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ON OSCILLATION OF CERTAIN CLASS OF SbLUTlONS
OF RETARDED DIFFERENTIAL INEQUALITIES

JAROSLAV JAROS, Bratislava
" The purpose of this paper is to extend and improve, in several directions,

recent results due to Grace and Lalli [5] concerning the forced nonlinear retar-
ded differential inequalities of the form

x(1) {Lnx(t) + ¥ p i@ () - h(r)} < 0, for /i odd, (1)
i=1

and
x(0) {Lnx(t)—i p,-<z1f,-(x(g,-(t»)—h(t)}zo,for,n even,  (2)

where L, is the general disconjugate differential operator defined by
Ly(x(t) = ay(t)x(¢) and

Lx(t) = ak(t)diLk_,x(t), k=1,2,..,n.
t

We shall assume that a;(¢), i = 0, 1, ..., n, are positive and continuous functions
on [t,, o) and the operator L, is in canonical form in the sense that

'[ a7 '(t)dt = (3)

fori=1,2,...,n— 1. In what follows, the set of all real-valued functions y(¢)
defined on [¢,, c0) and such that L;y(¢),i =0, 1, ..., n, exist and are continuous
on [z,, o) will be denoted by 2(L,).

As usual, we restrict our considerations only to those solutions x(¢) of (1) (or
(2)) which exist on some ray [tx,\oo), t, = t,, and satisfy

sup{|x(s)|:s =t} >0
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for every te[t,, o0). Such a solution is called oscillatory if it has arbitrarily large
zeros in [¢,, o0) and it is called nonoscillatory otherwise.
In regard to the inequalities (1) and (2) the following conditions are assumed

to hold:

(l) p,EC([tO, (X)) (0 <D))9 i= l m;

(ii) f,e C(R, R), yf(y) >0 for y ;é 0, f; are nondecreasmg and fixy)|l =
= lfi(x)f(»)| for every x, yand i =1,

(iii) g;€ C([t,, o©), R), g:(t) S tfor t = ¢,, limg,-(t) = 00 as t — 00, g; are non-
decreasing on [ty, ©), i=1, ..., m;

(iv) he C([t,, =), R) and there exists a function pe 2(L,) such that L,p(¢z) =
= h(t) and Lyp(?) is strongly bounded on [¢,, o) in the sense that for
every T = t, there are T, T* = T such that

Lop(T¥) = min Lyp(¢) and Lyp(T*) = max Lyp(¢).
te[T, o) te[T, )

To formulate our results we shall use the following notation. Let j,e
'e{l, woo,n—=1L,r=1,2,...,n—1and ¢, se[t, ). We define [, =1 and

Ir(t’ S;jl’ ""jr) = j ajTI(T)Ir—I(r’ Sast J,)dT
It is not difficult to verify that for 1 < r <n—1
I,(t, S;jl’ ---,j,) = (—1)’1,(.5‘, t;j,, "-’jl) (4)
and fori=1, 2, . '

AL, 85 Jys ooos ) = 5)

=J. Ii—-l(t’ t;jl’ "'9ji—l)aj:l(r)lr—](ra S;ji+li ...,j,)dT.

Moreover, if ye 2(L,),0 £ i< r < n-—1and ¢ se[t,, o), then we can easily
derive the following generalization of the Taylor’s formula:

Ly(t) = Z (=W Ly®L_ (s, t;j, ..., i+ 1)+
S s 6)
+(—1)'”i+'Jl L_(t,t;r, ..., i+ 1)=cl0s L.y@y,

r+l(t)

(see for example Chanturija [1]). Using (4), the above formula can be rewritten '
as

Ly(t) =jiiL,-y(s)Ij_,(t, i b ey U )
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+J Lt 5i+l, .. nEkay®q,
. ar+ I(T)
i=0,1,....,r;r=0,1,...,n—1.

For simplicity we shall frequently use the abbreviations:

a(t, s) = a; " (OL(t, 551, ..., k), o (1) = a1, 1),
o t, s) = a; 'Ot s;n—1, ..., n—k), @) = a1, 1,).
Now let ye 2(L,) be such that
(=1)y()L,y() >0

for all sufficiently large ¢. Then according to a generalization of a well-known
lemma of Kiguradze (see [18, Lemma 2]), there exist an even integer ¢,
0<¢ =<n,and a ¢, 2 ¢, such that

y(@)L,y(t)>0on|[t, o) fori=0,1, ..., 1, (8)
and
(=D~ p()L,y(t)>0on[t,, ©)fori=¢,¢+1, ..., n. )

Such a y(¢) is said to be a (nonoscillatory) function of degree ¢ (see Foster and
Grimmer [3] and Kusano, Naito and Tanaka [13]).

It is not difficult to verify that the following extension of a result due to Grace
and Lalli [4, Theorem 2] holds. The proof can be modelled on that of Theorem
1 in [4], so we omit the details.

Lemma. Suppose that 4(t) = 0 and that ke{l1, 2, ..., n — 1} is fixed. Let x(¢)
be a nonoscillatory solution of (1) (or (2)) such that

lm&=0.
1= (1)

Then there exist an even integer £, 0 < ¢ < k andat, = t,such that x(t) is the
function of degree £ on [¢,, ).

Remark 1. In [4], Grace and Lalli stated this lemma for kK = 1 and required
moreover the satisfaction of the condition

1
lim — ) cq(t) >0
#~+0 (Zl(t) RZ:O ( )

for every choice of the constants ¢; withc, > 0, v=1, 2, ..., n — 1. We note that
if (3) holds, then the above condition as well as the more general condition

lim an(t)>0 1sk<n-1,

'~°°ak(t )i=k .
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for every choice of ¢; with ¢,> 0, v=k, k + 1, ..., n — 1, are always satisfied
(see [7]).
Let f(x) = min f(x) and g(¢) = max gi(t).
<i<m

I<ism

Theorem 1 (Unforced Oscillation). Assume that h(f) =0 and that ke
e€{l, 2, ..., n— 1} is fixed. If :

lim sup f O (5 2@) T P (a0, g0 dr>

11—

(10)

s zZ
> limsup —
=0~ fla)
foevery/=0,2,...,k,ifkiseven,and £ =0, 2, ..., k — 1, if k is odd, then
every solution x(z) of (1) (or (2)) such that
| im x@) _ 0
A0
is oscillatory. _
Proof. In order to avoid repetition, we consider only the inequality (1).
Assume to the contrary that there exists a nonoscillatory solution x(¢) of (1)
such that x(#)/a,(¢) = 0 as t - co. By our Lemma, there exist an even integer Z,
0=/ =<k,andat, 2 t,such that x(z) is of degree £ on [¢,, ), i.e. (8) and (9)
hold. Suppose first that x(¢) > O0for ¢ > ¢, and choose T = ¢, such thatg,(¢) = 1,
fort 2 Tandi =1, ..., m. From the formula (6) applied to x () with i, r, s and
t replaced by 7, n — 1, t and g(¢), respectively, and from (9) it follows that

n—1
L,x(g() = ;{ (=1 'Lx(OL_,(t, g(0); J, ..., £ + 1) +

+(—1)""f IL_,_(r,gtn—1,..,¢+1) Lx(@ 4,
“ a,(1)

Z Lx(1) - J @y ¢ 1(7, g(O))L,x(7)d7

8(1)

for ¢+ = T. Thus, taking (1) into account, we have
L,x(g(1) = Lx(t) + I o, _,_1(7, g(2)) x
g(1) -
: (1)
X IZ] P()fi(x(g(D))dr
fort > T.
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Suppose first that £ = 0. Then, by (9) and (iii), L,x(g(r)) is nonincreasing on
[T, o) and from (11) we get

t

Lox(g(1)) 2 Lox(1) +J o, (7, g(1)) x

g(1)

X 2 PAOf(Lox(g(D)filag (g (D)) d7 2 (12)

2 Lox (1) + f(Lox(g(2))) jm @, - 1(7 g(1)) 2‘1 Pi(Dfi(a; ' (g(n)) dr.

Since L, x(t) < 0for ¢t = t,, L,x(¢) decreases to a limit ¢ = 0 as t - c0. From
(12) we obtain ¢ = 0.
Thus

: L) . | j B A v
lim su f(Lox(g(t)))g limiug | wn_ufr,g(t))igl p(Dfiay ' (g(D)dr,

a contradiction to (10) in the case £ = 0.
Now let £ > 0. Application of the formula (7) to the case where y(¢), i, r, ¢
and s are replaced by x(¢), 0, £ — 1, T and ¢, respectively, shows that

-1
Lix(1)= Y, Lx(O)(r, 151, ..., ) +
i=o
+I L _(t,s;1,...,¢—1a;"(s)L,x(s)ds =
gf L _(t,s;1,...,¢ —1Da;'(s)L,x(s)ds =

> L,x(‘r)j L_(z,s8;1,..,¢—1a;'(s)ds =
t

=L/X(T)I,(T, t; l,---’(), fgt;t],

where we have used (8), the decreasing character of L,x(z) on [#,, c0) and the
identity (5) fori=r =/¢.

Since the functions g;(z), i = 1, 2, ..., m, are nondecreasing for ¢ = ¢,, from
the above we get ‘

Lyx(g{(7)) 2 L,x(g(D))1,(g:(1), g:(1); 1, ..., £),
ie.

x(g(7) 2 L, x(g(1)e,(8:(7), &(1)),

fortr2t=Tandi=1,2,...,m.
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Using this estimation in (11), taking into account (ii) and the fact that the
‘function L,x(t) is decreasing on [t,, c0), we obtain

L,x(g() 2 L,x(1) +f(L/X(g(t)))f(  Ont - 1(7, 8(1) %
. s (13)

x ¥ p(0f(@ (D), 8 () dr

fort 2 T. From (13) it follows as in the case £ = 0 thatlim L,x(z) = 0ast — o0.
Finally, dividing both sides of the above inequality by f(L,x(g(¢))) and taking
the limit superior as ¢t —» oo, we get again the contradiction to (10).-

A similar argument holds for x (#) eventually negative and this completes the
proof. .

Remark 2. It follows from the proof of the above theorem that in the case
k =1 we can avoid the condition

i)l 2 fi(x)fi)] forall x, yand i =1, ..., m,
and (10) becomes

lim supj o,_,(1, g(®) Y, p(v)dr > lim supi.
I 8(1) i=1 =0~ f(2)

In the spirit of this remark our Theorem 1 generalizes Theorem 1 in'[5].
Corollary 1. Assume that gy(t) =a,(1)=... =a,(1) =1, h() =0 and ke
e{l, 2, ..., n — 1} is fixed. If ' ‘

liin sup f =gy 3 P69 — g0))dr>
g (1 i=

1=

(14)

> (n — ¢ — 1)! lim sup ——

forevery/ =0,2,...,k,ifkiseven,and £ =0, 2, ..., k — 1 if k is odd, then
every solution x(z) of (1) (or (2)) such that

im X8 — o

-0 gk
is oscillatory.

In our next result we shall show that Theorem 3 in [5] remains valid for more

general forcing functions than those considered in [5], namely, for the functions
h(t) which satisfy (iv). For this purpose denote

px(t) = rglei(glw)Lop(r),
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p*(t) = rr}aX)Lop(r),
pl = limp*(t)’

p, = lim P*(t)-

Theorem 2. (Forced Oscillation) Suppose that

lim sup a,(t) < o© (15)
and .
lim Supj @, (s, g(t)) ., pis)ds > M, (16)
1% g(1) i=1

where M is a positive constant. Then every solution x(¢) of (1) (or (2)) such that

lim %0} =0 -
: 1~ ()
is either oscillatory or ‘
,linl [Lox(2) — Lop(t)] = — p, or —p,.
Proof. We consider only (1).
Let x(¢) be a solution of (1) such that lim (x(z)/,(¢)) = 0. Assume that this

solution is positive for t.; t, 2 t,. By (iii), we choose 1, > ¢, such that
x(g:(t)) >0fort=t,andi= 1,2, ..., m. Put u(z) = x(t) — p(¢). Then, in view
of (1) and (iv), we obtain ‘

Lu@®)+ Y p()fix@®) =0, 121, ' (17)
i=1
which implies that L,u(t) < 0 for t = ¢,.

It can be easily verified (as in the prooof of Theorem 1 in [4]) that there exists
L, 2tsuchthatfort=2,andk=1,2,...,n

(=1)Lu(t)>0. (18)

In particular, L,u(t) < 0 on [t,, c0) and so lim Lyu(¢) = ¢ where c is a constant.
t— o !

Put z(¢) = Lyu(?) + px (}). Then we have
lim z(¢) = lim [Lyu(t) + px (1)l = c+p, =d.
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If d < 0, then Lju(t) + p*(2) < 0 for sufficiently large ¢, say t = T = ¢;. By (iv),
there exists a 7T; = T such that

Lyu(T)) + px(T)) = Lou(T)) + Lyp(T)) =
= Lyx(T)) — Lyp(T)) + Lop Tl).=
= Lyx(T)) >0,

a contradiction.
_If d > 0, then we have

Lux(@) = Lu(0) + Lup(0) 2 Lou(t) + po(t) = 2(0) > 5
for sufficiently large 7, and so, by (15) and (iii),
x(gi (1) >k

for some constant k > 0,i= 1,2, ..., mand every large ¢.
From (17) we obtain

Lu() + 3. p(0f () < 0. (19)

Next, from the formula (6) applied to u(¢) with i, r, s and ¢ replaced by 0, n — 1,
t and g(t), respectively, and from (18) we get

n—1
Lou(g(t)) = Lou(t) + 'Z‘l (— l)iju(t)Ij(ta g(t),_], e l) -

_J I,,—|(T,g(t);n—1, ,])Mdrg (20)
s a,(7)
Z Lou() - f (o g@rn—1, ..., )2 D¢c

S a,(7)

for sufficiently large r. Combining (19) and (20) we obtain

Lou(g(t)) = Lou(r) +f(k)f 0, (5=, ) WICLE

Finally, taking the limit superior as t — co, we obtain the contradiction to (16).
Thus, we conclude that d = 0, which implies

lim [Lox(1) = Lop(1)] = lim [z() — ps (D] = — p .
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A parallel argument holds if we assume that (1) has a negative solution x(¢)
such that x(7)/a,(t) = 0 as t —» co. In this case we prove that

- lim [Lox (1) = Lop()] = — .

This completes the proof.
Corollary 2. Let g,(t) = a,(t) = ... = a,(t) = 1. If

lim supj s—g®O)y! i pi(s)ds > M,

t— (1)

where M is a positive constant, then every solution x(¢) of (1) (or (2)) such that

im X ¢

1= U t
is either oscillatory or
lim [x(r) — p(®)] = —p, or —p,.

Example. The second order retarded linear equation

x"(t) _ t—2[e~3n/2x(e-3n/2t) 1, e—n/lx(e—trIZt)] — sin (IOgt) — ;;COS(lOgl) ,
t

@1

t = 1, satisfies all the conditions of Corollary 2 with p(t) = 1 + sin (log?)/z.
Thus every solution x(¢) of (21) such that x(¢)/t — 0 as t — oo is either oscilla-
tory or

lim [x(¢) — 1 —sin(log?)/t] = — 1.

11— oC

In fact, x(¢) = 2+ 8in (log+) is one such (nonoscillatory) solution.
t
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SUHRN

O OSCILACII URCITEJ TRIEDY RIESENI
RETARDOVANYCH DIFERENCIALNYCH NEROVNIC

Jaroslav Jaro$, Bratislava

V praci su dokézané kritéria oscilatori¢nosti uréitych §pecialnych riedeni nelinearnych diferen-

cialnych nerovnic s oneskorenym argumentom
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X(I){Lnx(’) + i pi(Dfi(x(g(1) — h(l)} £ 0, n neparne,

i=1

x(){Lyx(t) = i pi(0)fi(x(gi(0) — h(t)} 2 0, n parne,

i=1
kde L, je zovieobecneny diskonjugovany diferencialny operator a h(r) reprezentuje silne ohrani¢enu
nutiacu funkciu.

PE3FOME

O KOJIEBJIEMOCTU HEKOTOPOI'O 'KJIACCA PELIEHU
JUOPEPEHLIUAJTIBHBIX HEPABEHCTB C 3ANMA3bIBAIOIIUM APTYMEHTOM

Apocnas Apou, Bpatucnasa

B pa6oTe noka3aHbl IPH3HAKH KOJIEGIEMOCTH HEKOTOPBIX CHENHAIbHBIX PELICHHH HETMHEAHBIX
. i depeHIHATbHBIX HEPABEHCTB C 3ana3AblBAIOLIMM apryMEHTOM

x(1) {Lnx(f) + i pi()fi(x(gi(1)) — h(t)} < 0, n He4eTHOE,

i=1

m .

x(t){Lnxm - ¥ pfi(x () — h(z)} 2 0, n wetnoe,
i=1

rae L, 06061ueHH b1 OCUMIUIALHOHHBIA nuddepeHInanbHbli onepaTop U h(?) NpeacTaBiseT CHllb-

HO OTPAaHHYEHHYIO BBIHYXJIAIOIYIO (YHKIHUIO.
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