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BOUNDED OSCILLATIONS OF HIGHER-ORDER FUNCTIONAL
DIFFERENTIAL INEQUALITIES INDUCED BY FORCING
FUNCTIONS

JAROSLAV JAROS, Bratislava

One of important problems in the oscillation theory of nonlinear differential
equations and inequalities is the problem of oscillations which are caused by
forcing terms and which do not appear in the corresponding upforced equations
and inequalities. For some results in this direction we refer the reader in
particular to the papers of Graef et al. [2—4], Jones and Rankin [5], Kartsatos
[6], Kartsatos and Manougian [7, 8], Kusano [9], Kusano and Naito [10],
Lovelady [11], Singh and Kusano [13] and Venckova [14]. Most of these studies
have considered the pertubations which represent the unbounded oscillatory
functions. However, an obvious example of the equation

x"(t) — x(t) = — 2sint

which admits bounded oscillatory solution x(¢) = sin ¢ and for which the corres-
ponding homogeneous equation is nonoscillatory, indicates that the oscillation
of at least all bounded solutions can be generated also by bounded forcings.
The purpose of this note is to show that under certain conditions such a
situation really occurs. Our results extend the oscillation theorem of Lovelady
[11] concerning the linear ordinary differential equation ’

xP(1) + (=1)"*'g(0)x(t) = h(1)
to the more general nonlinear functional differential inequalities
x(E{L,x(t) + f(t, x(g, (1)), ..., X(gn(2))) — h()} = O

1
for n odd, (' )

and
x () {Lx(t) — f(t, x(g, (1)), ..., X(g, () —h()} 20

for n even,

(0]
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where n 2 2 and L, is the general disconjugate differential operator defined by
Lyx(t) = x(¢) and

Lix(t)=a(t)(L,_x(), k=1,2,...,n,a,(t)=1.

We shall assume that a,(¢), i=1, 2, ..., n — 1, are positive and continuous
functions on [t,, oc) and the operator L, is in the so-called first canonical form
in the sense that

J 'a,-"(t)dt = Q0 (3)

fori=1,2, ..., n— 1. In what follows we use 2(L,) to denote the set of all
real-valued functions y () defined on [z,, o), t, 2 t,, and such that L,y (¢), i = 0,
I, ..., n, exist and are continuous on [z,, o).

We restrict our considerations only to those solutions x(¢) of (1) (or (2))
which exist on some ray [,, o), ¢, = 1,, and are nontrivial on any neighbour-
hood of infinity. Such a solution is called oscillatory if it has arbitrarily large
zeros in [t., o), and it is called nonoscillatory otherwise.

We shall use the following notation:

y* (1) = max{y(¢), 0}, y~ (1) = max{—y(z), 0},
Gt () =0 ), ..., ¥y (g, (1),
g () =0"(&@), ..., y (&),

o (t, T)=j L gs,
7 a,(s)
w(t, T)= T;—](s—)a)k_,(s, T)ds, k=2,3,...,n—1, t2T2=1,.
k

For the inequalities (1) and (2) the following conditions will be assumed without
further mention: ‘

(i) he C ([t, o0), R) and there exists a bounded oscillatory function pe Z(L,)
such that L,(t) = h(t) on [t,, o0) and
a= ’lin;x infp(t) <0< ’lirri supp(t) = b;
(i) fe C([ty, o©) x R™, R) has the following properties:
S, x, ..., x,) >0for (x, ..., x,)ERT, t 2 t,,
f x, ..., x,) <0for(x,, ..., x,)eER™, t = to,\
where R, = (0, v) and R_ = (— o0, 0), 'and, moreover, for any ye 2(L,)
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and any ¢, = ¢, such that
y(®) 2 (p(t) —a)*, resp. —y(1) 2 (p(t) — b)~,

on [t,, o0), there exists ¢, = ¢, such that
f(ts <y’ g>(t)) %f(t, <P —a g>+(t))9
resp.

f(t’ <_y9 g>(t)) gf(t’ <P _ba g)‘(t))),

on [t,, 00);

(i) g;eC([ty, ©), R), limg,(t)=00, i=1,2,...,m.

Theorem 1. Suppose that the conditions (i)—(iii) are satisfied. If, moreover,

J;_ @, _ I(T, T)f(T’ <P —a, g>+(T))dT = 00 (4)

and

f*C

JT @, (1, T)f(r, {p— b, g) (1))dr= 0 5)

for every T = ¢,, then all bounded solutions of (1) (or (2)) are oscillatory.
Proof. In order to avoid repetition, we consider only the inequality (1).
Let x(¢) be a bounded nonoscillatory solution of (1). Assume that this
solution is positive for ¢ > ¢, = ¢,. By (iii), we choose t, = t, such that
x(gi(1)) >0fort =2 t,andi= 1,2, ..., m. Letu(t) = x(t) — p(¢). Then, in view
of (1) and (ii), we obtain that

Lu(t) £ — f(t, x(&, (1)), ..., x(gn(1) <O

for z 2 t,. Consequently, by taking into account the fact that the function Lyu(7)
is bounded and eventually positive, from the well-known generalized Kigurad-
ze’s Lemma (see for example [12]) it follows that there is a #; = ¢, such that

(= D*Lyu(r) > 0 o ®
fort2 t;and k=0, 1, ..., n. In particular, L,u(t) <0 for ¢t = t;, and so u(t)
is decreasing on [t;, 00).

We claim that lim u(f) =2 — a. Indeed, in the opposite case we have

11—

lim inf x(f) — a < lim sup (x(¢) — p(?)) = lim u(1) < —a,
11— t— o0

-

which contradicts the positivity of x(¢). Therefore, u(t) = —afor t 2 t; and,
consequently,
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x()2p(t)—a, t21.

Since x(¢) > 0 for ¢t = t,, this implies

x(1) 2 () —a)*. (7
On the other hand, it is easy to verify that

u(®) S u(ty) + Z (= 1Y 'Lu(o(t, 1) —

- J @, I(T, t3)f('l', <xa g>(T))dT

and so, by (6), (7) and (ii),

u(t) = u(t) — f @, (7, L)f(7, {p — a, &> (1)) dr

fort = t,.
Finally, letting 1 — oo and taking (4) into account, we get the contradiction
to the positivity of u (7).
A similar argument holds for x(7) < 0, and this completes the proof.
Example 1. For an illustration consider the equation

(e”'x' (1)) — e—’Er (t 2 g) —e "x(t—nmn) =
®)

=e ¥(3cost—sint) — e~ '(cost +sint), t= 7.

All the conditions of Theorem 1 are satisfied withp (1) = (1 — e )sint,a= — 1
and b = 1. Consequently, all bounded solutions of (8) are oscillatory. One such
solution is x(t) = — e~ 'sin .

Example 2. All assumptions of Theorem 1 hold also in the case of the
nonlinear equation

4 . 1.
x"(t) —=x(t — 1) = — —sin 3¢, 9
(1) 5 ) 3 )

where we have p(f) = sin 3¢/27. Thus every bounded solution oscillates. For
example, x(¢) = sin ¢ is one such solution.

Following the results of Grace and Lalli in [1], the oscﬂlanon criterion given
in Theorem 1 can be easily extended to the set of solutions x(t) of (1) (or (2))
with the property x(t)/a,(¢) = 0 as ¢t — oo, where

t

a,(l)= —l——dS.

10a(s) .
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This extension is based on the followmg lemma which can be proved analogous-
ly as Theorem 1 in [1].

Lemma. Let the conditions (i)}—(iii) be satisfied. If x(#) is a nonoscillatory
solution of (1) (or (2)) such that

x(t)/a,(t) >0 as t— o0,
then there exists a ¢, = ¢, such that the function u(¢) = x(t) — p(¢) satlsﬁes
(= D*u()Lu(t) >0 (10)

fort=>tandk=1,2,...,n
Theorem 2. Suppose that the conditions of Theorem 1 hold. Then every
solution x(¢) of (1) (or (2)) such that

x()/a,(t) >0 as t— o

is oscillatory.
The proof of this theorem follows along the lines of that of Theorem 1, and
SO we omit it.
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SUHRN

OHRANICENE OSCILACIE FUNKCIONALNYCH DIFERENCIALNYCH
NEROVNIC VY$8iCH RADOV INDUKOVANE NUTIACIMI FUNKCIAMI

Jaroslav Jaros§, Bratislava
V praci je dokazané kritérium oscilatoriénosti vSetkych ohrani¢enych rieSeni nelinearnych
funkcionalnych diferencialnych nerovnic
x(t){L,,x(t) +f(t9 x(gl(t)), seey x(g’n(t))) - h(’)} é 01 n nepé'mey
x(O){L,x(t) — f(t, x(g (1)), ..., x(gn(1))) — h(1)} Z O, n parne,

kde n 2 2, L, je zovieobecneny diskonjugovany diferencialny operator a h(t) reprezentuje ohranice-
nu oscilatoricku nutiacu silu.

PE3FOME

OIPAHUYEHHBIE KOJIEBAHUA JUODPEPEHIIMAJIbHO-®YHKIIMOHAJIbHbIX
HEPABEHCTB BbICHIMX IMTOPAAKOB MHAYIIMPOBAHHBIE
BBIHYXXJAIOIIUMHA ®YHKIIUAMU

Spocnas SApou, Bpatucinasa

B pa6ote moka3aH mpu3HAaK KOJ1€GJIEMOCTH BCEX OrpaHHYEHHBIX PELICHHH HeTMHEHHBIX aud-
(epeHnManbHO-GYHKIIHOHAILHBIX HEPABEHCTB
x(O{L,x(t) + f(t, x(g, (D), ..., x(g, (1)) — h(1)} < 0, n HeueTHOE,
x(O){L,x(t) — f(t, x(g,(1)), ..., xg,(1))) — h(t)} = 0, n ueTHOE,

raen = 2, L, 06061meHHbI# ocHUTAMOHHKIH quddepeHImanbHEIi onepaTop  h(f) NpeACTaBiIseT
OrpaHHYEHHYIO KOJIEOMIOLIYIOCS BHIHYKIAIOLIYIO CHITY.
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