

Werk

Label: Article **Jahr:** 1987

PURL: https://resolver.sub.uni-goettingen.de/purl?312901348_52-53|log30

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

UNIVERSITAS COMENIANA ACTA MATHEMATICA UNIVERSITATIS COMENIANAE LII—LIII—1987

ON THE MULTIPLICITY OF $(X_1^m, X_2^n, X_1^k X_2^l)$

EDUARD BOĎA-ŠTEFAN SOLČAN, Bratislava

Let $A = K[X_1, X_2]_{(X_1, X_2)}$ be a local ring over an algebraically closed field K with the maximal ideal $M = (X_1, X_2)$, and Q be an M-primary ideal in A. The length $L_A(A/Q)$ of the A-module A/Q is the number of a maximal chain of M-primary ideals beginning at Q and ending in M. The multiplicity $e_0(Q, A)$ of Q in A is defined to be the leading coefficient of the Hilbert-—Samuel polynomial $L_A(A/Q')$, $t \gg 0$. It is known that $e_0(Q, A) \geqslant L_A(A/Q)$ with equality if and only if Q is an parametric ideal, i.e. Q is generated by two polynomials. For more details see e.g. [4].

In this short note we give a formula for the calculation of the multiplicity and length of certain class of M-primary ideals in A. More exactly, we prove the following.

Theorem. Let $Q = (X_1^m, X_2^n, X_1^k X_2^l)$ be an ideal in the local ring $A = K[X_1, X_2]_{(X_1, X_2)}$. Then

(a)
$$e_0(Q, A) = \min\{m \cdot n, m \cdot l + n \cdot k\}$$

(b)
$$L_A(A/Q) = m \cdot l + n \cdot k - k \cdot l.$$

Remark. In the above theorem it is naturally assumed that $m \ge k \ge 1$ and $n \ge l \ge 1$.

Before proving the Theorem, we formulate and prove a lemma using the notion "reduction of an ideal" introduced by Northcott and Rees, see [3].

Definition. An ideal $J \subseteq I$ of A is called a reduction of I, if $J \cdot I'^{-1} = I'$ for an integer t > 1.

Lemma. Let A, Q be the same as in the Theorem. Put $Q_1 = (X_1^m + X_2^n, X_1^k X_2^l)$ and $Q_2 = (X_1^m, X_2^n)$. Then Q_1 is a reduction of Q if

$$m \cdot l + n \cdot k \leqslant m \cdot n \tag{1}$$

and Q_2 is a reduction of Q if

$$m \cdot l + n \cdot k \geqslant m \cdot n. \tag{2}$$

Proof of the lemma. Let's prove the case (1) first. Since $Q_1 \cdot Q^{t-1} \subseteq Q^t$ for all t > 1, we need to prove the opposite inclusion $Q^t \subseteq Q_1 \cdot Q^{t-1} = ((X_1^m + X_2^n) \cdot Q^{t-1})$, $(X_1^k X_2^l) \cdot Q^{t-1}$) for a certain t > 1.

Let $F \in Q^t$. Then $F = X_1^k X_2^l \cdot F'$, with $F' \in Q^{t-1}$ (and clearly $F \in Q_1 \cdot Q^{t-1}$ for all t > 1) or $F \in (X_1^m, X_2^n)^t = (..., F_j = X_1^{m(t-j)} X_2^{nj}, ...), j = 0, 1, ..., t.$

For $(X_1^m, X_2^n)^{t-1} \cdot (X_1^m + X_2^n) = (..., X_1^{m(t-i)} X_2^{ni} + X_1^{m(t-i-1)} X_2^{n(t-i-1)}, ...)_{i=0,1,...,t-1} =$ $= (F_0 + F_1, F_1 + F_2, ..., F_j + F_{j+1}, ..., F_{t-1} + F_t) \subseteq Q_1 \cdot Q^{t-1}, \text{ it is clear that } F_j \in Q_1 \cdot Q^{t-1} \text{ for all } j = 0, 1, ..., t \text{ if it is so for at least one } j.$ $\text{Take } H = X_1^{m+k(t-1)} X_2^{l(t-1)} \in Q_1 \cdot Q^{t-1}. \text{ Then } F_j \in (H) \subseteq Q_1 \cdot Q^{t-1}$

when

$$l(t-1) \leq jn$$

$$m + k(t-1) \leq m(t-i)$$

and this is equivalent to

$$\frac{l \cdot (t-1)}{n} \le j \le \frac{(m-k) \cdot (t-1)}{m}.$$

From the assumption (1), i.e. $m \cdot l + n \cdot k \le m \cdot n$, and putting t = n + 1, j = l, we get $F_i \in Q_1 \cdot Q^{t-1} = Q_1 \cdot Q^n$ for j = l. Thus for t = n+1 there is $Q_1 \cdot Q^{t-1} = Q^t$ as required.

Let us go to the case $m \cdot l + n \cdot k \ge m \cdot n$ now. It is clear that $Q' \subseteq Q_2 \cdot Q'^{-1}$ if and only if $(X_1^k X_2^l)^t \in Q_2 \cdot Q^{t-1}$ and this holds if and only if there is $u \le t$ such that $(X_1^k X_2^l)^u \in Q_2^u$. Then $(X_1^k X_2^l)^u = X_1^{m(u-j)} X_2^{nj} \cdot G$, $G \in A$. Now put u = n, j = l. Then $m \cdot l + n \cdot k \ge m \cdot n$ implies $Q^u \subseteq Q_2 \cdot Q^{u-1}$, i.e. Q_2 is a reduction of Q in the case (2).

Proof of the Theorem.

(a) In the case $m \cdot l + n \cdot k \leq m \cdot n$ the ideal $Q_1 = (X_1^m + X_2^n, X_1^k X_2^l)$ is a reduction of Q by virture of the above lemma. Then $e_0(Q, A) = e_0(Q_1, A)$, see [3]. Putting $A_i = K[X_{i}]_{(X_i)}$, i = 1, 2 and using the Associativity Formula (see [1], Theorem 24.7) for the parametric ideal Q_1 , we get

$$e_{0}(Q_{1}, A) = e_{0}(Q_{1} \cdot A/(X_{1}), A/(X_{1})) \cdot e_{0}((X_{1}^{k}X_{2}^{l}) \cdot A_{(X_{1})}, A_{(X_{1})}) +$$

$$+ e_{0}(Q_{1} \cdot A/(X_{2}), A/(X_{2})) \cdot e_{0}((X_{1}^{k}X_{2}^{l}) \cdot A_{(X_{2})}, A_{(X_{2})}) =$$

$$= e_{0}((X_{2}^{n}) \cdot A_{2}, A_{2}) \cdot e_{0}((X_{1}^{k}) \cdot A_{1}, A_{1}) +$$

$$+ e_{0}((X_{1}^{m}) \cdot A_{1}, A_{1}) \cdot e_{0}((X_{2}^{l}) \cdot A_{2}, A_{2}) = n \cdot k + m \cdot l.$$

In the case $m \cdot l + n \cdot k \ge m \cdot n$ the Lemma implies that the ideal $Q_2 = (X_1^m, X_2^n)$ is a reduction of Q, therefore $e_0(Q, A) = e_0(Q_2, A) = m \cdot n$ (see [2], Chap. 7, Corollary 1 of Theorem 7).

(b) In order to prove (b) we use the exact sequence

$$0 \to A/I_1 \cap I_2 \to A/I_1 \oplus A/I_2 \to A/(I_1, I_2) \to 0,$$

where $I_1 = (X_1^m, X_2^l)$, $I_2 = (X_1^k, X_2^n)$. For $Q = I_1 \cap I_2$ and $(I_1, I_2) = (X_1^k, X_2^l)$, the addivity of length of A-modules yields

$$L_A(A/Q) = L_A(A/I_1) + L_A(A/I_2) - L_A(A/I_1, I_2) = m \cdot l + n \cdot k - k \cdot l,$$

as required. The proof is now complete.

REFERENCES

- 1. Nagata, M.: Local Rings. Intersc. Publ. New York-London 1962.
- Northcott, D. G.: Lessons on Rings, Modules and Multiplicities. Cambridge Univ. Press 1968.
- 3. Northcott, D. G. and Rees, D.: Reductions of ideals in local rings. Proc. of the Cambridge Phil. Soc. 50, 1954, 145—158.
- 4. Zariski, O.—Samuel, P.: Commutative Algebra, Vol. II. D. V. Nostrad Comp. Princeton

Adresses of authors:

Eduard Boda

Štefan Solčan

Katedra geometrie

Matematicko-fyzikálna fakulta UK

Mlynská dolina

842 15 Bratislava

SÚHRN

O NÁSOBNOSTI $(X_1^m, X_2^n, X_1^k X_2^l)$

Eduard Boda-Štefan Solčan

Nech $Q = (X_1^m, X_2^n, X_1^k X_2^l)$ je ideál v lokálnom okruhu $A = K[X_1, X_2]_{(X_1, X_2)}$. V práci je ukázané, že pre Samuelovu násobnosť primárneho ideálu Q platí

$$e_0(Q, A) = \min\{m \cdot n, m \cdot l + n \cdot k\}.$$

РЕЗЮМЕ

О КРАТНОСТИ ИДЕАЛА $(X_1^m, X_2^n, X_1^k X_2^l)$

Эдуард Бодя и Штефан Солчан

Пусть $Q = (X_1^m, X_2^n, X_1^k X_2^l)$ — идеал в локальном кольце $A = K[X_1, X_2]_{(X_1, X_2)}$. В работе показывается, что для кратности Самюеля примарного идеала Q имеет место следующее равенство

$$e_0(Q, A) = \min\{m \cdot n, m \cdot l + n \cdot k\}.$$

Received: 2. 7. 1986

, .

* * *