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RANDOM VARIABLES WITH VALUES IN A VECTOR LATTICE
(MEAN VALUE AND CONDITIONAL MEAN VALUE OPERATORS)

PETER MALICKY, Bratislava

This paper develops the integration theory for funcitons f: £2— V on an
arbitrary probability measure space (£2, &, P) with values in a o-complete
vector lattice V. In other words, we develop the mean value theory for random
variables with values in a vector lattice V. We also construct the conditional
~ mean value operator for V-random variables.

The construction of the mean value and conditional mean value operators is
based on an abstract theorem concerning extensions of nonnegative linear
operators (Theorem 4.11). We give two variants of the mean value theory — L*®-
and L'-theory.

If a o-complete vector lattice satisfies certain conditions, the integration
theory based on the pointwise convergence may be developed (see [1], [4], [5],
[9D.

We require only o-completeness of a vector lattice and our construction is
based on the convergence which is uniform a.e. We obtain similar results as [8]
using weaker assumptions.

1 Preliminaries

We shall work with vector lattices, i.e. real vector spaces that are lattices and
satisfy the following identities: '

at+bvey=(@+b)v@+o
Ab v ¢)=(Ab) v (Ac) for A>0.

A vector lattice X is called o-complete if every contable upper bounded subset
A < X has the least upper bound, which is denoted by sup 4 or \/ a.

acAd

inf A or /\ a denote the grates lower bound of the set A. The symbol |a| denotes

acA

(@) v (—a).
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Definition 1.1. Let X be a o-complete vector lattice. We say that a sequence

{a,}x_, decreases to 0, and we write a, \ 0,if Vn: 0 < a,,, < a,and /\a = 0.
n=1

We say that a sequence {x,};"_, = X converges to xe X and we write x, = x
(we say that {x,}_, is fundamental) if 3{a,},_,: @, v 0 and
Vn: |x—x,| <a,Vn,m: n <m=|x, — x,,| < a,). _
Proposition 1.2. For any sequences {a,};"_,, {b.7- 1 {(Xdnc1s e, of a
o-complete lattice X, any x, ye X and any ce R:

a, N0, b,N0=(a,+b,)N0
c>0, a,nN0=(c-a,) N0
X, =X, X,y=>X=y
Xo Xy Yo y=(Xp+ o) > (x + )
x,+>x=(cx,)—>c-x

x, = x={x,}r_, is fundamental

{x,}*_, is fundamental = x, \/ /\ : /\ vxi
X =

i=lj=1

x,—>x, Vn:x,>0= 0.

n

2 Elementary theory of the integral

Let 2 be a set and V be a o-complete vector lattice. The symbol F(£2, V)
denotes the set of all function f: Q— V.

Proposition 2.1. F(£2, V) is a o-complete vector lattice under the natural
operations and ordering.

Let (2, &, P) be a probability measure space. Two functions f, ge F(£2, V)
are called equivalent if there exists a set E€.% such that:

P(E) =0
f(x) =g(x) forall xeQ\E.

The symbol [f] denotes the equivalence class of the function fe F(£2, V). Put
FQ S, P,V)={E c=[f], feF(& V)}.

Definition 2.2. We say that a sequence {f,};"_, = F(£2, V) converges to a
function fe F(£, V) uniformly almost everywhere, if there exist a sequence
{a}*_, = V and a set E€ ¥ such that:

a,~0, P(E) =0 and |f,(x) — f(x)| < a, for all natural n and all xe \E.

We say that a sequence {&,}_, = & (2, &, P, V) converges to (e F (£2, &,
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P, V) uniformly almost everywhere if there exist f,€ &,, fe€ & such that {f,}_,
converges to f uniformly almost everywhere.

Proposition 2.3. # (2, &, P, V). is a o-complete vector lattice under the
natural operations and ordering.

A function fe F(£, V) is called elementary if there exist sequences {g;}/_, <,
{B}_, = & such that:

Q=\)B, BnB =0 forall i},

i=1

f(x) = a; whenever xe B,

(or equivalently f(x) = Y y;(x) a,).
i=1

For such a function f put:

n

0] E(f) = Lf(X) dP(x) = Zl a,P(B)).
The set of all elementary functions fe F(£2, V) is denoted by the symbol
LY. &, P, V). : .
Proposition 2.4.
(1) Ly (2, &, P, V) is a vector sublattice of the vector lattice F(£2, V).
For any f, ge Ly, ce R and Be ¥ we have:
(ii) f, g are equivalent = E(f) = E(g)
(ii) E(f+g) = E(f) + E(g)
(iv) E(c-f) = c-E(f)
) f(x)=aforall x=E(f)=a
(Vi) f20=>E(f) >0
(vii) yp-feLF(£2, &, P, V).
Put (2, &F, P, V)={,eF (2, &, P, V); £E= [f] for some fe LF (L2, &,
P, V)}.
For all (e Z°(82, &, P, V) put:

E(&) = E(f), where fe&.

E is defined correctly. '

Proposition 2.4. £°(£2, &, P, V) is a vector sublattice of the vector lattice
F (2, &, P, V) and for any &, ne (2, &, P, V), ce R and Be ¥ we have:

(i) E§+ n) = E() + E(n)

(1) E(c&) = cE(&)

(iii) E=aeVae=>E¢)=a

(iv) £20=E() >0

() xel- E€ZL5°(Q2, &, P, V).

Let .# be the class of all linear subspaces X of # (82, &, P, V) such that:
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(&, — & uniformly a. e, £,eX)=EeX,
L2, &, P, V) X.
Put #*°(Q, &, P, V)= () X.

Xe#

Proposition 2.5.

(i) > &, P, V)is a vector subspace of the vector space Z (2, &, P, V).

(1) For any {£,}7_,c (R, &, P, V) and Ee #(£2, &, P, V) we have:
&, — & uniformly a.e. = (e (2, &, P, V).

(iii) Yée (R, &, P, V)3ae V such that: || < a a.e.

Proof:

(i) and (ii) follow immediately from the construciton of ¥ (€2, &, P, V).

Let X, be the set of all £€ # (€2, &, P, V) such that there exists ae V for which
I8l < a.

Clearly, X,€ .# and this implies: £ *(£2, &, P, V) c X,,.

In Section 4 we shall construct a positive linear operator E: (R, &,
P, V) — V, which is an extension of E.

There are no problems with the integration of functions with values in a
finite-dimensional vector space. Namely, let (€2, &, P) be a probability measure
space, V be a finite dimensional real vector space and {e;}, _, be its basis.

Every function f: £2 — ¥ may be written in the form f(x) = ) ¢(x)e;, where
i=1

all ¢; are real functions.
We say that fis integrable, if all ¢, are integrable, and in this case we put

@ E() = Lf('x) O (L 0(x) dP(x)) e.

Obviously, the integrability and the integral of the function f: £2— V' do not
depend on the basis {e;}/_, of V.

Definition 2.6. Let (£2, &, P) be a probability measure space and V be a
o-complete vector lattice. A function fe F(2, V) is called simple integrable if
there exists a finite dimensional vector subspace ¥, < ¥ such that:

f(x)eV, for all xe£2, and fis integrable in the above sense.

The set of all simple integrable functions is denoted by L)(£2, &, P, V).

Proposition 2.7.

() Ly, &, P, V) is a vector subspace of the vector space F(£2, V) and
LY, &, P, V) LI, &, P, V).

(i) If fe Ly (92, &, P, V), then the integrals of f by the formulas (1) and (2)
are the same. ‘

For any f, ge L\($2, &, P, V), ce R, ae V and Be ¥ we have:

(iii) E(f+ g) = E(f) + E(g)

(iv) E(c-f) =c-E(f)
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V) (Vx:f(x)=a)=E(f)=a
(vi) f20=E(f) >0
(vi) yp-feLi(2. &%, P, V).
Proof:
All parts except (vi) are obvious. We shall prove (vi).
Let f: 2 — V be simple integrable and nonnegative. It means there exists a
finite dimensional vector subspace V; < V such that for all xe 2

f(x)eV,, f(x) =0 and f is integrable.

Denote C = {xe V: x > 0}.

Clearly, f(22) = V,n C, and V,;n C is a convex set in V.

The proof is reduced to the following lemma.

Lemma 2.9. Let (2, %, P) be a probability measure space, V' be a finite
dimensional real vector space, and K be a convex subset of V.

If f: 2— V is integrable and f(£2) < K, then J‘f(x) dP(x)e K.
0

Proof: ‘

The lemma holds when dim V' = 1. Suppose that the lemma is true for all
(n — 1)-dimensional vector spaces. We are going to prove it for all n-dimension-
al vector spaces.

We are to prove that for all a€ K: jf(x) dP(x) # a.
¢
Put g(x) = f(x) —aand K’ = K — a.
It suffices to prove j g(x)dP(x) # 0.
0

We have: 0€EK’, g(£2) < K’, and K’ is convex.

There exists linear functional @: V — R such that Vye K": @(y) > 0 and
dyeK’: @(y) > 0. (See [10], p. 113.)

We have: @(g(x)) > 0 for all xe £2.

If P({x: ®(g(x)) > 0}) > 0, then cb(j g(x) dP(x)) = f D(g(x))dP(x) > 0,
Q 0
which means f g(x)dP(x) # 0.
0

If d(g(x)) =0 a.e. on £2, we may assume that @(g(x) = 0 for all xe Q.
Put V, ={yeV: &(y) =0}. }; is an (n — 1)-dimensional vector space and
g()c Vyn K and 0EK' N V.
In this case we can use the inductive assumption.
~ Put £J(2, &#, P, V)={f]: feLi(2, &, P, V)} and E([f]) = E(f) for
feLy(2, &, P, V).
Proposition 2.10. (2, &, P, V) is a vector subspace of the vector space
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F(2,%,P, V). Forany & ne £4(2, %, P, V), ce R, ae V and Be & we have:
(i) [xsl-§€ Z0(2, &, P, V)

(i) E(&+ n) = E() + E(n)

(iii) E(c- &) = c-E(S)

(iv) €= 0="E(&) >0

(v) & = a almost everywhere = E(&) = a.

Let Z'(2, &, P, V) be the minimal vector subspace of # (2, &, P, V), which
contains £,(£2, &, P, V) and is closed with respect to the almost everywhere
uniform convergence. We shall describe an extension £ of E onto £'(Q2, ¥,
P, V) in Section 4.

3 Elementary theory of the conditional mean value operator

Let (2, &, P) be a probability measure space and &, < & be a o-subalgebra.
Let ' (2, &, P, R) and £ '(2, &,, P, R) be the sets of all equivalence classes
of integrable real functions. The Radon—Nikodym theorem guarantees the
existence (and the uniqueness) of the operator:

E(|%): (2, &, P, R)» L' (2, &,, P, R)
such that for any & ne £2'(2, ¢, P, R), ce R and Be ¥,

3 _ E(&+ nl¥y) = E(S|1F0) + E(1])
“4) E(c8|S o) = cE(§/F)
(5) E>0=E(|L) =0
(6) & = ¢ almost everywhere = E(£|S) = ¢ a.e.
@) E([xs181%0) = [Xs]- E(1F )
®) E(E(E|Z0) = E(S).

Now we are going to construct analogous operators on the spaces .#°(£2, &,
P, V) and S L, P, V). -
Take (e (2, &, P, V). There is fe Ly (L2, &, P, V) such that fe £ For

some sequences {a;}'_, = V and {B}]_, = & we have: f(x) = ), Xs(x) a;. Put

i=1

©) EEI7) = 3 Eus)I#a.

Proposition 3.1.
(i) For any & ne £y (2, &, P, V), ce R, ae V and Be ¥, (3)—(7) hold,
where in (6) ¢ is replaced by a.
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Moreover,

(il) EE|F)eL ™ (2, F, P, V) for any (€ (2, &, P, V).

Remark.

Since we do not know how to integrate &€ ¥ (€2, &, P, V), we cannot
formulate (8) in Proposition 3.1, but see Proposition 3.2.

Proof:

Part (i) follows from the construction and properties of the real conditional
mean value operator.

(i1) Itsuffices to prove that E([a- y5]|Sy) € L *(£2, &¥,, P, V) forany ae V and
Be¥.

We have E([a- x5]|) = aE([x5]|S)-

From the properties (5) and'(6) it follows that E([y;]|%,) € &L *(£2, ¥, P, R).
Therefore, there is a sequence {¢@,},_, of real elementary functions which
converges to E([xz]|,) uniformly almost everywhere.

We have [a-¢,]e £y (2, Sy, P, V)= >, ¥y P, V) and [a-¢,] >
— a-E([x5]|1%) uniformly almost everywhere. From Proposition 2.5 it follows
that E(laysl|S ) e L (82, &y, P, V).

Now we are going to construct E(.|%,) on L((2, &, P, V). Let é€ L (2, &,
P, V). There exists fe L}(2, #, P, V), fe & For f there exist a finite-dimensional
vector subspace V, < V, its basis {¢;}7_ , and real integrable functions {¢,};_,, @;
2 — R such that:

f(x) = il ¢ (x)e;. We put:

(10) EEI) = 3. E(0ll%0)-e.

Proposition 3.2. ’
(i) For any ¢ ne Z,(2, &, P, V), ce R, aecV and Be ¥, (3)—(8) hold,

where in (6) a is instead of c.

(i) E(&|Fy) e Ly (82, Ly, P, V) for any Ee L)(2, &, P, V).

(i) Forany e Z° (2, &, P, V) the values E(£|¥,) by the formulas (9) and
(10) are the same.

Proof: '

The property &> 0= E(£|S,) > 0 for any (€ £J(£2, &, P, V) may be
proved in an analogous way as Proposition 2.9.

The other properties are obvious.

4 Extension theory

In this section we shall prove an abstract theorem on the extensions of
nonnegative linear operators, and then we shall apply it to the operators £ and
E(.|%).
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Definition 4.1. Let X be a o-complete vector lattice and 4 be its vector
sublattice. A is called a o-sublattice, if for every countable set B < 4:

sup Be A whenever sup B exists in X.

Definition 4.2. Let X be a o-complete lattice and A4 be its vector o-sublattice.
We say that a sequence {x,};_, = X converges to xe X by A4 (is fundamental by
A) if there exists {a,}’_, = 4, a, \ 0 such that: Vn: |x, — x| < a, (Vn, m: m >
-2 n=>|xn - xm‘ = an)'

Example 4.3. Let (2, &, P) be a probability measure space and V be a
o-complete vector lattice. Put X = # (2, &, P, V)and A = {{e F (2, &, P, V):
& = [const]}.

In Section 2 it was said that X is a o-complete vector lattice. Obviously, 4 is
a vector o-sublattice of X and for any sequence {&,}X., = X we have:

¢, — Eby A< &, — &£ uniformly almost everywhere.

Example 4.4. Let X be a o-complete lattice and 4 = X. Then for any sequence
{x,}5., < X we have: x, > x by A< x, - x.

Proposition 4.5. Let X be a o-complete vector lattice and 4 be its vector
o-sublattice. For any sequences {x,}_, {y.}:., = X, any x, ye X and ce R we
have:

(11) x,»>x by 4,y,—>yby A=(x, +y,) > (x +y) by 4
(12)° x,—»>xby A=cx,—>cx by 4

(13) x,»xbyAd, x,>ybyd=>x=y

(14) (x,»xbyA,Vn:x,20)=x>0

(15) X, > x by A=|x,| > |x| by 4

(16) x, = x by A={x,}7_, is fundamental by A4

(17)  {x,}-, is fundamental by 4 = x, > /\ (\/ x,-) = \/( xj> by A.
i=1\j=i ~ i=1\j=i .

Definition 4.6. Let X be a o-complete vector lattice and A its vector o-sublat-
tice. Let X, be a vector subspace of X. X, denotes the minimal vector subspace
of X which contains X and is closed with respect to the convergence by A.

Now we are going to describe X, by the transfinite induction over the sets of
all countable ordinals.Put X, = X;, for a = 0. Let 0 < ¢ < w, where o, is the
first uncountable ordinal. Suppose that X, have already been for.all ordinals
B<a PutX,= {xeX: IHxuda=1 = | Xp, x, > x by A}-

f<a
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Proposition 4.7.
(i) For all ordinals a < @, X, are vector subspaces of X such that: X s X,
whenever < a < o,

(i) Xo= {J X,

a< (2]
(iii) If X, is a vector sublattice of X, then X, is a vector sublattice of X as well.
Proof.
Part (i) may be easily proved using the transfinite induction.
(i) The inclusion X, = X, for all @ < @, may be proved by the transfinite
induction. We have: () X, = X,. Obviously, | ) X, is a vector subspace of X.

a< o a<ay.

If we show that ( ) X, is closed with respect to the convergence by A, we

a< oy

shall have: X, ( ) X,.

a<

Let {x,}7., = |J X,, x,» xby 4.~

a<

There is a sequence of ordinals {a,}?_, such that a, < oy, x,€ X, for all
natural n. There is some @, < @, such that @, < g, for all natural n.
We have {x,}*_, U Xjand x, - x by A, which means xe X, = () X,.

a<ay

(iii) If X, is a sublattlce of X, then using the transfinite induction and the
property (15) it is easy to prove that all X, are sublattices of X. Since a < < o,
implies X, < X, it follows that X, = U X, is a sublattice of X.

a< o

Definition 4.8. Let X and Y be vector lattices and X, be a vector subspace of
X. A linear opeator T: X,— Y is called nonnegative, if VxeX, x> 0=
= T(x) > 0.

A nonnegative linear operator T: X,— Y is called o-continuous, if
V{x o1 < Xo: x, N 0= T(x,) \ 0.

Definition 4.9. Let X and Y be o-complete vector lattices, 4 and B be vector
o-sublattices of X and Y respectively, and X, be a vector subspace of X A linear
operator T: X, — Y is called A—B-continuous, if

Vi{x}r-1 < X5 x, >0 by 4= T(x,) >0 by B.

Proposition 4.10. Let X and Y be o-complete vector lattices, 4 and B be vector
o-sublattices of X and Y respectively, X, be a vector subspace of X, and T:
X, — Y be a nonnegative linear operator.

(i) If A c X,, then T is A—B-continuous if and only if the restriction of T
onto A4 is A—B-continuous.

(i) If A = X,, T(4) = B and the restriction of T onto A is o-contmuous,
then T is A—B-continuous.

(i) If T is A—B-continuous, then Y{x,}* , < X;: x,>xeX, by 4=
= T(x,) »T(x) by B
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Proof:

(i) Suppose 4 = X, and the restriction of T onto 4 is A—B-continuous. Let
Xula=1 © Xo, X, — 0 by A.

There is a sequence {a,},_, = 4 such that: a, \ 0 and |x,| < a, for all na-
tural n. : '

We have a, — 0 by A4. Since the restriction of T onto A4 is A— B-continuous,
there is some {b,},/_, < B such that b, \x 0 and |T'(a,)| < b, for all natural n.

We have: —a,< x,<a, and —T(a,) < T(x,) < T(a,), because T is non-
negative and linear. ‘

Finally, |T(x,)| < T(a,) < b,, which means that T(x,) » 0 by B, and T is
A—B-continuous. The opposite implication is obvious.

(i1) Let 4 = X, T(A) < B, and the restriction of T onto 4 be o-continuous.
Let {x,}/_, = X,, x,— 0 by 4. Then |x,| < a, for some sequence {a,}"_,, a, \ 0.

We have |T(x,)| < T(a,) N 0 and {T(a,)};—., < B. T(x,) >0 by B, and T is
A— B-continuous. '

Part (iii) is obvious.

Theorem 4.11. Let X and Y be o-complete vector lattices, 4 and B vector
o-sublattices of X and Y respectively. X, and Y, be vector subspaces of X and
Y respectively, and T: X, —» Y be a linear nonnegative A—B-continuous opera-
tor. » .
(i) If A  X,, then there exists a unique linear nonnegative operator 7T:
X, — Y such that T(x) = T(x) for all xe X,

(i) T is A—B-continuous and T(X,) c Y, implies T(X,) < ¥,.

Proof:

We shall use the description of X, from Proposition 4.7. Let P be the set of
all ordinals a < w, such that there exists a unique linear nonnegative operator
T,. X,— Y, which is the extension of T.

Suppose P # {@: a < w,}. Then the set P’ = {a: a < w,}\P is nonempty. Let
a, = min P’. We are going to prove g,€ P, which will be a contradiction.

Obviously, 0e P and 0 < a,,. -

Let f < a < @, Then a, feP.

The restriction of T, onto X, is a nonnegative linear operator on Xj, which
is the extension of T. Since fe P, we have T,(x) = Ty(x) for all xe Xj,.

Let 70 |J X,— Y be the operator defined by the formula 7'(x) = T,(x)

< &%
whenewer xe X, a < a,.
T’ is defined correctly; it is linear and nonnegative extension of 7 onto
U X..
< (4, u
By Proposition 4.10, T’ is A—B-continuous. .
Take xe X, . There exists {x,},_, = () X, such that x, - x by 4. We shall

a< g . .

‘
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show that the sequence {7'(x,)}_, converges by B. There is some sequence
{a,};_ = A such that |x, — x| < a, for all natural n and q, \ 0.
We have:

18 |x, — x| <Ix, — x| + |x,, — x| < @, + a,, < 2a, whenever m > n.
Since a, —» 0 by 4, and T’ is A—B-continuous, ' .
(19) T’(a,) < b, forsome sequence {b,};_, < B, b, \ 0.

The properties of 77 and the inequalities (18) and (19) give |T'(x,) —
—T'(x,)| =T (x, — x,)| < 2T(a,) < b, whenever m > n. The last inequality
shows that the sequence {T’(x,)}_, is fundamental by B, and according to
Proposition 4.5 it converges to some ye Y by B.

If {x,}*_, is another sequence converging to x by A, then {(x, — x,)}*_,
converges to 0 by 4 and {T’(x,) — T'(x,)}_, converges to 0 y B because T" is
A—B-continuous. It shows that {T"(x,)} _, and {T’(x,)}_ , have the same limit
by B.

Put T, (x) = lim 7" (x,).

We obtain a linear operator T%: X,— ¥, which is an extension of 7.

We are going to show that 7, is nonnegative.

Let xe X, x > 0. There exist {x,}7_, = (J X, and {a,}7_, = 4 such that:

a< %
|x, — x| < a, for all natural n and a, \ 0.

We have:

[x, + a, — x| <|x, — x| + a, < 2a, and —a, < x, — x < a, for all natural n.
The first inequality shows that (x, + a,) — x by 4 and the left side of the second
inequality gives x, + a,>x>0.

We have T'(x, + a,) > T, (x) and T, (x) > 0 by (14) from Proposition 4.5.

If §: X, — Yisanother linear nonnegative extension of 7, then the restriction
of S onto X, for any @ < q, is a nonnegative linear extension of 7T onto X,. Since
a < q, implies ae P, we have S(x) = T,(x) for all xe X,,.

It means that S(x) = T"(x) for all xe () X,.

a< ()
If xe X,, then x, » x by A4 for some sequence {x,};_, = (J X,. We have

5 a< %
S(x,) = T'(x,) > To ().
Since S is A—B-continuous, by Proposition 4.10 S(x) = T, (x). We have just

proved that a,e P, which contradicts a,€ P’. Therefore P’ =0 and P = {a:
a < o,}. It means that for every @ < o, there exists a unique nonnegative linear -
extension T, of T onto X,,.

If we put T(x) = T,(x) for xe X,, we obtain a linear nonnegative extension
of T onto X,.
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If S is another such extension, it must coincide with T, on X,. Therefore
T(x) = S(x) for all xe X,

The proof of part (i) is complete.

(i) A—B-continuity of T follows from Proposition 4.10. The implication
T(X,) < Y,= T(X,) = Y, may be easily proved using the transfinite induction.

Proposition 4.12. Let X, Y and Z be o-complete vector lattices, A, B and C
be vector o-sublattices of X, Y and Z respectively, X, = X and ¥, < Y be vector
subspaces, T: X, —» Y and S: ¥, — Z be linear nonnegative operators, which are
A—B-continuous and B—C-continuous respectively.

fTX) < Yy,= ¥),Ac X,and Bc Yo,thenS oT = SoT,where So T Tand T
are extensions of So T and T respectively onto X,,.

Let (£2, &, P) be a probability measure space and V be a o-complete vector
lattice. Put X =% (2, &, P, V), A={[f]: fis constant}, B=Y =V, X, =
=%7(2 %, P, V) and T = E. Since E([const]) = the same constant, the
restriction of 7 onto A is o-continuous, and T is A—B-continuous by Proposi-
tion 4.10.

We may apply Theorem 4.11 and we obtain:

Theorem 4.13.

(i) There exists a unique linear nonnegative extension

E: 92 %,P,V)->V of E.

(ii)) For any sequence {&,} ., c > (2, &, P, V)and (e > (2, &, P, V):
&, — & uniformly a.e. = E(&,) - E(&).

The structure of ¥ * (92, &, P, V) is described in Proposition 2.5 and in the
following one.

Proposition 4.14.

(1) (2, <, P, V) is a vector sublattice of ./(.Q &, P, V)

(i) Vée L (2, &, P, V),VBeS: [x5] (€ L (2, &, P, V).

Proof:

Part (i) follows from Propositions 2.4 and 4.7.

(ii) Using Proposition 4.7 we have a family {£},  ,, of linear subspaces of

F(Q, ¢, P, V) such that:

Lo=FL (2 &, P, V)
L,=1& HE - < U £, & — & almost everywhere} X*(£2, &, P, V) =
- U 2.

a<a)|

If ée #, and Be &, then [y;] E€ £, by Proposition 2.4.
Let 0 < @ < w,. Suppose that

VB< aV¥ée L VBe S : [x3]E€ ZLp.
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Take é€ ¥, and Be &.
There is some sequence {&,}7., = | ) &, which converges uniformly a.e.
B<a

to &.
We have [y5]&,€ | ) £, by the inductive assumption.

Obviously, [1,,]-4{ — [x5]¢ uniformly a.e.

Therefore [y;] é€ &Z,,.

Let (£2, & P) be a probability measure space, &, be a o-subalgebra of &, and
V be a o-complete vector lattice. Put X = (2, %, P, V), Y = F(2, %, P, V),

A={& EeF (82 &, P, V), E=|[const]}
B={n: neF (2, &,, P, V), n=[const]}
Xo=%2(2 %, P, V)

T = E(.|%,).

Using Theorem 4.11 we obtain:

Theorem 4.15.

(i) There exists a unique linear nonnegative extension E(.|%,): £*(£2, &,
P V)>F (2 Py, P, V)Of E(.|Fy): (82, &L, P, V)>F (2, Fy, P, V).

(il) VéEe L (2, &, P, V): E((|L)e L 2(02, &y, P, V)

(i) V{12, c (2, &, P, V) Vée L *(, &, P, V). & — & uniformly
a.e. = E(&, | L) = E(E|S,) uniformly a.e.

(V) VEeL™(2 S, P, V) VBe #y: E(2s) E1%0) = 1sl- EEI0)

(V) YVee L%(82, &, P, V): E(§) = E(E(|F))).

Proof:

Parts (i)—(iii) follow from Theorem 4.11.

(iv) The equality E[yg) £|%,) = [xs) E(£|Sy) is true for Be ¥, and e
eEZLy (2 &, P, V) by Proposition 3.1. Using the transfinite induction it may be
proved for arbitrary e £°(2, &, P, V).

(v) Let Be & and ae V. We have E(a[y;]) = aP(B).

As it was said in the proof of Proposition 3.1 there exists a sequence {f,},’-,
of real elementary functions which coverges to E([x;]|¥,) uniformly a.e. We
have:

af, = aE([xs]1%0) = E(alys)l¥,) uniformly a.e.

Therefore E(a-f,) » E(E(alx;]|%,)), but E(a-f,) = aE(f,) = aE(E((x5]|%y) =
= aP(B), because f, > E([x5]|¥,) uniformly a.e. and E(E([x;]|%,) = E((xs])
by the property (8) of the real conditional mean value operator.

We have just obtained the equality E(E(£|S,)) = E(&) for € = a-[y;], where
aeV and Be ¥.
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By linearity, the last equality holds for all € £ (€2, &, P, V). In the general
case we may apply either Proposition 4.12 or the transfinite induction.

Theorem 4.16. If £)(2, &, P, V), £'(2, &, P, V), L' (2, ¥,, P, V) are
replaced by £0(2, ¥, P, V), L'(2, ¥, P, V)and (2, %, P, V) respective-
ly, then Theorems 4.13 and 4.15 remain true.

The advantage of %' is that it is greater than ¥ ~, the advantage of ¥~ i
that it is a sublattice of # (82, <, P, V).
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SUHRN

NAHODNE’ VELICINY. S HODNOTAMI VO VEKTOROVOM ZVAZE
(STREDNA HODNOTA A PODMIENENA STREDNA HODNOTA)

Peter MALICKY, Bratislava
V praci je dokazana jedna veta o rozsireni nezipornych operatorov. S jej pomocou je vybudova-

nd L® a L' — teodria strednej hodnoty a podmienenej strednej hodnoty nahodnych veli¢in nado-
budajicich hodnoty v fTubovolnom o-iplnom vektorovom zvize.
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PE3IOME

CJIVUAWHBIE BEJIMUYHMHBI CO 3HAYEHSMH B BEKTOPHO/ PEIIETKE.
(MATEMATUYECKOE OXNWJAHHUE U YCJIOBHOE
MATEMATHUYECKOE OXWJAHHUE)

IMetrep MAJIMUKMH, BpaTtucnasa

‘

B pa6oTe noka3aHa oJHA TEOpEMa O PACIUMPEHHH HEOTPHUATEILHBIX onepaTopos. C ee nom-
OlIBIO NOCTPOeHB! L* U L' — TeopuH MaTeMaTHYECKOTO OXHAaHUS M YCJIOBHOTO MaTeMaTH4ec-
KOO OXKHMAAHHA s CJIydaiiHbIX BEJMYHH, PMHUMAIOLIMX 3HAYEHUS B IPOH3BOJILHOM O-NOJIHOM
BEKTOPHOM peELIETKE.
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THE CONSTRUCTION OF EXPLICIT ONE-STEP
HYBRID METHODS

ANTON HUTA—JOZEF DANCO, Bratislava

The paper deals with the numerical solution of an ordinary differential equation of the first order
by means of hybrid methods. The parameters of the methods are rational numbers and the weights
are the Newton—Cotes numbers. The method for finding the rational coefficients of the explicit
one-step hybrid methods and the local truncation errors are given. Examples of the fomulas of the
2nd to 10th order and a numerical solution of a simple initial value problem by constructed methods
are shown. ’

1 Introduction

Let us consider the solution of an initial value problem of the first order
: Yy =f(x7)
Y(x0) = ¥,

by one-step hybrid methods. They were introduced in the papers of Butcher [1]
and [2], as a generalization of the Runge—Kutta methods with more stages.
The one-step hybrid methods are defined as a system of difference schemes:

)

Yntr, = Vn ()
yn+ri=yn+h Z a,'jf;,+,l_ for l=2, 3, ,k (3)
Jj=1
k
Yn+1 =yn+h'zle n+r (4)
j=1

where
f;l+r,~=f(xn+rih’yn+,i) fOl‘ l= 1,2,...,k,

h is the stepsize,
a; are the unknown coefficients of the method which have to be determined,
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w; are the weights of the formula for finding the next value of the solution
y(x, + h),

whereby for s = i — 1, i, k the method is explicit, semiimplicit, implicit and
k is the number of stages.

This paper concentrates on explicit one-step hybrid methods. All the coef-
ficients a; are rational numbers and all w; are the Newton—Cotes numbers.
They determine the conditions for choosing the unknown numbers r; for
i=1,2,..., k. These conditions determine r; as rational numbers as well as the
in the interval <0, 1), so

i—1

= \ 5
= 5)

fori=1, 2, ..., k. This special case of the methods is a consequence of Huta’s
paper [3]. ’

2 The determination of unknown coefficients

To determine the coefficients a; the polynomial approximation of the solution
y(x) '

Y@ = 3 bx'

will be used. To get the method of the m-th order we shall successively put into
relation (3) the polynoms of the k-th order fork = 0, 1, ..., m — 1. By comparing
the coefficients of the same power of stepsize 4 with those in the derivatives of
y(x) we get the linear equation system

i—1

Z a;=r;

j=1

(6)
i=1 m r'_m+l
j=2 m+ 1

form=1,2,...,i—landi=2,3, ..., k.

All coefficients of the linear equation system are rational numbers, thus the
solution will also be rational numbers. A special computer program was
prepared for solving the linear equation systems in rational numbers. The source
listing and some details of the computer program are given in [4]. By means of
this program the coefficient a; of the explicit one-step methods from 2nd to the
10th order were determined. The weights w; from (4) are well known New-
ton—Cotes quadrature coefficients. By putting the polynomials of the k-th
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order for k=0, 1, ..., m — 1 into the formula (4) we obtain a special type of
linear equation systems (6). The linear equation system has the form:

k
Y w=1

i=1 '
. 1 9
Yorrlw=—

i=2 m ,
for m =2, 3, ..., k. As we can see, the matrix of the linear equation system is
the Van der Monde’s matrix and its solution are the Newton—Cotes numbers.

Our one-step hybrid methods, using the Butcher’s notation, have the form:

r, | ay
ry | as asy

e | Gy Qg oor Gy p—

W| WZ e wk_| Wk

3 Local truncation error of the methods

Suppose that we have a general form of the one-step methods

Yny1 = q’f(xm Yns yn+l; h) (8)
Then the local truncation error in the point x, , , is given by the formula
tn—f—l =y(xn+h)- wf(xm y(xn)a y(xn+h)v h), (9)

where y(x) is the exact solution of the differential equation (1). The local
truncation error for our one-step hybrid methods is (the result transfer from
well-known Newton—Cotes quadrature formulas):

k+ 1 .
tyo1 = C & y&+D(x,) 4+ 0(k**?  for k even, €10)
where ‘
¢ = 1 i w,rk (11)
k k + 1 = i'i
b1 = G Y&+ I(x) + 0+ for k odd, (12)
& + 1)!
where z
o § L (13)
k+2 = ili a .
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From the formulas (10)—(13) we can see that we have not obtained the formulas
of the odd order. It is the consequence of the Newton—Cotes numbers in the
last formula.

4 Particular methods

We introduce particular explicit one-step hybrid methods for k =2 up to
k = 10. )

0

1|1
1
2 2

0

1!

2 | 2

1o 1
4 1
6 6 6

0

11

3 |3

2 2

_0..

3 3
1

|2 0 2
4 4
13 3 1
8 8 8 8

0

111

4 | 4

1 1

—0_

2 2

22 5 2

4 | 16 16

‘ >

1 § g & =2 2

3 3 3

J 032 12 32 7
9 9 9 9 90
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S Numerical results

As an example of using our methods we begin with a very simple initial value
problem '

’

y'=-y
y(0) =1

with exact solution y(x) = exp (—x). On the interval <0, 1) and the stepsize is
h = 0.1. Solving the problem one can get the following results:

Number The absolute error
Order .
of stages inx=1.
2 2 0.661 1073
3 4 03221073
4 4 0.766 10~*
5 6 0.432107*
6 6 0.1931074
7 8 0.143107*
8. 8 0.778 1073
9 10 0.69710°°
10 10 0.39210°°

The numerical results show that the proposed methods can give a good result

for the solution of the Cauchy problems. The computations procedure was

‘programmed indouble precision in FORTRAN for the SMEP with operation
‘system DOS RYV.
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SUHRN
KONSTRUKCIA EXPLICITNYCH JEDNOKROKOVYCH HYBRIDNYCH VZORCOV
Anton Huta—Jozef Danco, Bratislava

Clanok sa zaobera numerickym rieSenim zaciatoénej Glohy 1. rddu $pecialnou triedou jedno-
krokovych hybridnych metod, ktorych koeficienty su racionalne ¢isla s Newtonovymi—Cotesovymi
vahami. V ¢lanku je ukazany postup pre odvedenie racionalnych koeficientov explicitnych jedno-
krokovych hybridnych vzorcov a formuly pre lokalnu chybu aproximacie. Si uvedené priklady
vzorcov od druhého po desiaty rad presnosti. V praci je rieSeny jednoduchy typovy priklad
pomocou odvodenych metod.

PE3IOME
KOHCTPYKLIUA HEABHBIX OJHOIIAI'OBbIX T'MBPUHBIX METOAOB
AnTton Xyra—WMoced Manuo, Bpatucnasa

ABTOpBI 3aHMMAIOTCH YHCJIEHHBIMH METONaMHM peleHs 3agamu Kol Braa oaHOLIAroBbIX
rHOPHAHBIX METOOB, KO3(UIMEHTHI KOTOPbIX palMOHabHBIe Yucia ¢ Bgcamu HeBTon-—KoTeca.
B craTbe pazpaboTaH anropuT™M HaxoXIeHUs KOI(PDHLIHEHTOB HEABHBIX METOJOB H MOTPEIIHOCTH
anpokcMMauuu. BBoasTcs mpHMeps! METOHZOB OT BTOPOrO OO JECATOrO NOPSIKOB TOYHOCTH,
C NOMOILBIO KOTOPBIX PELIHIAach mpocTas 3agada Kouu.
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