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ON PROOFS OF EXISTENCE OF THE m-th ROOT
AND THE LOGARITHM OF POSITIVE NUMBERS

MARIA BENESOVA—TIBOR SALAT, Bratislava

The proof of existence of the m-th root of positive numbers is a basis for
constructing the arithmetic in the domain of real numbers. This proof enables
us to define the powers of positive numbers with rational and also real ex-
ponents and so to create the conditions for proving the existence of the log-
arithm of positive numbers ([3] pp. 188—196). All this knowledge presents a
basis for inroducing differential and integral calculi and therefore all mono-
graphs on fondations of real analysis in the domain of real numbers contains
- them.

This paper consists of two parts. The aim of the first part is to give a survey
of various procedures for proving the existence of the m-th root and the
logarithm of positive numbers. The aim of the second part of the paper is to give
new proofs for the existence of the m-th root and the logarithm of positive
numbers. These proofs will be based on some unifying principles for proving
fundamental theorems of real analysis that were formulated by H. LKeinfelder
[7] and P. Shanahan [13].

1 Survey of various procedures for proving the existence of the m-th root
and the logarithm of positive numbers

In this part of the paper we shall describe several procedures for proving the
existence of the m-th root and logarithm of positive numbers.

a) In [6] (pp. 5S1—52; 57—58) a procedure is given which is based on the
convergence of decimal expansions of real numbers (this convergence is an easy
- consequence of the theorem on the convergence of non-decreasing bounded
sequences of real numbers). - B

We shall indiciate the procedure for proving the existence of "\/a, meN,
a>0.
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Let us choose an integer C, = 0 such that ¢{" < a < (¢, + 1)". Divide the
. ; 1
interval {c,, ¢, + 1) into ten parts of the same length | equal to E) Among
these subintervals of the interval (c,, ¢, + 1) there is such a subinterval

<Co+ﬂ, Co+c.+1
10 10

<co+—c—l> <a<c0+cl+ l) .
10/ 10 /

By induction we can construct two sequences {x,};", {y};" of real numbers,
where

) cefo, 1, ..., 9}

that

C) Ci
X, =C+—+ ... +— k=1,2,..),
T 104

C Ck_| Ck+1
W=g+—+ .. +——+——
“T 0 106-1 10t

cef0, 1,..,9  (G=1,2..)

k= 1,2 ..),

with A
xpr<a<y k=1,2,..). (1)
Letz = lim x, = klim ¥x. Then by k£ —» oo we get from (1) the equality z” = a,

k— 7
ie z= ”‘\/E
The idea for proving the existence of the logarithm is analogous. Let b > 1,
t > 0. We shall show the existence of log, ¢.
Choose an integer ¢, such that

: +1
rge=2 b,

Divide the interval ¢, ¢, + 1)into ten parts of the same length. Choose the part

¢ c,+]>
Co+—., ¢+ (c,e{0, 1, ..., 9}
(a+2 cqrat el }
with " |
¢ €3k
%<t<bl‘"+ T

y+

b
Using the previous considerations we get
bt < b (k=1,2,..),

{x 37, )i have the previous meaningi. By k — oo we get b° = ¢, hence z = log, ¢,
where z = lim x, = lim y,.

k — 7. k— -z \
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b) The proof of the existence of "/a and log, ¢ in [9] (pp. 22—31) is based on
the fact that the set R is continuously ordered, i.e._that every non-empty set
" bounded from above has the least upper bound (supremum) in R. More precise-
ly, this is made only in the proof of the existence of "{f (a > 0), since the proof
of the existence of the logarithm is omited.

We sketch the proof of the existence of %/a, a > 0, me N. Put E = {ueR:
u>0 A u™ < a}. Then evidently E # 0 and E is bounded from above. Hence
there exists y = sup E. We prove that y™ = a. The proof is realized by eliminat-
ing the possibilities: y” < a, y™ > a.

Let y™ < a (in the case y”> a we can proceed analogously). Choose an
he (0, 1) such that

_a=-y"
a+y)"—y"

Then using the binomial theorem we have

V+h"=y"+ (T)y"’"h +...+ (’;)h’" <}'/'"+ h[(T)y'""' +

+(’;>y'"'2+ +<::>]=y"'+h[(l +Y)"=y"<y"+(@a—y") =a.

h<

Hence (y + h)” < a and therefore y + he E. This contradicts the definition of y.

¢) An in our country very popular textbook on mathematical analysis [4]
uses in the mentioned proofs a procedure similar to that used in [9] (ef. [4],
pp. 60—64; 115—116). The little modification of this procedure is based on the
following two auxiliary results:

(P1) LetmeN,a >0, x > 0and x” < a. Then there exists a y > x such that
y" <a.

(P2] LetmeN,a > 0,x > 0and x™ > a. Then there existsa z 0 < z < x such
that z™ > a.

d) We outline the proof of the existence of "'\/Z (a>0) given in [2]
(pp. 35—37; 39).

ChooseanneNsuchthatl<a<nandputX {ueQ:u<0v[(u>0) A
n

A (U™ < a)l}, Y = Q — X (Q being the set of all rational numbers). It is easy to

see that (X, Y) is a cut in Q. If for each ¢ > 0, ge Q we have ¢ # a, then
= (X, Y) is a cut of the third kind (a gap) and for each x€ X, x>0,yeY we

have X <y<y. But then x" <y"<y™ and since x" <a< y™, we get

ly" —al <

< y™—x™. Since y™ — x™ can be made arbitrarily small by suitable choose x

and y, we.get y" = a.
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The proof of the existence of the logarithm proceeds in an analogous way.

e) Let us remember the methods contained in [14] (pp. 85—87; 140—142).
These methods are similar to those used in [6].

The proof of the existence of "/a (a > 0) proceeds in the following way. For
each ne N we chose the greatest integer k, > 0 with k)’ < 2™"-a. Then we have

k™ < 2mng < (k, + 1) )

Let us construct the sequence {u,};°, where u, = gf(n =1,2,...). Since (2k,)" <

< 2"+ D then according to the definition of k,, , we get 2k, < k, ., ,, hence
u, < u,, . Therefore the sequence {u,}; ‘is non-decreasing.

Further, if / is a positive integer such that a < /", then k" < 2™a < 2™/",
k,<2'l,u,<1(n=1,2,...). Hence {u,}7 is non-decreasing sequence and so
there exists

y = lim u, 3)

n— oo

From (2) it is easy to see that

1 m
u,:"<a<<u,,+?> n=1,2,..) 4)
From (3), (4) we get y™ = a.

The proof of the existence of log, t (£ > 0, b > 1) we begin by the definition
of such greatest integer k, that

o<t (m=1,2,..).

The further considerations are analogous to those used in the proof of the
existence of "/a. '

f) In[10] (pp. 176—178; 191—193) the existence of"{/& (a > 0) is proved by
the construction of two sequences {x,}{°, {y;} of real numbers, where

X = ﬁ—, y =1+ a. The construction of these sequences begins by dividing
a

the interval (x,, y,> into two parts:

x,+y,> <x,+y, >
x’__ b —’ L2
< 1 2 ) Vi
xi + i\

As the interval {x, y,)» we choose the first of the intervals (5) if a < (—2—) .

and the second if (%’Y—'> <a.
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In this way (by induction) we get the sequences {x;}*, {y};" such that {x,}
is non-decreasing and {y,};" non-increasing.

— X
yk—xk=y#2k——‘ k=12, .. : (6)

-1

and
xr<a<yr (k=12 ..) (7)

Since {x;}{° is non-decreasing and bounded from above (by y,), there exists
y= klim X;. On account of (6) we get also y = klim ¥ and from (7) we obtain

m

a=y". _
The proof of the existence of logarithm is based on an analogous procedure.
g) In the monograph [15] (pp. 242—244) on real number system the follow-
ing method for proving the existence of "\/a is used:
For each ne N we choose the greatest integer k, > 0 such that k& < n™a.
From the definition of k, we have

k' <n"a<(k,+ 1)"

and the further procedure is analogous to that used in [14].

At the end of this part of the paper we can state that there are many
procedures for proving the existence of "/a (a > 0) and log, ¢ (t >0, b > 0,
b # 1), but each of these procedures uses such a property of real numbers which
is equivalent to the continuous ordering of R, see [1], pp. 95—101; [12] (e.g. the
continuous ordering is directly used in proofs given in [2], [4], [9]; the existence
of the limit of a non-decreasing bounded sequence of real numbers is used in
proofs given in [6], [10], [14]). Some of the previous procedures have in a sense
a constructive character and therefore their use in the pedagogical process is
very suitable. On the other hand, the variety of procedures for proving ‘the
existence of }/a and log,  may make vague the fact that the existence i/a and
log, t is a consequence of the continuity of the ordering of R. This last fact seems
to be more evident if we use some of the unifying principles that are known in
contemporary real analysis.

2 Proofs of the existence of the m-th root
and the logarithm of positive numbers based on unifying principles
for proving fundamental theorems of real analysis

In the 20th century some efforts to prove the fundamental theorems of real
analysis have led to formulations of some unifying principles (cf. [5], [7], [8],
[13]). In the first part of this paper we have given a survey of various procedures
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leading to the proof of the existence of \/a and log, 7. In this part se shall use
the principles formulated in [7] and [13] for these proofs and we shall evaluate
such a procedure from the point of view of the didactics of mathematics.
The principles formulated in [7] and [13] are very effective and enable us to
give the proofs of several fundamental theorems of real analysis from the unified
point of view. This fact has a great meaning in teaching mathematics. The
extension of the application of these principles for the proofs of existence of "{/Z
and log, t means extending the applicability of these principles to a domain
which is a basis for constructing real analysis.
At first we shall introduce the principles of Leinfelder [7] and Shanahan [13].
Theorem L. Let 7 = R be an interval (considered as an ordered set with the
usual ordering <). Let L be a binary relation on I satisfying the following
conditions:
(A1) xLy A yLz= xL:z (transitivity)
(A2) Lc <
(A3) The relation L is locally valid, i.e. if ce/, then there exists a neighbour-
hood V(c) = I (in the relative topology of I) such that:

xe V(c), x <c=xLc,

xe V(c), c<x=clLx
Then we have L = <.

Theorem S. Leta, be R, a < b. Let S be a system of closed intervals I = {a, b) -
satisfying the following conditions:

(B1) The system S is additive, i.e. if {c, d), {e,f>e S and {c,d) n{e,f) #0,
then {(c,d) u<{e,f)€S.

(B2) The system S is local, i.e. to every x e {a, b) there exists an interval /e S
such that xeInt 7 (in the relative topology of <a, b)).

Then we have {a,b)€S.

Let us remark that if we formulate Theorems L and S for a chain (totally
ordered set) with the minimal and the maximal element, then Theorem L is
equivalent to Theorem S (cf. [11]).

Using theorems S and L we shall give the proofs of the followmg Theorems.

Theorem A. Let ae R, a > 0, me N, m > 1. Then there exists a ye R, y > 0
such that y” = a.

Theorem B. Let be R, b > 1 and t€(0, + o). Then there exists a ve R such
that @° = 1.

At first we shall mtroduce the proofs of Theorems A and B by using Theo-
rem L.

Proof of Theorem A. Let us assume that there is no y > 0 with y™ = a. Put
I=(0, +o0) in Theorem L and let < denote the usual ordering. Define
L < I'xI in the following way:
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xLy<s(x<Y)A[(x" < y"<a)v(@<x"<yml (8)

Evidently, L satisfies the condition (A2) (see (8)). We shall show that it satisfies
(Al), too. A

Let xLy, yLz. Then x <y, y < z and hence x < z. Since xLy, one of the
following possibilities: '

a) x"<y"<a, b) a<x"<y"
occurs.
If a) is valid, then since yLz and y™ < a, we get - b
y"<z"<a. _ &)

But then from a) and (9) we get x™ < z™ < a, hence xLz.

If b) occurs, then we proceed analogously as in the case a).

We shall check that L satisfies the condition (A3).

Let cel= (0, +o). On account of the assumption  we have c¢" # a.
Therefore one of the following cases:

a) c"<a B) c">a
occurs. If a) occurs, then choose a § > 0 such that .
Vic)=(c—08,c+d) <1 ) J0)
a—c"

<— d<1 (11
A+o)"—c" :
Hence (see (10)) V(c) is neighbourhood of c. If xe ¥V(c), x < ¢, then x™ < ¢™ and
so (see a)) we have x” < ¢" < a. Hence xLc.
If xe V(c), ¢ < x, then ¢ < x < ¢ + . Using the binomial theorem according
to (11) we get

(c+5)'"=c'"+(’;1>c’""8+ +(Z>8"’<

<cm 3[(’{')@*—' + ('5’)&"'—2 bt (Z)] _

=c"+d[(l+)"—c"]<c"+(@a—c")=a.

Hence (¢ + 8)" < a and therefore x™ < (¢ + 8)" < a.
So we get ¢” < x™ < a, hence cLx.

Analogously we proceed in the case B). Since L satisfies the conditions
(A1)—(A3), we have '

(see Theorem L).
Choose ne N such that

L= <. (12)

1
—<a<n”. (13)

309



Then we have l< n and hence acc':ordint to (12) we get an. But then on
n . n

account of the definition of L (see (8)) we get

—1;<n’”<a or a<—17”<n”'.
n n
Both these inequalities contradict (13).
The proof is finished. _
For the proof of Theorem B we shall use the following well-known result.
Lemma 1. Let de R, d > 0. Then lim ’{/2= 1 (see e.g. 14, p. 113).

Proof of Theorem B. Let us suppose that te (0, + c0) and there is no v € R with
b’ =t. Put in Theorem L: I = R = (— 00, + ),

xLyss(x<y) A[*<bt <) v (t<b <b) (14)

The relation L satisfies the condition (A2) in Theorem L and analogously to
the previous proof we can check that it satisfies (A1), too.

We prove that L satisfies (A3). Let ce R. According to our assumption we
have b # t. Therefore one of the following assertions:

1) b < t, 2) t< b
is valid.
Let 1) be valid (in the 2) we proceed analogously). Then according to Lemma 1
there exists a ke N such that

c-l»l

b k<t (15)
Put V(c) = <c - Ilc’ c+ ;lc—) (a neighbourhood of ¢). If xe V(c¢), x < c, then b* <

<b‘<tandsoxLc.IfxeV(c),c < x,thenc < x <c + iand according to (15)
we obtain

] c-l-l

b<b"<b *<i,

hence b° < b* < t, so we have cLx.
Hence L satisfies the conditions (A1)—(A3) of Theorem L and therefore

L=<, (16)
Since b > 1, we cah choose an ne N such that
b"<t<b" 17

According to (16) we have —nLn and therefore by the definition of L (see
310



(14)) one of the inequalities: b™" < b" < t,t < b™" < b" occurs. But each of these
inequalities contradicts (17). The proof is finished.

We shall now give the proofs of Theorem A and Theorem B by using
Theorem S.

Proof of Theorem A. We shall restrict ourselves only to the case if a > 1.

Let us suppose that there is no y > 0 with y” = a (m > 1). Put 1, = {0, a).
Then

O<a<a™ (18)

Let us construct the system S of subintervals of [, in the following way:
{c,d)eS<=(Vxelc,d))x" <av (Vxelc,d))a < x".

We shall show that § satisfies the conditions (B1), (B2) of Theorem S,
Let {c, d), (e, fY>e S and {c, d) n<e, f) #0.
Choose a ze{c, d) n<e, f). Assume e.g. that

(Vxelc, dY)x™ < a ' (19)

(in the case if (Vxe<c, d))a < x™ we proceed analogously). Then we have
z" < a and since ze<{e, f) and e, f) € S, we obtain

(Vxele, fO)x" < a. ' (20)

But then according to (19), (20) for each xe<{c, d) u<e, f) we have x" < a. -
Hence <c, d) u e, f) € S (the condition (B1)).

We shall show that S satisfies the condition (B2). Let x,€ [, and lete.g. x, < a
(for x, = a we proceed analogously). According to our assumption one of the
following cases

1) x'<a 2) a<xy
occurs.

Let 1) be valid (in case 2) we proceed analogously). We choose a 8 > 0 such
that

5<1. Q1)

Then x,eInt I, where I = (x,, — 6, xo + 6 > N I,

As in the proof of Theorem A based on using Theorem L here we can also
show that for each xe I we have x” < (x, + 8)” < a, hence x” < a, and so /€ S.
Hence S is a local system.

According to Theorem S we have (0, a) € S. It follows from this (since 1) is
valid) that for each x € {0, a) we have x™ < a. Especially we have a” < a, which
is a contradiction to (18). This ends the proof.

Proof of Theorem B. Let 7€ (0, + o0) and let us assume that there is no ve R
with b° = t. '
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Choose a ke N sﬁch that
bTF << b (22)

- Put I, = (—k, k) and define the system S of subintervals of /, in the following.
way: '
{(c,dyeS<=(Vxelc,d))b* <t v (VYxelc,d))t < b".

The reader can verify that S satisfies the conditions (B1), (B2) of Theorem S.
Hence according to this theorem we have ( —k, k) € S. Since b=* < t (see (22))
we have, with respect to (23), the inequality * < ¢t for each xe{—k, k). In
particular, we have b* < ¢, which is a contradiction to (22). This ends the proof.

Remarks. The wide applicability of Theorem L and Theorem S (cf. [7], [13])
presents a very great advantage for using these unifying principles. Using
Theorem L or Theorem S we are able to prove almost all fundamental theorems
of real analysis (see [7], [11], [13]). The extension of the applicability of these
principles for proving the existence of 3/a and log, ¢, which we have made in this
part of our paper, gives teachers a tool to make the students familiar with these
principles already at the beginning of their study of mathematics, when they
study the fundamental properties of ordered field of real numbers. The princi-
ples of Leinfelder and Shanahan can be formulated at once after the introduc-
tion of fundamental properties of real numbers. The proofs of these principles
are short and it can bee seen in their proofs where the continuity of ordering of
R is used. It depends only on the teacher which of these principles he will use
in his lectures.

The advantage of using some of the unifying principles consists also in the
fact that the existence of the m-th root and the logarithm and also of fundament-
al theorems of real analysis can be proved by the same me¢thod. Such proofs can
be remembered more easily than the proofs based on different properties of real
numers.
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SUHRN

O DOKAZOCH EXISTENCIE m-TEJ ODMOCNINY
A LOGARITMU KLADNEHO CiSLA

M. Benesova—T. Salat, Bratislava J

Praca pozostava z dvoch casti. Prva Cast obsahuje prehlad ré6znych dokazov existencie m-tej
odmocniny a logaritmu kladného ¢isla. Druha ¢ast prinasa nové dokazy existencie m-tej odmocniny
a logaritmu kladného ¢isla, zalozené na istej metode H. Leinfeldera [7].

PE3IOME

JOKA3ATEJIbCTBA CYIECTBOBAHHUSA m-TOIO KOPHA
N JIOTAPUOMA TOJIOXKHUTEJIBHBIX YHUCEJ

M. BenewoBa—T. lllanaT, Bpatuciaea

CraTbs COCTOMT M3 ABYX 4acTeil. B mepBoit mpeabsBisercs 0630p pa3nuuHbiXx crnocobos
JI0Ka3aTeJbCTB CYLIECTBOBAaHHS m-TOro KOpHs M jorapudma. Bropas yacTb nocselieHa npeab-
ABJIEHMIO HOBBIX OKA3aTeJbCTB CYLECTBOBAHUS M-TOr0 KOPHS M JIOrapH(bMa MONOKHTENBHOIO
YHCJIa MCTIOJIB3YIOLUMX A0CTHXEHUs paboTel Jlenndensaepa [7].
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