of X, then the outer measure, m*(E) of E is defined by

m*(E) = inf{m(F): E < Fe S}.

In Section 4 we prove some lemmas which are vital in the proof of some of
the subsequent theorems. Section 5 contains some convergence theorems which
are motivated by and include as particular cases some convergence theorems
proved in [4]. In Sections 6 and 7 we prove that certain sets in X and in the
product space X x X are open. These are motivated by a basic result, proved in
[4], that if Fis a compact set of positive measure, then the set of points ae X for
which m[F n aF] > 0 forms an open set. To prove theorems in these sections we
need the equaivalence of sequential continuity and continuity in a topological-
space. For this, we further assume that X is first countable. Equivalence under
this assumption is known {p 131, [5]}. In one of the lemmas, we prove the
equivalence in the product space X x X, which we need to prove some theorems.

If Fis a set of real numbers which is closed and is of positive measure
(Lebesgue), then a fundamental theorem of Steinhaus [7] tells that the distance
set of Ffills up an interval. This theorem has been generalised, by Kestelman [3]
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in an n-dimensional Euclidean space and by one of the authors [4], to a
topological group. Also, Ray [6] generalised the theorem of Kestelman by
considering more than one set in an n-dimensional Euclidean space. In Section
8, we obtain further generalisations of Steinhaus theorem in a topological
group. In one of the generalisations, we require the notion of density of sets as
introduced in [4] in a topological group and also the density theorem {Theorem
5.1, [4]}. The proof of density theorem, however, needs Vitali theorem for
invariant measures which has been proved in [1].

2 Known definitions

Definition 1 [1]. Let {S,} be a sequence of compact subsets of X. The sequence
{S,} is said to be a sequence of demi-spheres if

@) limm(S,) =0
and for some a > 0 and each positive integer n,
(") Sn—+I 1 Sn +1 < Srn
(i) m(S,, ) > a-m(S,).

An example of a demi-sphere may be seen in {Ex. 4.2 [i]}. As a consequence, it
follows that m(S,) > 0for n > 1.

Definition 2 [4]. Let £ bo a subset of X and x € X. The upper outer density
of E at x, denoted by D*(E, x), and the lower outer density of E at x, denoted
by D*(E, x), are defined as follows:
suppose that {S,} is a sequence of demi-spheres, then

D* (E, x) = sup {lim sup M}
’ " m(Sn)
and

*
D*(E, x) = inf {lim inf M}
n m(S,)
where the supremum and the infimum are taken over all sequences {g,S,}, g, €
X, x € g,S, for all values of n.

In D*(E, x) = D*(E, x) = 1, we say that E has outer density one at x. If E
€ S, then x is said to be a density point of E.

Definition 3 [4]. Let 4,€ S, r = 1, 2, 3, ... . If there exists a set 4 € S such that
m[A,AA] - 0 as r - oo, then the sequence of sets {4,} is said to converge to
the set 4, and in symbol we write 4, -+ 4 (where the notation A stands for the
symmetric difference of sets).
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3 Standing conventions and assumptions

(i) {S,} is a fixed sequence of demi-spheres, (ii) if x € X, there exists a sequence
{g.}, &, € X such that x € g,S, for all n, (iii) if x € X and V is open, x € V" and
x € g,S, for all n, then g,S, = V for all large n, (iv) small and capital letters with
or without suffixes denote respectively the elements and sets in X, (V) o denotes
the identity element of X.

4 Lemmas

The following lemma is needed in the proof of several theorems.

Lemma 1. Let f be a mapping from the product space X x X into Y, where
Y is a topological space. Then for the function f to be continuous at (a, b) € X x
x X, it is necessary that for every sequence {(a,, b,)} of points in X x X,

(a’l ’ b'l) =b (a’ b)

in X x X implies f(a,, b,) — f(a, b). This condition is also sufficient.

Proof Necessity. Let N be a neighbourhood of f(a, b) in Y. Since f is
continuous at (a, b), there exists an open set G in X x X with (a, b) € G such that
f1G] = N.

Since (a,, b,) — (a, b), there exists a positive integer n, such that for n > n,,
(a,, b,) € G. Thus for n > n,, f(a,, b,) € f[G) = N. Consequently, f(a,, b,) -
- f(a, b).

Sufficiency. Since X is the first countable, X x X is also so. There exists
therefore a nested local base

#(a, b) ={B,, B,, By, ...}
at the point (a, b).

If possible, assume that fis not continuous at (a, b). Then there exists an open
set H in Y with f(a, b) € H such that for every open set G in X x X containing
(a, b), f]G) is not contained in H. Consequently, f[B,] is not contained in H for
every n. So, for each n, there exists a point (a,, b,) € B, such that f(a,, b,) is not
contained in H. Thus {f(a,, b,)} cannot converge to f(a, b). But we show that
(a,, b)) — (a, b) and then we obtain a contradiction.

Let G be an open set containing (a, b). Since %(a, b) is a local base at (a, b),
there exists a positive integer n, such that '

(a,b)eB, =G.

Since % (a, b) in nested, B, < B, forn>n,. So, (a,,b,) € B, < B, € G if

n > n,. Thus (a,, b,) — (a, b). So f must be continuous at (a, b). This proves the
lemma.
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Note 1. The above lemma can be extended to the product of a finite number
of spaces.

Note 2. If the product space X x X is replaced by the single space and the
assumptions are changed accordingly, then also the above lemma remains
true{p 131, [5]}.

The following lemma is vital in the proof of Theorem 12.

Lemma 2. Let C, and C, be two compact sets of positive measures. Then the
set H of all those points a € X such that

m[C, na'Cy)>0

forms a nonempty open set.

Proof. We first show that H is nonempty. Since m is regular, there are open
sets U, and U, containing C, and C, respectively such that m(U,) < co and
m(U,) < oo . So by Theorem 5.1 [4] almost all points of C, and C, are points of
densities of the sets C, and C, respectively. Let @, ff be points of densities of the
sets C, and C, respectively. Then corresponding to & = 1/4, there exist 4, € X,
g, € X and a positive integer N such that forn > N,

m([C, n h,S,) > 3/4m(S,), a € h,S,
and
m[C, N g,S,] > 3/4m(S,), B € g,S,.
So, in particular,

m[C; A hySy] > 3/4m(Sy)

and
m[C, 0 gySy] > 3/4m(Sy) .» m[hy'C, 0 Sy] =
=mlhy'(C, N hySy)]l = m[C, N hySy] > 3/4m(Sy) .
Similarly,

mlgy'C, N Si] > 3/4m(Sy).
Let

Z =8y hy'C gyt G,
Then

Z=Sy—[(Sy— h;ICI)U(SN_gﬁl )l
sm(Z) = m(Sy) _m(SN_hﬁlcl)—m(SN_gﬁlcz) >
> m(Sy) — 1/4m(Sy) — 1/4m(S,) > 0.
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Since,
hy'Congy'Co Z,
we get
mhy' C, 0 gy' Cy=m(Z)>0.
So,
m[C, 0 (guhy') ' Cl = m[C, N hygy' Co] =
=mhy(hy' C, 0 gy' C)l=mlhy'C, N gy' Cy] > 0.
Thus the element a = gyhy' € X is such that
. m(C, na'C)>0.

So, H is nonempty.
It now remains to show that H is open. We define a function

fiX >R,
where R is the set of real numbers with the usual topology by
fl@=m(C,na'C), aeX.

We show that f'is continuous and then the result follows.
Let ¢, — a. Since the mapping

g X-X

defined by g(x) = x~' for all x € X is continuous,

g(a) - ga), ie. a ' >a'.

Since C, € S, by lemma 4.2 [4] we get
Cina'C,-» Cina'GC,.
Consequently,
m(C,na'C)->m(C,nal'C),

by Lemma 4.1 [4]. So, f(a,) — f(a) and fis continuous by Note 2. This proves
the lemma.

The proof of the following lemma is omitted as its technique is similar to
Lemma 2 except for long calculations. *

Lemma 3. Let C, and C, be compact sets of positive measures. Let p > 1 be
an integer. Then the set G of all those points, ’

(@, a,..,a)€e X X X x ... x X(p-times)
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such that
m[C,na'C,na;'Cy... 0vap™' G >0,

forms a nonempty open set.

5 Convergence theorems

Theorem 1. Let F be a compact Baire set and a,, a, b,, b€ X. If a, - a and
b, - b, then

a,Fb, - aFb.

Proof. Let £ > 0 be arbitrary. Since m is regualar, there exists an open set U
such that aFb < U and

m(U — aFb) < ¢/3.
So, there exists a (symmetric)neighbourhood V of o such that
VaFbV < U.

Since a, —» a and b, — b and since Va and bV are open sets containing @ and
b respectively, there exists a positive integer N such that g, € Va and b, € bV for
r>N.So,forr> N, a,Fb, c U.

Let

Y, = (aFb) n (a,Fb,), r= N.

Then
YcU for r=N and Y,=U—[(U—aFb)u(U—a,Fb)).
So,

m(Y) = mU) —m(U — aFb) —m(U — a,Fb) >m(U) — ¢/3—m(U) +
| +m(a,Fb,)) = m(aFb) — ¢/3>m(U) —2¢/3>m(U) —¢.
This implies that

m[U—-Y]<e for r=N,
i.e. m[(U—aFb)yu(U—a,Fb)l<e, r=N.
Since ‘
a,Fb,AaFb ¢ (U — aFb)u (U —a,Fb,) for r=N,
we obtain that
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m(a,Fb,A\aFb)<e if r=N.
So, a, Fb, — aFb.

This proves the theorem.

Note 3. A particular case of the above theorem has been proved in Theorem
4.1 of [4] by taking b, = 0 for each r.

Corollary 1. Let F be a compact Baire set and a,, a, b,, b€ X. If a, - a and
b, » b, thenfor 4 € S

a,Fbn A - aFbn A.
Proof. By Theorem 1 we have '
ml(a, Fb, 0 A) A(aFb N A)l = m((a, Fb, A aFb) n A] <
<m(a,Fb,/A\aFb) - 0.

Corollary 2. Let F be a compact Baire set and 4 be compact. Leta,,a,b,,band
¢,,ce X.1Ifa, > a, b, > band ¢, — ¢, then

(a,Fb) N c,A = (aFb) N cA.

Proof. By Theorem 1, a, Fb, — aFb.
Also, ¢,A — cA, by Theorem 4.1 [4].
So, (a,Fb,) N c,A — (aFb) N cA, by Lemma 4.4[4].

Corollary 3. Let F be a compact Baire set and q,, a, b, be x.Ifa, » a and
b, - b, and U is an open set containing aFb, a,Fb,, r =1, 2, 3, ... such that
m(U) < oo, then

U—a,Fb, - U—aFb.
Proof. Wo have
[((U—a,Fb) — (U — aFb) U [(U — aFb) — (U — a,Fb,)] = (a, Fb,AaFb)

and so the Corollary follows from Theorem 1.
Corollary 4. Let F be a compact Baire set and b,, b€ X. If b, - b, then Fb, '
- Fb.
" Proof. In Theorem 1, assume a, = e for all r.
Corollary 5. Let F be acompact Baire set and a,, aeX. If a,—aq, then
forde S

FanA - Fan A.
Proof. By Corollary 4 we have
m[(Fa, 0 A) A (Fa n A)l = m[(Fa, A\ Fa) N Al<m[Fa, A\ Fa] - 0
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Theorem 2. Suppose that {4,} is a sequence of Baire sets and A4 is a compact

Baire set. Leta,,a,b,,be X. If a, > a, b, > b and A, - A, then
a, A b, —» aAb.
Proof. We have
a,A.b,—aAb < (a,A,b,—a,Ab,)u(a,Ab, — aAb)
and so
m(a,A,b, — aAdb)y <m(a, A,b, —a,Ab,)+ m(a, Ab, — aAb) =
=mla, (A, — A)b,] + m(a,Ab, — adb) = m(A, — A) + m(a, A b, — aAdb) — 0

as r - oo by Theorem 1 and because 4, — A.
Similarly, m (adb — a,A,b,) > 0 asr - .
We now conclude that

a, A b, - aAb.
This proves the theorem.

Note 4. In Theorem 4.2 of [4], a particular case of the above theorem has been
obtained by taking b, = e for each r.

6 Certain open sets in X

If Fis a closed set of Lebesgue positive measure in the n-dimensional
Euclidean space E" then it is known [3] that the set of all translates of F those
intersect F in a set of positive measure is a nonvoid open set containing the
origin. In fact this is a generalisation of Steinhaus theorem [7]. Guided by this
fact, in this section and in the following section we prove that certain sets in X
and in the product space X x X are open where our basic sets are compact Baire
sets of positive measures.

Theorem 3. Let F be a compact Baire set of positive measure. Then the set of
all those points a € X such that

m(aFn Fa) >0

forms a nonempty open set containing e.
Proof. We define a function

DX >R,
~ where R is the set of real numbers with the usual topology by
®(a) = m(aF n Fa), aeX.
We show that @ is continuous and then the proof follows.
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Let a, — a. Then, a, F - aF and Fa, — Fa, by Theorem 4.1 [4] and Coroll;-
ry 4. So,

a,Fn Fa,—» aF n Fa

by Lemma 4.4 [4].

Consequently, m(a, F n Fa,) > m(aF n Fa), by Lemma 4.1 [4], i.e. ®?(a,) —
— @(a). The proof is now complete with the help of Note 2.

The proofs of the following theorems are omitted as these can be constructed
by a method similar to Theorem 3.

Theorem 4. Let F be a compact Baire set of posmve measure. Then the set of
all those points a € X for which

m(F naFa) > 0,

forms a nonempty open set containing e.
Theorem 5. Let F be a compact Baire set of positive measure. Then the set of
all those points a € X for which

m(FnFa)>0 or m(FnaF)>0

forms a nonempty open set containing e.
Note 5. The case m(F n aF) > 0 has been considered in Theorem 4.3 [4].

7 Certain open sets in X' x X

Theorem 6. Let F be a compact set of positive measure. Then the set of all
those points (a, b) € X x X for which

m@aFn bF) >0

forms a nonempty open set containing the point (e, €).
Proof. We define a function

v: X x X->R,
where R is the set of all real numbers with the usual topology, by
w(a, b) =m@FnbF), (a,b)eX x X. '

We show that y is continuous. Let (a,, b,) — (a, b). Then a, - a and b, — b. So,
a,F - aF and b,F — bF, by Theorem 4.1 [4]. By Lemma 4.4 [4] ¢, F N b.F —
— aF N bF. '

Consequently, m(a,F n b,F) - m(aF n bF), by Lemma 4.1 [4].

So, w(a,, b,) — y(a, b).

Continuity of y now follows from Lemma 1 and hence the proof.
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Note 6. The above theorem generalises Theorem 4.3 [4] to product spaces.

Theorem 7. Let C, and C, be two compact Baire sets of positive measures.
Then the set of all those points (a, b) € X x X for which

m(aC,b n bCya) > 0

forms an open set in X x X.
Proof. We define a function

h: X x X - R, where R is the set of all real numbers with the usual topology,
by

h(a, b) = m(aC,b n bC,a) for all (a, b)) € X x X and prove its continuity as in
Theorem 6, from which the result follows.

Theorem 8. Let C, and C, be two compact sets of positive measures. Then the
set of all those points (a, b) € X x X for which

m(aC,n bC,) >0

forms an open set in X x X
Proof. We define a function

- X x X—-R,

where R is the set of real numbers with the usual topology, by

x(a, b) = m(aC, n bC,), (a, b)e X x X, and prove its continuity as in Theo-
rem 6. THe proof follows from the continuity property.
We mention the following theorems without proof.

Theorem 9. Let F be a compact Baire set of positive measure. Then the set of
all those points (a, b)e X x X for which m(F n aFb) > 0 forms a nonempty
open set containing (e, €).

Theorem 10. Let F be a compact Baire set of positive measure. Then the set
of all those points (a, b)e X x X for which

m(aFb N bFa) > 0

forms a nonempty open set containing (e, e).

8 Generalisation of Steinhaus’ Theorem in topological group

Theorem 11. Let C be a compact Baire set of positive measure. Let p be any
positive integer and A be any number such that 0 < A4 < m(C ). There exists a
neighbourhood V of e such that if £,eV, n,eV,r=1,2, ..., pand A€V, then
the set Y of all points x such that

AyeC and &ExyneC, r=1,2,...,p
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is a compact set of positive measure such that
m(Y)>m(C)— A

Proof. Let A be such that 0 < A < m(C). Since m is regular, there exists an

open set U with C = U such that
m(U — C) < -L
p+1

There exists a symetric neighbourhood ¥V of e such that
VCV e U.

Let {, eV, neV,r=1,2,...,pand let also Ae V.
Let Y =A'C)n(&'Cpi ) . (&1Cyp ).
Then Y is compact and if x € Y, then

xeA™'C and xe&'Cnp'r=1,2,..,p,

ie. AxyeC,and Exn,eCor=1,2, ..., p.

So, Y is the set of points as desired in the theorem. The proof will, therefore, be
completed if we show that m(Y) > m(C) — A.

Now

K=l = [(U— )f'C)U{Lf)I(U— é"Cﬂf')}]

o m(Y)2mU)—mU—1"C) = ¥ mU—£'Cn).
r=1

Since A7'Cc Uand £&7'Cyp'<c U, r=1,2, ..., p, we have
m(U — 17'C)=m(U - C)
and m(U - £7'Cn7 ") = m(U = C).
A A
w m(Y)>U)—-———p-——=mU)—-A=>2m(C)—A.
p+1 p+1

Note 7. The above theorem coincides with Theorem 6.1 of [4]if 5, = eand A = ¢,
where of course it is only shown that Y is of positive measure. We, however,
show that the measure of the set ¥ may be made arbitrarily near to the measure
of the set C.

The following theorems are generalisations of Steinhaus Theorem to more
than one set.

Theorem 12. Let C, and C, be two compact sets of positive measures. Then

there exists a nonempty open set G such that if a € G, then the set of all those
points x such that
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xeC, and axeC,

forms a compact set of positive measure.

Proof. Let G={&: e X and m(C,n &é7'Cy) > 0. By Lemma 2, G is a
nonempty open set. Let ae G and 4 = C, na™'C,, then m(4) > 0 and 4 is
compact. If x e A4, then x e C, and ax e C,. This proves the theorem.

The above theorem can easily be generalised to the following one whose
proof is omitted.

Theorem 13. Let C, and C, be two compact sets of positive measures and p
be any positive integer. Then here exists a nonempty open set G such that if &,
&, ...y §,€ G, then the set of all those points x such that

xeC, and &¢xeC,, r=1,2,...,p

forms a compact set of positive measure.

Theorem 14. Let A4, 4,, A,, ..., A,,_,(m > 1) be compact sets of positive
measures. Then there exist open sets G,, G,, ..., G, _, such that if £ €G,
r=1,2, ..., m— 1, then the set of points x such that

xeAd and &éxed, (r=1,2,...,m—1)

is a compact set of positive measure. ;
Proof. Let Y =X x X x ... x X (m — 1 times). We define a function

fi Y- R,
where R is the set of real numbers with the usual topology, by
f@,ay,...,a,_)=m[Ana7'A,n...0a;' A, _|]

for all (a,, a,, ..., a,_))€Y.
We show that f'is continuous and then it will follow that the set H of all those
points (a,, a,, ..., a,,_,) € Y for which

ml[Anai'A,n...0na;' A4, ]1>0

forms an open set in Y.

Let (@, ay, ..., ad?_)) > (a;, a5, ..., a,_,). Then,a” - a,, i=1,2,3, ...,
m—1.

Since the mapping

g X-X
given by g(x) = x~' for all xe X is continuous, it follows that
d" ' sat, i=1,2,...,m—1.
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So, by Theorem 4.1 [4], Lemma 4.2 [4] and Lemma 4.4 [4], we get
And” '"4,n...0nd? (A, > Ana A n...na; (A, _,.
Consequently, by Lemma 4.1 [4]
mAnd’ 'A,n...nd? A, )omAna A, ...na; A, ),

ie. f(@”, ap, ...,d0_) - fla, ay, ..., ay_,).
So, fis contmuous because of Note 1.
We now show that H is nonempty. Since m is regular, there are open sets U,

v, U, ..., U,_, containing 4, 4,, 4,, ..., A, _, respectively such that
nU)< oand m(U) < w0,i=1,2,...,m — 1. So, by Theorem 5.1 [4] almost
all points of 4, 4,, 4,, ..., A,,_, are points of densities of the respective sets.

Let e, B, B, ..., B.._ 1 be points of densities of 4, 4, A4,, ..., A,,_, respectively.
Then there exist g, e X, iV e X, P € X, ..., K"~ Ve X, and a positive integer N
such that

m[A N gySyl > (1 — 1/4m)m(Sy)

and
mlA, o K28y > (1 — 1/am)m(Sy), i=1,2, ....m—1,
where
eeg,S, and Beh?S,, i=1,2,....m—1;n=1,2, ...
“So,

mlgy'A 0 Syl = mlgy' (4 0 guSy)] = mA 0 gySy] > (1 — 1/4m)m(Sy) .
Similarly,
mihQ™'4,0 Sy] > (1 — 1/4m)m(Sy), i=1,2, ...,m—1.

Let Z=Syngi'Anh)'d,n ... K=-D"'4,,_,.
Then

Z=Sy—[(Sy—gx’A)V(Sy—hY"'4) U ...u(Sy— KF~""'4,,_)).
So,

m—1
m(Z) = m(Sy) —m(Sy—gy'4) — Y, m(Sy—Hh"'4)>
i=1
>m(Sy) —m- Lm(S,,,) > 0.
4m
Since :
e ANKY AN ... AKE Y 'A, D Z,
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we get
mEi'AnhY A, A .. o KE V4, ) =m(Z)>0.
So,
m[4 o (hYgy) 4100 (B Vg ) A ] =
=mlAnghV 4,0 g V4, )=
=mlgyg'ANK) A 0 O KP4, )] =
=mlgiy' A4~ ... nKE VT4, _]1>0.
Let g, = hohy',i=1,2, ...,m—1.
Then the point (a,, a,, ..., a,_,) € Y is such that
mAna'Ain...0a, A, )>0.

So, (a,, a,, ..., a, _,) € H. Therefore, H is nonempty and this gives that H is a
nonempty open set. Consequently, there exist open sets G, i=1,2, ..., m— 1
such that g,e G,, i=1, 2, ..., m — 1 and such that

G xGyx..xG,_,cH.
Let{eG,,r=1,2,..., m— 1, then

&, &, s En_EH.
Let L=ANnE'Ain..nEL A4, .
Then L is compact. Also, if xe L, then xe 4 and xe&7'4,,r=1, 2, ...,
m—1,ie. xedand {,xed,,r=1,2,...,m— 1. Since (§,, &, ..., &,_ )€ H,

mAnéETA N .. nE L A,) >0,
ie. m(L) > 0.

This proves the theorem.

The first author is thankful to the C.S.I.R for awarding a Junior Research
Fellowship to the Department of Mathematics, University of Kalyani.
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SUHRN
TRANSFORMATIONS OF SETS IN TOPOLOGICAL GROUP
Sadasiv Chakrabarti — B. K. Labhiri
V praci st $tudované niektoré moZnosti zovseobecnenia znamej Steinhausox:ej vety. Tieto otazky

sa tu skimaji pomocou istych transformécii mnoZin v topologickych grupach. Ziskané vysledky s
vlastne zov§eobecnenim vysledkov prace [4]. .

PE3FOME

4

TPAHC®OPMATHUOHC O® CETC UH TOIMOJIOTMLAJI T'POVII
Capacus Xakpabaptu — b. K. Jlarupu
B 310it paboTe HCCeayIOTCS HEKOTOPBIE BO3MOXHOCTH 0606111EHHS 3HaKOMO# TEOpPeMbI TaHH-
xayca. DTH BONPOCHI 3€Ch PACMOTPHBAIOTCA PH OMOLIM HEKOTOPBIX TPAHCHOPMALIHH MHOXKECTB

B TONOJIOTHYECKHX rpynax. [ToJyueHble pe3y1bTaThl SBIAIOTCS 0600LIEHHSIMH Pe3yITaTOB paboThl

[4]-
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