

Werk

Label: Article **Jahr:** 1987

PURL: https://resolver.sub.uni-goettingen.de/purl?312901348_52-53|log21

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

UNIVERSITAS COMENIANA ACTA MATHEMATICA UNIVERSITATIS COMENIANAE LII—LIII—1987

VIERA ČERŇANOVÁ, Bratislava

ON THE BOUNDARY VALUE PROBLEM WITH MATRIX PARAMETER

Consider the real boundary value problem

$$Y''(x) + \Lambda Y(x) = 0 \quad (0 \le x \le 1),$$
 (1)

$$Y(0) = Y(1) = 0, (2)$$

where $Y = \operatorname{col}(y_1, y_2) \in C^2(\langle 0, 1 \rangle) \times C^2(\langle 0, 1 \rangle)$ and parameter Λ is a real 2×2 matrix $\Lambda = (\lambda_{ij})$ i, j = 1, 2.

In this paper the necessary and sufficient condition for the existence of a nontrivial solution of the problem (1), (2) is given.

Theorem. The boundary value problem (1), (2) has a nontrivial solution in $C^2(\langle 0, 1 \rangle) \times C^2(\langle 0, 1 \rangle)$ iff

$$\det \Lambda = k^2 \pi^2 (\operatorname{tr} \Lambda - k^2 \pi^2), \tag{3}$$

where $k \neq 0$ is an integer, i.e. iff at least one eigenvalue of Λ is $\lambda = k^2 \pi^2$. This solution is of the form

$$Y_{k}(x, \Lambda) = C_{k} \begin{pmatrix} \lambda_{12} \\ k^{2} \pi^{2} - \lambda_{11} \end{pmatrix} \sin k \pi x, \qquad (4)$$

 $C_k \in R$ being a constant. If both eigenvalues of Λ are $\lambda_1 = k^2 \pi^2$, $\lambda_2 = l^2 \lambda^2$, then the solution of (1), (2) is

$$Y_{k,l}(x, \Lambda) = C_k \left(\lambda_{12} k^2 \pi^2 - \lambda_{11} \right) \sin k \pi x + C_l \left(\frac{\lambda_{12}}{l^2 \pi^2 - \lambda_{11}} \right) \sin l \pi x, \qquad (5)$$

 C_k , $C_l \in R$ being arbitrary constants.

Remark. (4) is equivalent to

$$Y_{k}(x, \Lambda) = C_{k} \binom{k^{2}\pi^{2} - \lambda_{22}}{\lambda_{21}} \sin k\pi x$$

and (5) is equivalent to

$$Y_{k,l}(x,\Lambda) = C_k \binom{k^2 \pi^2 - \lambda_{22}}{\lambda_{21}} \sin k\pi x + C_l \binom{l^2 \pi^2 - \lambda_{22}}{\lambda_{21}} \sin l\pi x$$
 (5')

as can be obtained from (3). The form (4') of the solution is more general when $\lambda_{12} = 0$ and inversely, (4) is more general when $\lambda_{21} = 0$. The same holds for (5') and (5).

Proof of the theorem. Equation (1) is equivalent to the system

$$y_1'' = -\lambda_{11}y_1 - \lambda_{12}y_2 y_2'' = -\lambda_{21}y_1 - \lambda_{22}y_2$$
(1')

the solutions of which can be chosen in the form

$$y_1(x) = c_1 e^{rx}, y_2(x) = c_2 e^{rx}.$$
 (S)

Here, r is a root of the characteristic equation

$$r^4 + (\operatorname{tr} \Lambda)r^2 + \det \Lambda = 0. \tag{6}$$

Considering (1') and (S) we obtaine

$$c_1(\lambda_{11} + r^2) + c_2\lambda_{12} = 0$$

$$c_1\lambda_{21} + c_2(\lambda_{22} + r^2) = 0$$

Solution (c_1, c_2) of this system is nontrivial iff r is a root of (6). Hence $(c_1, c_2) = (-\lambda_{12}, \lambda_{11} + r^2) = (\lambda_{22} + r^2, -\lambda_{21})$.

The roots of (6) are

$$r_{1,2} = \pm \frac{1}{2} \left[(-\operatorname{tr} \Lambda + \sqrt{(\operatorname{tr} \Lambda)^2 - 4 \operatorname{det} \Lambda}) \right]^{1/2},$$

$$r_{3,4} = \pm \frac{1}{2} \left[(-\operatorname{tr} \Lambda - \sqrt{(\operatorname{tr} \Lambda)^2 - 4 \operatorname{det} \Lambda}) \right]^{1/2}.$$
(7)

It is obvious that the numbers $-r_1^2$, $-r_3^2$ are the eigenvalues of the matrix Λ . Let us now consider the two following cases:

- (A) off-diagonal elements of Λ are both nonzero, i.e. $\lambda_{21} \neq 0$ as well as $\lambda_{12} \neq 0$;
- (B) at least one of off-diagonal elements of Λ is equal to zero, i.e. $\lambda_{12} = 0$ or $\lambda_{21} = 0$.

(A)

As to the multiplicity of roots of (6), we shall distinct four cases: (A_1)

$$r_1 = r_2 = r_3 = r_4$$
.

Clearly, $r_i = 0$ for i = 1, 2, 3, 4 and there is no nontrivial solution of (1), (2). (A₂)

There exist four distinct roots of (6).

In this case, the general solution of equation (1) is

$$Y(x) = D_1 \binom{-\lambda_{12}}{\lambda_{11} + r_1^2} \exp(r_1 x) + D_2 \binom{-\lambda_{12}}{\lambda_{11} + r_1^2} \exp(-r_1 x) + D_3 \binom{-\lambda_{12}}{\lambda_{11} + r_3^2} \exp(r_3 x) + D_4 \binom{-\lambda_{12}}{\lambda_{11} + r_3^2} \exp(-r_3 x),$$

 D_1 , i=1, 2, 3, 4 being constants. Taking (2) into account we obtain $D_1+D_2=0$, $D_3+D_4=0$, $D_1(\exp r_1-\exp(-r_1))=0$, $D_3(\exp r_3-\exp(-r_3))=0$. It follows from these relations that Y(x) is a nontrivial solution of (1), (2) iff $r_1=ik\pi$ or $r_3=il\pi$, k, $l=\pm 1, \pm 2, \ldots$. A real form of this nontrivial solution is

$$Y_{k,l}(x) = C_k \binom{-\lambda_{12}}{\lambda_{11} - k^2 \pi^2} \sin k\pi x + C_l \binom{-\lambda_{12}}{\lambda_{11} - l^2 \pi^2} \sin l\pi x.$$

 (A_3)

Equation (6) has two double roots.

We have $r_1 = r_3$. As in (A_2) we obtain $r_1 = ik\pi$, $k = \pm 1, \pm 2, ...$, and a general form of real nontrivial solution of (1), (2) is

$$Y_k(x) = C_k \binom{-\lambda_{12}}{\lambda_{11} - k^2 \pi^2} \sin k \pi x.$$

 (A_4)

There exists one double root of (6).

In this case, no other possibility than $r_1 = 0$ and $r_3 = il\pi$ or $r_1 = ik\pi$ and $r_3 = 0, k, l = \pm 1, \pm 2, ...$, can occur. A real nontrivial solution of (1), (2) is the same as in (A₃).

(B)

Let $\lambda_{12} = 0$. (The case $\lambda_{21} = 0$ is analogous.)

The system (1') will have the form

$$y_1'' = -\lambda_{11}y_1 y_2'' = -\lambda_{21}y_1 - \lambda_{22}y_2.$$
 (1")

It is known that there exists a nontrivial solution of the problem

$$y_1'' = -\lambda_{11}y_1$$

$$y_1(0) = y_1(1) = 0$$

iff $\lambda_{11} = k^2 \pi^2$, $k = \pm 1, \pm 2, \dots$, i.e. $r_1^2 = -\lambda_{11} = -k^2 \pi^2$.

Let $\lambda_{11} \neq k^2 \pi^2$, $k = \pm 1, \pm 2, \dots$

Clearly, $y_1(x) \equiv 0$ on $\langle 0, 1 \rangle$ and the problem (1), (2) will have nontrivial solution just when $-r_3^2 = \lambda_{22} = l^2 \pi^2$, $l = \pm 1, \pm 2, \dots$

This solution will have the form

$$Y_l(x) = C_l \binom{0}{1} \sin l\pi x.$$

 (\mathbf{B}_2)

Let $\lambda_{11} = k^2 \pi^2$, $k = \pm 1, \pm 2, ...$

We have $y_1(x) = \sin k\pi x$ and $y_2(x)$ is the solution of the problem

$$y_2''(x) = -\lambda_{22}y_2(x) - \lambda_{21}\sin k\pi x$$
$$y_2(0) = y_2(1) = 0.$$

Using the method of variation of the constants we obtain

$$y_2(x) = \frac{\lambda_{21}}{\lambda_{11} - \lambda_{22}} \sin k\pi x = \frac{\lambda_{21}}{k^2 \pi^2 - \lambda_{22}} \sin k\pi x, \ \lambda_{22} \neq \lambda_{11}.$$

Hence

$$Y_{k}(x) = C_{k} \binom{k^{2} \pi^{2} - \lambda_{22}}{\lambda_{21}} \sin k \pi x.$$

Specially, for $\lambda_{22} = \lambda_{11} = -r_1^2 = -r_3^2 = k^2 \pi^2$ the solution will be

$$Y_{k}(x) = C_{k} \binom{0}{1} \sin k\pi x.$$

We have proved that (1), (2) has a nontrivial solution iff at least one eigenvalue of Λ is equal to $k^2\pi^2$, $k=\pm 1,\pm 2,\ldots$, and that this solution has the form (4), (4'), (5) or (5'). From (7), putting $r_1=ik\pi$ ($r_3=il\pi$) we shall obtain (3). Inversely, from (3) and (7) we shall have $r_1=ik\pi$ or $r_3=il\pi$. The proof of the theorem is complete.

BIBLIOGRAPHY

- 1. Исаев, Г. А.—Аллахвердиев, Б. П.: Спектральная теория операторов, Баку, 3 (1980) 202—221.
- 1. Sleeman, B. D.: Lecture Notes Math. 1980 (827), 229-250.
- Барновска, М.: О краевой задаче с матричным параметром, Диф. Ур. 4, Минск, 1985, 716—717.

Received: 6. 1. 1986

Author's address:

Viera Čerňanová

MFF UK, Katedra aplikovanej matematiky

Matematický pavilón

Mlynská dolina

842 15 Bratislava

SÚHRN

O OKRAJOVEJ ÚLOHE S MATICOVÝM PARAMETROM

V. Čerňanová, Bratislava

V práci je vyslovená a dokázaná nutná a postačujúca podmienka existencie netriviálneho riešenia $Y(x) \in C^2(\langle 0, 1 \rangle) \times C^2(\langle 0, 1 \rangle)$ dvojrozmernej okrajovej úlohy s maticovým parametrom

$$Y''(x) + \Lambda Y(x) = 0$$
, $x \in \langle 0, 1 \rangle$
 $Y(0) = Y(1) = 0$.

Uvádzame tiež všeobecný tvar príslušného riešenia.

РЕЗЮМЕ

О КРАЕВОЙ ЗАДАЧЕ С МАТРИЧНЫМ ПАРАМЕТРОМ

В. Чернянова, Братислава

В работе приведено и доказано необходимое и достаточное условие для существования нетривиального решения $Y(x) \in C^2(\langle 0, 1 \rangle) \times C^2(\langle 0, 1 \rangle)$ двухмерной краевой задачи с матричным параметром

$$Y''(x) + \Lambda Y(x) = 0,$$
 $x \in \langle 0, 1 \rangle$
 $Y(0) = Y(1) = 0.$

Приведена также общая форма соответствующего решения.