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MEASURES OF FUZZINESS OF FUZZY PARTITIONS

SLAVKA BODJANOVA, Bratislava

Introduction

Fuzzy clustering algorithms of Ruspini [5], Bezdek [2], Dunn [4] and Backer
[1] all yield fuzzy partitions as clustering solutions for partitioning finite data
sets. It was shown [2] that fuzzy partitions can be characterized by.special cluster
validity functionals, e.g. classification entropy, partition coefficient, etc. Backer
[1] evaluates fuzzy clusters as follows: if the amount of fuzziness in fuzzy
partition is low, it means that the clusters are reasonably separable and that the
partition reflects the real data structure reasonably well. On the other hand, if
the amount of fuzziness is high, it means that fuzzy set separability is low and
that either the partition does not reflect the real structure well or that almost no
structure is present in the data. The measure of fuzziness of fuzzy partitions is
therefore an important problem in fuzzy clustering. Our purpose in this paper
is to develop an axiomatic framework for a measure of fuzziness of fuzzy
partitions and to show a more general way of constructing these measures.

Partition spaces are defined in Section 2, where also some cluster validity
functionals from [1], [2] are given. In Section 3 we introduce four conditions
which we think a measure of fuzziness of fuzzy partitions should satisfy; some
examples of measures of fuzziness of fuzzy partitions are given. In Section 4 we
propose three ways of a more general constructing of measures of fuzziness of
fuzzy partitions. Section 5 contains our definition of min (max) a-combination
of fuzzy sets. We suggest some measures of fuzziness of fuzzy clusters. The
connection between measures of fuzziness and measures of dissimilarity of fuzzy
partitions is shown in Section 6.

1 Partition spaces

Let X = {x,, x, ..., X,} = R” be a given finite data set. We fix the integer &,
2 <k <n and denote by V,, the usual vector space of real k xn matrices.
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Partitions of X are defined in [2] as follows:

B = {UG Vin: uz€{0, 1} for all 4, j; 3 u, = 1 for all j;

(1.1)
Y. u; > 0 for all i}
7

We call P, hard k-partition space associated with X.

Here u; is the value of a characteristic function u;: X — {0, 1}; u; specifies the
membership of x;e X in a partitioning subset ¥, = X. Fuzzy k-partition space for
X is defined as follows:

By = {UG Ve: u;€€0, 1) for all i,j; Y u; =1 for all j;
" (1.2)
Y u; > 0 for all i}
7

Here u; is the grade of membership of x;e X in a fuzzy subset u: X — <0, 1).
The superset of P, defined by

Py = {Ue Vin: u;€{0, 1} for all 4, j; Y upr=1 for all j;
U (1.3)
Y u; > 0 for all i}
j

is a degenerate hard k-partition space for X.
The superset of P, defined by

\

Bro= {Ue Vin: u;€<0, 1) for all i, j; Y u; =1 for all j;
J 1.4)

Y u; > 0 for all i}

J

,j_

is a degenerate fuzzy k-partition space for X.
In [2] some partitioning characterizations are given. For example: degree of
separation introduced by L. A. Zadeh
for Ue Py '
Z(U,k) = 1 — max (min u;); (1.5)
] !

partition coefficient introduced by J. C. Bezdek
for Ue Fyy:

F(U, k) =%;;ué; (1.6)

classification entropy introduced by J. C. Bezdek
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for Ue Py 1
H(U, k) =-3 3 u; log,u;, (1.7)
nT;g

where ae (1, ) and u;-log,u; = 0 for u; = 0;
proportion exponent introduced by M. P. Windham
for Ue By — By

PRy = - logz{ﬁ (ZI (_I)I“(,t()(l = mavxuu')k_l)} (1.8)

Jj=1 \r=1
where [ is the greatest integer in [max u,.

De Luca and Termini [3] deﬁned the measure of fuzziness of fuzzy sets
Backer [1] proposed partitioning characterization in terms of fuzziness of fuzzy
sets as follows:
for Ue Pyy:

k—1

g(Uk)_l—k—z Z flu,Auy), (1.9)

R r=1s=r+1

where f is a measure of fuzziness of fuzy set u, " u,.

2 Measures of fuzziness of fuzzy partitions

Let us denote by L(X) the class of all fuzzy sets built on a finite set X = {x,,
X,, ..., X,} © RP. L(X) can be partially ordered by relation < called ‘‘sharpned”
by De Luca and Termini [3] and defined for all u, ve L(X) as follows:

u is more fuzzy than v, i.e. v < u if and only if

v(x) < u(x) for u(x) < % (2.1a)

and
v(x) = (x) for u(x) > % (2.1b)
De Luca and Termini [3) introduced for every fuzzy set ue L(X) a measure

d(u) of its “fuzziness”. They impose for measure d to verify the following
properties:

(1) d(u) =0 iff for all xe X: u(x) =0 or u(x) =1 (2.2a)
@) () is maximum i for all xeX:ulx) = % (2.2b)
(3) if u, ve L(X) are such that v < u, then d(v) < d(u) - (2.2¢)
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We try to introduce the relation sharpned on P, and to give for every Ue Fy,
a measure of its fuzziness.

Remark: Every Ue F,, is a k-collection of fuzzy sets {u,, u,, ..., u}. Through-
out this paper we denote by U the k-collection u;, ..., u; , where {ji, ji, ....ji}
is any permutation of {1, 2, ..., k}.

Definition 2.1. If U, We P,,(0 are such that there exists W such that w?

w < u; for u <i (2.3a)
and

wd > u; for u; > ia (2.3b)
we say that W is a sharpned version of U denoted by W < U.
Theorem 2.1. F,, is partially ordered by relation <. The proof is evident.
Definition 2.2. Consider a real nonnegative function ¢: F;, — R. This fun-
ction is called a measure of fuzziness of partitions form P, if the following
properties are true:
For all Ue By ‘
(P1) o(U) = (U?) (2.42)

(P2) o(U) =0 iff Ue B, (2.4b)
1

(P3) o(U) is maximum iff U = [;] (2.4¢)

(P4) if U, We By, are such that W < U, then o(W) < o(U) (2.4d)

Theorem 2.2. Consider a function ¢: Py, — R, where for all Ue Fy;

Y Z ( ‘)2 2.5)

(k —1)5
The function ¢ is a measure of fuzziness of partitions from Fy,.
Proof:
It is sufficient to verify if the function ¢ satisfies the properties (P1)—(P4) in
Definition 2.2.
(P1) holds obviously.
For all j:

O<Z(u —-—) Z“u Zu,,+ -Zu ——s —£=zi:(wy—%)z,
(M

p(U)=1-

where W = [w;] € B,,.
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Hence e
n
Z,(’ k) k( )

k

1\
LT %ok 1
Z;@ )Z i kY

1-0>1

n(k -1
and
0<oU)<1. 2

From (1), (2): @(U) = 0« for all j:

2
oY1 feven

which proves (P2) in Definition 2.2.

l 2
o(U) = 1 < for all j: Z(u,;,— E) =0< forall i, j: u; = iaU = [i] which

proves (P3) in Definition 2.2.
(P4): If W< U, then

for u; > —
1 1\ 1\
w,-,-Zu,j>; and w,-j—; > u,.j—; 3)
for u,.j<l
1 1Y I T
W,,Su,-,<; and W,-,-—; > u,-,-—;{— . 4)
From (3), (4):
. 1 2 1 2
ZZ(WU—_) ZZZ(“H—‘>’ (5)
i J -k i k
henc (W)=1 k ZZ(W l)z< ( )2
€ =1]-—- L — =) <
7 nk—1)557\"7 k _n,,

o(U), which proves (P4) in Definition 2.2.
Theorem 2.3. Consider a partition Ue P, and the partition coefficient F(U,
k) (see (1.6.)). Then
o(U)=1— F(U, k) (2.6)

is a measure of fuzziness of U.

Proof:

Bezdek has proved [2] that the partition coefficient F(U, k) satisfies the
following properties:
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is FU, k)<1 (2.7a)

1
FU k)y=—-<U= [ ] ) 2.7b
(U, k) = k<$ A (2.7b)
FU, k)=1<UePB,. (2:7¢)

It is clear o(U) = 1 — F(U, k) satisfies these conditions:
0<oU)<1 —% (2.8a)
) =1 ! U [l] (2.8b)
- _——<> =] .

4 k k

o(U)=0<UeP,. (2.8¢c)

(2.8b) is (P3) in Definition 2.2., (2.8¢c) is (P2) in Definition 2.2 ¢ obviously
satisfies (P1).

Let us verify (P4):

Using (5) from the proof of Theorem 2.2. we have:

1 2 2
if W< U then for all j: Z(W,-,-;) =Zw,}—£22u,§-—;=z<uij——),

i i k
hence:
for all j:
2w = Y u; 1)
From (1): (W) =1 —%ZZM; < lzz = @(U), which proves (P4).
i nij

Theorem 2.4.
Consider a function ¢: By, — R, for all Ue Fy:

o(U)=n— Zmax u;. (2.9

The function ¢ is a measure of fuzziness of partitions from Fp.
Proof:

(P1) is evident. s
(P2), (P3): '
for all j:
% < max u; < 1 (1)
n
-<) maxu; <n,
k 7
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hence

0$¢(U)$n<l—i>. @)

From (1), (2): ¢(U) = 0<> for all j: maxu; = 1 <> Ue B, which proves (P2).
o(U) = n(l — i)@ for all j: maxy,; = ia U= l}], which proves (P3).

(P4): If W < U, then for all j: maxw; > max u; so

e(W)=n—Y maxw; <n— ) maxu; = o(U),
F .

which proves (P4).

Theorem 2.5. Classification entropy defined for all Ue F,, by (1.7) satisfies
properties (P1)—(P4) in Definition 2.2.

Proof:

(P1) holds obviously.

Let us consider function 4: {0, 1) — R defined by A(x) = —x-log, x, for xe (0,
1>, ae(1, o), A(0) = 0.

Then h'(x) = —log, x — 1 and h"(x) < 0.
loga
Hence h(x + 6) < h(x) + 6-h’(x) for all 6€(0, 1).

Let us consider u(x;) € Ue Fy, such that u; < i fori<r, u;> : fori>r. If

V< U, then v, = u; + &, where 6, <0 fori<rand §,> 0 fori>r.
r k
Obviously, Y — &= ) 6.

i=1 i=r+1
k

k k
h(v(x;)) = Z — v;-log,v; = Z (u; + 6)-log, (u; + 6) < —Zu,-,-loga u; +

1

k 1 : r 1
+ Y, &(—loga u; — _log a) =h(u(x)) + Y — 5,(loga u; + —log a) +

& 1 1 1 r
5| —lo au,-~———)shux +<lo a—+———)- — 8,
+ ¥ ( 8a U oga (u(x))) B loga Y +

i=1

+ i 5,.<—logal u; — EL;) = h(u(x))) + i (‘5,.(loga i — log, u,,) < h(u(x;)

i=r+1 i=r+1

Hence H(V) = Z h(v(x;)) < Z h(u(x;)) = H(U), which proves (P4) in Definition

J J .
2.2. It is easy to prove that function H satisfies also the properties (P2) and (P3)
in Definition 2.2.
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3 Construction of measures of fuzziness of fuzzy partitions

Throughout this and the next section we denote by J, the set {1, 2, ..., k} and

by J, theset {1, 2, ..., n}. Every partition Ue F,,can be considered as a collection
of ‘

a) elements u,;€<0, 1) (i, ))eJ, x J,,
b) fuzzy sets u;e L(X),
u; = {uy, Uy, ..., Uy = {U;(x), u;(x,), ..., u;(x,)}, i€,
¢) k-dimensional vectors u”(x;) = [u,(x;), uy(x)), ..., (X)), jE€ J>.
Taking into consideration these collections we suggest three different ways of

constructing a measure of fuzziness of fuzzy partitions.
Theorem 3.1. Let f: {0, 1> - R such that

1 . 1
(i) fis'increasing on <0, ;> and decreasing on <;‘-, 1>,

(i) f(0) = f(1).
Then the function ¢: B, — R defined for all Ue F,, by

o(U) = K- ZZf(u,,) + 4, (3.1

where 0 # K, A € R are appropriate constants, satisfies properties (P1)—(P4) in
Definition 3.2.
Proof:

1
Let us denote by A the value of f(0) = f(1) and by m the value of f (E)

Obviously, h < m.
Let us define for all Ue Py,

1
o(U) =—3. 3 f(u) — h. (3.2)
n-k75
We shall prove that (3.2) statisfies (P1)—(P4) in Def. 2.2.

(P1) holds obviously.
(P2), (P3): from (i), (ii):

h<f(u)<m for allij (1)
LSy h—hs LYY rw) <Y m—h
n-k n-k 75 : n-k55
0<oU)<m-—h. )

From (1), (2), (i):
o(U) = 0< for all i, j: f(u;) = h<>u,€{0, 1}« UePR,,
which proves (P2).
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o(U) = m — h<> for all i, j: f{u,) = m<>u; = %¢>U= [ﬂ

which proves (P3).
(P4): If W < U, then from (i):

1
for u,e <0, —>I
k
1
for u;e <—, 1>2
k

From (3), (4):

p(W) =

w; < Uy =>f(wy) Sf(uij)s 3)

w; = u;= f(w,) < f(u). 4)

AL
n-k
which proves (P4).

We establish an example of function f satisfying conditions (i), (ii) in Theo-

rem 3.1.
Example 3.1. Let f: <0, 1> —» R such that

f(H) =1t for te<0, i)

Y TS00) ~ h <=3 3 4) ~ h = o(D),

1
=1- -, 1).
f(®=1—1t for te<k, >

Function f satisfies conditions (i), (ii) in Theorem 3.1. The proof is evident.

We suggest generalization of the relation sharpned by De Luca and Termini
(see (2.1a), (2.1b)) as follows:

Definition 3.1. If ae (0, 1) and u, ve L(X) such that

v(x) < u(x) for u(x)<a (3.3a)
and .
v(x) > u(x) for u(x)> a, (3.3b)

we say that v is an a- sharpned version of u denoted by v < u.
Remarks:

(1) fora= % we obtain the relation sharpned by De Luca and Termini

(2) for U, We By .
W< U< forall i: w,<uy. (34
1
k

a — sharpned for @ = 1/k will be useful in the next theorem.
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Theorem 3.2. Denote by 2(X) the set of ordinary (hard) subsets of X and
denote by u,, the fuzzy set from L(X) for which u,,(x) = % for all xe X. Let

. L(X) — R such that
(i) for wy, w,€ 2(X), ue L(X) — P(X) N {ugp):

(W) = T(W,) < 7() < (U

(ii) if u, we L(X) are such that w < u, then 7(w) < 1(u).
1

k
The function ¢: P, — R defined for all Ue Fy, by
o(U) = K-Z (u;) + A, (3.5)

where 0 # K, A€ R are appropriate constants, satisfies (P1)—(P4) in Def. 2.2.
Proof:
Let us denote by 4 the value of 7(v), where ve 2(X), and by m the value of
(14 ,)- Obviously, h < m. Let us define for all Ue Fy,:

1

o) = T o) ~ (3.6)

We shall prove that (3.6) satisfies (P1)—(P4) in Def. 2.2.
(P1) holds obviously. '
(P2), (P3):
From (i): for all i:
h < t(u) <m, (1)
hence

0<ou)<m-—h. 2)

From (1), (2), (i):
o(U) =0« for all i: ©7(u;)) = h<>ue P(X)<>Ue P,
1

o(U)=m— h< forall i: ©(u;) = meu; = uyy<>U = l:;]

(P4): W < U< for all i: w; <u;. Then from (ii):
1

k
for all i:

(w;) < t(u),
hence

o(W) = T x0) < 2 3. (= p(0)

210



Remarks:
(1) Function 7: L(X) — R defined for all ue L(X) by

(u) =) f(u"(x))), | (3.7

where f satisfies conditions (i), (ii) in Theorem 3.1., satisfies properties (i), (ii) in
Theorem 3.2.

(2) Function 7 in Theorem 3.2. for k = 2 and 7(u) = 0 for ue 2(X) is the
measure of fuzziness of fuzzy sets by De Luca and Termini.

We establish an example of function 7 satisfying conditions (i), (ii) in Theo-
rem 3.2.

Example 3.2.

For ue L(X) denote by

I(u) = {xeX; 0 <u(x)< i}

I(u) =

~—~A—

xeX; 1> u(x)>i}

Lu) > {xeX; u(x) = llc}

Then X — I,(u) U I(u) U Iu) = {xe X; u(x)e{0, 1}}.
Let 7: L(X) — R such that

(u) = min{min) u(x), _Tli(n)(l —uX)} if L(w)uL(u)#0

xel(u

= (1 - %)card I(u) otherwise.

Function 7 satisfies properties (i), (ii) in Theorem 3.2.

Proof:
(i): if ue 2(X), then I,(u) U L(u) = 0, card I,(u) = 0, hence
7(u) = 0. @))
If u = u,,, then I)(u) U I,(u) = 0, card I;(«) = n, hence
1 ’
=(1——=)n (2)
g1y ( k)

If ue L(X) — 2(X) U {u}, then
a) if I,(w) v L(u) = 0, then L(u) # 0 and 0 < card Li(u) =p <n

w(o<(-gr o
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b) if I,(u) U L(u) # 0, then

7(4) = min {min u(x), mli(n)(l —ux)}< 1 —i

xel (u)

0<1(u) < (1 - l)ﬂ
k
From (1), (2), (3), (4) we obtain:
for w,, w,e P(X), ue L(X) — P(X) U {ugp:
(w) = 1(wy) < T(u) < ()

which is (i) in Theorem 3.2.
(ii): if w < u, then
1
! w(x) < u(x) for u(x) < -IIE
w(x) > u(x) for u(x) > i
It is clear that

min w(x)< min u(x)

xel(w) xel)(u)
and
min (1 — w(x))< min (1 — u(x)).
xely(w) x€ly(u)

If I,(u) U I,(u) = 0, then I,(w) U L,(w) # ® and from (7), (8) we have:

t(w) < t(u).
If I,(u) U I(u) = 0, then
a) if I(u) = 0, then ue Z(X) and from (5), (6): w = u, hence

©(w) = (u);

b) if Ii(u) # 0, card I(u) > 0, then
1. if @ # I,(w) u L(w) < I,(u) we obtain

@

6))

(6)

(M

®

&)

(10)

2(w) = min{min (w09, min (1 — w() <1 — L < (1 — ) -card 1) = )
xelj(w) xely(w) k k A

2. if L(w)u L(w) =0, then @ # I,(w) < I;(u) we obtain

card I,(w) < card L(u),
hence

(w) = (1 - i)-card L(w) < (1 — i)-card L) = t(u);

212
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3. if [[(w) U L(w) U I(w) = 0, then we 2(X) and from (1):
t(w) =0, hence 1(w) < t(u). (13)
From (9), (10), (11), (12), (13):
if w $ u, then 7(w) < 7(u), which is (ii) in Theorem 3.2.
Tl:eorem 3.3. Denote by ¥ the set of all k-dimensional vectors v, v” = [v,,
Uy, ..., U], where for all ie{l, ..., k}: v,€€0, 1> and ) v, = 1. Denote by ¥*, the
set {ve ¥"; such that v, {0, 1} for all i} and by v, th;: vector from ¥~ for which

Vamyi = i for all i.

Let 7: 7" — R such that
(i) for t, we ¥, ve ¥ — ¥ U {v}:
(1) = o(w) < 7(v) < Avym);
(ii) if w, ve ¥ are such that
w,<v, for v < ire{l, .. k}

and 1
w,>v, for v, > ;se{l, ..oy k}y

then 7(w) < 1(v).
Then the function ¢: F,, — R defined for all Ue F,, by
o(U) = K-Z u'(x;) + 4, (3.8)
J

where 0 # K, A€ R are appropriate constants, satisfies (P1)—(P4) in Defini-
tion 2.2.

The proof is analogous to that in Theorem 3.2.

Remark: Function 7: ¥~ — R defined for all ve ¥ by

(v) = Zl'.f (), (3.9

where f satisfies conditions in Theorem 3.1., satisfies properties (i), (ii) in
Theorem 3.3.
Example 3.3. Let 7: ¥ — R such that for all ve¥":

r(v)=1—m§1xv,~ ie{l,...,k}.

Function 7 satisfies properties (i), (i) in Theorem 3.3.
Proof:

G) if vey,: maxv, = 1, hence 7(v) = 0;
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. 1 1
ifv=1v,: max v, = e hence 7(v;y) = 1 — —;

9

ifve?y — ¥, u{vum): £< maxv; < 1, hence 0 < 7(v) < 1 — i, which
proves (i) in Theorem 3.3.-

(ii)) For all vey : maxvizi.
If w, ve ¥ are such that w, < v, < i and w, > v, > i, r, se{l, ..., k}, then

max w; > maxv; and 7(w) < 7(v), which proves (ii) in Theorem 3.3.

4 Measures of fuzziness of fuzzy partitions based on min (max)
' a-combination of fuzzy sets

In this section we propose a min (max) e-combination of fuzzy sets as
follows: .

Definition 4.1. Let u,, u,e L(X) and ae (0, 1). Minimal a-combination of u,,
u, is the fuzzy set u,e L(X) defined by:
for all xe X:

4y (x) = min {u, (x), u, ()} if min {u,(x), 4V} < @

4.1

= 0 otherwise.
We denote u, = u,,u,.
Definition 4.2. Let u,, u.€ L(X ) and ae (0, 1). Maximal a-combination of #,,
u, is the fuzzy set u,e L(X) defined by:
for all xeX:

ug(x) = max {u,(x), u,(x)} if max{u,(x), u,(x)} = a

4.2)
=1 otherwise.
We denote u, = u,"u,. '
Theorem 4.1. Consider Ue B,. For all (r, s)eJ, x J;:
u,(x) = (4, ,u)(x) =0 for all xeX, (4.3a)
u,(x) = (u*u)(x) =1 forall xeX. (4.3b)

The proof is evident.

Theorem 4.2. Consider U = I}]EPM. Then for all (r, s)eJ, x J;:

214



u,(x) = () (x) = (% u) (x) = u,(x) = i for all xeX. 4.9

The proof is evident.
Theorem 4.3. Consider U, WeF,, such that U< W. Then for all (r,
s)eJ, x J;: for all xe X:

0 < 1, (x) = (114 (x) < (W, 14 w,) (%) = w, () Si’ (4.5a

< wy(x) = (W w) (¥) < (" u) (x) = uy(x) < 1. (4-5b)i

x| —

Proof:
We must analyze three cases for a fixed xe X:

L w((x)>- and wi(x)>-

= &=
| -

CIL w(x) <— and w,(x) <

x| -

1

III. w,(x) > and w,(x) si.

b

Then

L u(x)>w,(x) lec and u,(x) > w,(x) > i

1 > min {u,(x), u,(x)} > min{w,(x), w,(x)} > ,l(
if
min {w,(x), w,(x)} > i: Wopwy) (x) = (4, 4u,) (x) =0
if
min (), 1, =+ (W 148) () < O0,) () = -
Hence
0 < u,(x) <w,(x) S‘Ilc' (1a)
1 > max {u,(x), u,(x)} = max {w,(x), w,(x)} > i,
hence .
% < w,(0) < u,(0) < 1. ‘ (1b)
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I u,(x) < w,(x) Si and u,(x) < w,(x) < ;lc-,
hence
0 <u,(x) <w,(x) < i
0 < max {u,(x), u,(x)} < max {w,(x), w,(x)} < i
if
max {w, (x), w,(x)} < i: 9% w) () = () (x) = 1.
if
max {w, (x), w,(x)} = iz W) < M) < 1.
Hence

%S w,(x) < u,(x) < 1.

IIL. u,(x) > w,(x) 2% and u,(x) < w(x)< i

0 < min {u,(x), 4,(x)} = u,(x) < min {w,(x), w, ()} = w,(x) < —,

hence :
0<u,(x)<w,(x) < -I;

1

k

hence 1
E Sw,(x) <u(x) < 1.

(1a), (2a), (3a) prove (4.5a).
(1b), (2b), (3b) prove (4.5b).

i .
Theorem 4.4. Let f :<0, ;> — R such that

1
(i) fis increasing on <O, ;>
(i) f(0) =0.
Then function @: By, — R defined for all Ue F,, by
k

k—1
o(U) = Z z Zf((urllku:)(x))

r=1s=r+1xeX

satisfies properties (P1)—(P4) in Def. 2.2.
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Proof:
(P1) holds obviously.

(P2), (P3): for all (r, s)eJ; x J;: 0 < (4, 4,) (x) < i for all xe X.

1
[ is increasing on <0, E> and f(0) = 0, hence

£0) < £ (@1t () Sf@)- (1)

1
Let us denote by m the value of f (;) Then
0< p(U) < -k = 1)-n-m )

From (1), (2), (i) we obtain:
o(U) = 0« for all (r, s)eJ, x J;:

S (1) (x) = 0 for all xe X< (u,4u)(x) =0« Ue B,

o(U) = %-k(k — )n-m< for all (r, s)eJ, x J;:

. S (1 u) (x)) = m for all xe X< (u, ;) (x) = i¢>‘U — [i]

(P4): If U< W, then 0 < (u, 1) (x) < (W, w,) (x) for all (r, s)e J, x J, and for
all xe X. From (i) we obtain:

S (W1 ptag) (x) < f((W, 10w (x)) for all (r, s)eJ, xJ, and for all xe X. Hence
e(U) < p(W).

1
Theorem 4.5. Let g: <;, 1> — R such that

1
(i) g is decreasing on <-’;, 1>,
(i) g(1) = 0.
Then function @: F,, — R defined for all Ue F;, by

k

k-1
o)=Y Y X & u)(x) 4.7)

r=1s=r+1xeX

satisfies properties (P1)—(P4) in Def. 2.2.
The proof is analogous to that in Theorem 4.4.
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5. Measures of fuzziness and measures of dissimilarity of fuzzy partitions

Definition 5.1. Function D: P,y x By — R is a measure of dissimilarity bet-
ween two partitions from Py, if it satisfies the following properties: for U,
We By

@) DU, U) =0, (5;1a)
(i1) DU, W)= D(W, U). (5.1b)

We can show that a measure of dissimilarity satisfying some further con-
ditions can determine the measure of fuzziness of fuzzy partitions from Fy,.

Definition 5.2. Consider a measure of dissimilarilarity D defined on F,( x Fy,.
D is called entropic measure of dissimilarity if the following properties are true:

1
(i) if V, We F,, are such that V< Wand U = [;], then
DV, U) 2 D(W, U); (5-2a)

" . 1
(i) if V;, Vo€ Prp, U= [;] and WeF,;, — By, W # U, then

DV,, U) = D(V,, U) > D(W, U) > 0. (5.2b)

For illustration we establish two following examples:
Example 5.1. Let D: F;, x Py, — R such that for U, We P,

L= LW
1 I

D is an entropic measure of dissimilarity.
Proof:
(i) Obviously, D(U, U) =0,
(i) obviously, D(U, W) = D(W, U).
Hence D is'a measure of dissimilarity.

7 Consider U = [{I, V< W.

DU, W)=Y, . (5.3)

’

DU, V) =Y

Zv,.;_i and DU, W)=Y
! )

1
wg.__l.
-

i

It was shown in the proéf of Theorem 2.2 that

0¥ (Lof-1)<Fee- (m)
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2 -)-omveli .

S(Ei-1)=te-n=ver, &)
For V< W:
S S

From (4): if V < W, then D(V, U) > D(W, U), which proves condition (i) in
Definition 5.2.

1
From (1), (2), 3): if ¥, Ve B,, U = [;] and WeF,, — By, W # U, then

DV, U) = D(V,, U)> D(W, U) > 0, which proves condition (ii) in Defini-
tion 5,2.

So D is an entropic measure of dissimilarity.

Example 5.2. Let D: F;,x P, — R such that for U, We Fyy

|max u; — max wyl
DU, W) = Z : - ; 5.4
B

D is a measure of dissimilarity but not an entropic measure of dissimilarity.
Proof:
(1) D(U, U) = 0 is evident,
(ii) D(U, W) = D(W, U) is evident,
so D is a measure of dissimilarity.
Let us consider V, We F; as follows:

025 1 0 0 0 020 1 0 0 0
o040 011 0 {040 011 0
=0 o0 0 0 1 W=to 00 01

035 0 0 0 0 040 0 0 0 0

Evidently, W< V.
For U = [ﬂ we have:

|max v; — 0.25]
DV, U) = 2_’—
7025 Y02
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_ 0,40 — 0,25 + 4.1 —025 _ 13,739

DV, U)
0,25-0,345 1-0,25

D(W, U) = 040 — 0.2 4 4 L) v 13,667.
0,25-0,36 1-0,25

D(W, U) < D(V, U), hence D does not satisfy condition (i) in Def. 5.1., so D
is not an entropic measure of dissimilarity. Now we can establish the connection
between entropic measures of dissimilarity and measures of fuzziness of fuzzy
partitions from Fy,.

Theorem 5.1. Let D be an entropic measure of dissimilarity defined on

ProX Pro, U = [{I and We B,. Function H: B,, — R defined for all Ve F;, by

H(V)=DW, U)—D(V, U) (5.5)

satisfies conditions (P1)—(P4) in Definition 2.2.

Proof:

(P1) H(V®) = H(V) because (UP) = U.

(P2) H(V)=D(W, U) — D(V, U) = 0« D(W, U)<>VeR,.
From (ii) in Def. 5.2.: D(W, U) = D(V, U)<> Ve R,.

(P3) H¥V)=D(W, U) - D(V, U) < D(W, U)

H(V)=D(W, U)y«D(V, U)=0.
1

From (ii) in Def. 5.2: D(V, U) =0V =U= I:;c.:l

(P4) If ¥V, <V, from (i) in Def. 5.2.: D(V,, U) = D(V,, U), hence

H(V)) = D(W, U) — D(V,, U) < D(W, U) — D(V;, U) = H(V).

On the other hand, we can prove also the following theorem:
Theorem 5.2. Let H be a measure of fuzziness defined on Py,
Function D: Py x By — R defined for all U, We By, by

DU, W) = |H(U) — HW)| (5.6)

is an entropic measure of dissimilarity.
Proof:
(i) DU, U) = |H(U) - H{U)| = 0,
- (i) D(U, W) = |H(U) — HW)| = |H(W) — H(U)| = D(W, V).
Hence D is a measure of dissimilarity.
(iii) if W < V, then from (P4): H(W) < H(V).

For U = ; we have:
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D(W, U) = |H(W) — H{U)| = |H(V) — H(U)| = D(V, U),

which proves condition (i) in Def. 5.2.
1
(iv) From (P2): H(V) = 0« Ve B,, from (P3): H(V) = max<V = [;]
1
If V,, V;eB,y, U= [E] and U # We Py, — B, then

DV, U) = [H(V)) — H{U)| = |[H(V)) — H({U)| = D(V,, U) =
= H{U) > |[HU) - HW)| = D(W, U) > 0,

which proves condition (ii) in Def. 5.2. Hence D is an entropic measure of
dissimilarity.

Conclusion

We have built an axiomatic generalization of measures of fuzziness of fuzzy
partitions. We think that these measures can be useful as cluster validity fun-
ctionals in fuzzy clustering algorithms.
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SUHRN
MIERY NEURCITOSTI FUZZY ROZKLADOV
S. Bodjanova, Bratislava

Vysledkom fuzzy zhlukovacich algoritmov st fuzzy rozklady koneénych mnoZin objektov.
Ciefom tohto ¢lanku je podat matematicka formaliziciu mier neurcitosti fuzzy rozkladov a na-
vrhnut niektoré vSeobecnejsie postupy pre konstrukciu tychto mier.

PE3IOME
MEPbI HEUETKOCTU HEYETKUX PA3BMEHUN
C. Bon#ianoBa, Bpatucnasa

Pe3ymbTaToM HeY€TKMX anropHpMOB KJIaCTEpHOro aHaiW3a ABJISIOTCS HeuéTkue pa3buenus
KOHEYHBIX MHOXeCTB 06bekTOB. B cTaThe mpuBOOMTCS MaTeMaTuueckas (opmanu3auus Mep
HEYETKOCTH 3THX pa3OMeHU# ¥ HEKOTOPBIE METOABI KOHCTPYKIIMH 3THX MeED.
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