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A REMARK ON THE THEORY OF SETS OF DISTANCES

LUBICA HOLA, Bratislava

Let 2% (or 27) be the set of all subsets of a metric space X (or Y respectively).
Let f: X — Y be a function. Define F: 2¥ — 2¥ by F(A4) = f(A) for any 4 € 2%,

In this paper we give some conditions under which the function F l_{)reserves
a topological convergence of sets and the convergence of sets m the Hausdorff
metric.

We apply the obtained results for the study of the sets of distances.

Let (Z, d) be a metric space and 27 be the set of all subsets of Z. If E = Z and
&> 0, let S,(£] denote the union of all open &-balls whose centres run over E,
and let S,[x) denote the open &-ball about a point x.

If E and F are nonempty subsets of Z, and for some & > 0 both S.[F]o E,
and S,[E] o F, then the Hausdorff distance 4, between them is given by: h,(E,
F) =inf{e: S[E] o F, S[F) o E}. Otherwise we put h,(E, F) = 0. For E=0
we put h(E, E) = 0 and h,(E, F) = oo for F # 0.

Then (2%, h,) is a pseudometric space [3].

If F, is a sequence in 27, the upper and lower closed limits of the sequence are
defined as follows [5]: Ls F, (Li E)is the set of all x’s in Z such that each
neighbourhood of x meets infinitely (all but finitely respectively) many sets F,.
It is easy to check that both Li F, and Ls F, are closed sets and Li F, < Ls E,. If
F = Li F, = Ls F,, we will write F = Lim F,, and we say that {F} is topologically
convergent to F.

If (Z, d) is an arbitrary metric space then the convergence of a sequence of
sets to a closed set with respect to Hausdorff distance h, ensures a topological
convergence, and if X is compact, then the topological convergence implies the
convergence in the Hausdorff distance [1].

Let (X, d,) and (Y, d,) be metric spaces. Let F(X, Y) denote the set of all
functions from X to Y. We can identify the members of F(X, Y) with their
graphs in X x Y and define the distance between functions to be the Hausdorff
distance between their graphs as induced by some metric compatible with the
product uniformity. For definiteness and computational simplicity, we take o
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defined by:

ol(xy, y1), (x3, )] = max {d.(x,, x,), d_.-()’l » Y)}-
For f, ge F(X, Y) we put L(f, g) = h,(G(f), G(g)), where G(f) (or G(g)) is the
graph of the function f (or g). Then (F(X, Y), L) is a pseudometric space.
Let R denote the set of real numbers and u denote the usual metric in R.
In what follows let (X, d.), (Y, d,) be metric spaces. Let f: X —» Y be a
function. Define the function F: 2¥ — 2" by F(A4) = f(A) for any A4 € 2¥.

1 Preservation of convergence of sets in the Hausdorff metric

Proposition 1.1. Let /- X — Y be a uniformly continuous function. Then the
function F: (2%, h,) —,27, hy) is uniformly continuous.

Proof. Let € > 0. The uniform continuity of fimplies that there exists 6 > 0
such that for any x, y € X with d,(y, x) < 6 we have d,(f(x), f(»)) < &.

Let A, Be 2" be such that the following inequality holds: h, (4, B) < 6. We
show that then h,,y(F (A), F(B)) < &.

Let y € F(A). There is x € A for which f(x) = y. Since 4 = S;(B] there exists
be B such that d (b, x) < 6, thus d,(f(b), y) <&, i.e. ye S,[f(B)] = S,[FB)].
Hence F(A) = S, [F(B)].

The proof of the inclusion F(B) = S,[F(A)] is similar.

Proposition 1.2. Let f: X — Y be a continuous function. Then the function
F: (2%, hy) — (2, h,) is continuous at any compact subset of X.

Proof. Let 4, 4,€2¥(n=1,2,..), Abea compact set and limh, (4, 4,) =0
We show that lim &, (F(A), F(4,)) = 0. !

Let £ > 0. Since S,[F(A4)] is an open set in Y, the continuity of f implies that
S7'(S.[f(4)]is an open set in X containing 4. A is compact, i.e. there exists § > 0
such that S,[4] = f~'(S,[f(4)]). There exists N, € N such that for any n > N,
A, < S5[A] and thus f(4,) < S,[f(4)] for any n = N,.

We show that there exists N, e N such that f(4) = S,[f(4,)] for any n = N,.

Let xe A. There exists J, such that for any ze S; [x] we have d,(f(2),

f(x)) < ¢/2. The compactness of A4 implies that there exist points x,, x,, ... x,
in 4 such that 4 = () S; , [x].
: i=1 i

Put n=min{é, i=1,2, ..., n}.

There exists N, N such that 4 = S,,[4,] for any n 2 N,. Then f(4)

< S[f(4,)] for any n = N,. (Let n > N,. Let ae A. Let i be such that aesS; ,2[x,]
Let ye A, be such that ae S /2[y) Then ye S, [x] and thus 4,(f(y), f(a)) < ).
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Put N, = max{N,, N,}. For any n > N, we have h, (f(4,), f(4)) <, i.e.
hy(F(4,), F(A)) < & for any n 2 N,. '

Proposition 1.3. Let (X, d,) be a metric space. Let A be a closed totally
bounded set in X, which is not compact. There exists a continuous function f:
X — R such that the function F: (2%, ;) — (2%, h,), defined by F(B) = f(B) for
any Be 2%, is not continuous at 4.

Proof. There exists a cauchy sequence {x,}, x,€ 4 (n = 1, 2, ...) which has no
cluster point in X and x; # x; for i # j.

Choose ' ¢, for any ne N such that 0 < ¢, < 1/n and the family S, [x,] is
pairwise disjoint. Define a function f: X - R by

/1(1 - (l/gn) dx(xn’ x)) if xe Ss,,[xn]
fx) =

0 for other x.
Since the sequence {x,} has no cluster point in X, the function f'is continuous.

Define a sequence {4,} in 2* as follows: 4, = A \(U S,IxDforn=1,2,....

Thenlim h,;(4,, A) = 0. Let £ > 0. It is sufficient to prove that 4 = §,[4,] for

n sufficiently large.
Let j be such that 2/j < &. There exists N, = j such that d,(x,, x,,) < 1/j for

anyn,m 2 N,.Then ( ) S.[x] = S,[xy ] foranyn = (N, + 1),i.e. 4 = §,[4,] for

any n = (N, + 1).

It is easy to check that 4,(f(4,), f(4)) = oo for any n.

Proposition 1.4. Let (X, d,) be a metric space. Let 4 be a closed connected set
in X, which is not compact. There exists a continuous function f: X — R such
that the function F: (2%, h;) — (2%, h,), defined by F(B) = f(B) for any Be 2¥,
is not continuous at A4.°

Proof. There exists a sequence {x,}, x,€ 4 (n = 1, 2, ...) which has no cluster
point in X and x; # x; for i # j.

Choose ¢, for any ne N such that 0 < g, < 1/n and the family S, [x,] is

pairwise disjoint. Let /: X — R and {4,} be as above. Then lim h, (4,, A) = 0 but

h,(F(A,), F(A)) = oo for any ne N. (The connectedness of A implies that for
any ne N there exists y,€ 4 such that d,(y,, x,) = &,. Thus h, (4, 4,) < 2/n for
any ne N.)

Proposition 1.5. Let (X, d,), (Y, d,) be metric spaces. Let f: X —» Y be a
function. Then f'is continuous if and only if the function F: (2%, h,) - (2", h,),
defined by F[A4) = f(A) for any A € 2%, is continuous at any compact set.
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Proof. The proof is evident.

In the following part of the paper we will study behaviour of the function H:
(F(X, Y), L) x (2%, hy) — 2, hd)) defined by: H(f, C) = f(C).

Let f: X — Y be a continuous function and C be a compact subset of X. We
show that H is continuous at (f, C). First we show the following lemma.

Lemma 1.1. Let X, Y be metric spaces. Let f,: X—> Y (n=1, 2, ...) be
functions and f: X — Y be a continuous function. If the sequence {f,} converges
to fin the pseudometric L, then {f,} uniformly converges to f on any compact
subset of X.

Proof. Let K be a compact set in X and ¢ > 0. Let x € K. The continuity of
Jfat x implies that there exists r, > 0 such that for any z€ S, [x] we have d, (f(x),

f(2)) < g/4. There exists set {x,, x,, ..., x,} such that K c U S, y [x]. Put

6=min{¢/2,r /2i=1,2,...,n}. Let Nye N be such that the followmg inequal-
ity holds: L(f,(f) < é. Then for any n 2 N, and for any x e K we have d,(f,(x),
f(x)) < & (Let xe K, n> N,. Since (I(f,, /) < 6, there exists y such that o[(x,
LX), (0, fO)]< 6. Let i be such that xeS, 2 [x]. Then d,(f,(x),
Sx) <d,(f,(%), fO) + d,(F ), [(x)) < &2+ g2 =¢. :

Theorem 1.1. Let (X, d,), (Y, d,) be metric spaces. Then the function H: (F(X,
Y), L) x 2%, hy) = (27, h;), defined by H(g, A) =g(A) for any Ae 2%, is
continuous at any point (f, C) where f is a continuous function and C is a
compact set.

Proof. Suppose that there exist a continuous function f: X —» Y and a com-
pact set C = X such that H is not continuous at (f, C). Then there are ¢ > 0 and

sequences {/f,}, {C,} such that lim L(f,, f) = 0, lim 4, (C,, C) = 0 and h,,,}_(f,,(C,,),
f(O)) = e for any n [1).

There is Nye N such that for any n 2 N, the following inclusion holds:
1:(C) = S[F(O)

By Proposition 1.2. the function F, defined by F(A4) = f(A4) for any 4 € 2%, is
continuous at C. There is 6 > 0 such that F(B) < S,,(F(C)] for any Be 2* for
which h, (B, C) < 6. Put n = min {g, 8}. There is Ny € N such that for any n >

= Ny we have L(f,, f)<n/2 and h,(C,, C) < n/2.Let n>N,. Then
' f (Co) = Sl f ($12lCD] & Sl f(S,ICD] = Syalf (SSICD] = Syl Sanlf(ON =
< S (O)

Thus by (1) we have f(C) ¢ S,[f,(C,)] for any n = N,, i.e. there is a sequence

Unb ¥,€/(C) (n=1, 2, ...) such that y,¢S,[f,(C,)] for any n 2 N,.
The compactness of f(C) implies that there is a point y e f(C) which is a

cluster point of the sequence {y,}. Let (.} be a subsequence of {y,} which is
convergent to the point y.
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Let N, € N be such that for any'n = N, we have y¢S,,[f, C,)] (2).
Choose x e C which f(x) = y. Since lim h, (C, , C) = 0 there is a sequence

{x}, %, €C, (n=1,2, ...) which is convergent to x. Put K ={x,, ..., %, ...}U
u{x}. By Lemma 1.1. the sequence {f, } uniformly converges to f on the set K.
Since f'is continous at x there is 8, > 0 such that the following inclusion holds:
J(S5,[x]) = Sgulf(x)]. The convergence of the sequence {x, } to the point x and
the uniform convergence of the sequence {f, } to f on the set K implies that there
is N,€ N such that for any n > N, we have d(x, , x) < 6, and d,(f, (v),f(v)) < &/4
for any ueK. Let n> max{N,, N,}. Then a,(fi, (x ), f(x)) < d,(fi (%),
Jx)) +d(f (xi), f(x)) < €/4 + €/4 = ¢/2. Thus y = f(x) is a point of the set
Sealfi, Ci, )1, which contradicts (2).

Let C(X, Y) be the set of all continuous functions from X to Y and 2(X) (or
(Z(Y)) be the set of all compact subsets of X (or Y) respectively).

Corollary 1.1. Let (X, d,), (¥, d,) be metric spaces. Then the function
H:(C(X, Y), L) x (Z(X), hy) > (Z(Y), h,), defined by H(g, 4) = g(A4) for any
A€ Z(X), is continuous. '

For a compact metric space X Corollary 1.1 can be obtained from [2] 3.12.26
and from Lemma 1.1.

2 Preservation of topological convergence of sets

Proposition 2.1. Let X, Y be metric spaces. Let f: X — Y be a continuous
function. Let 4,€2¥ (n=1, 2, ...). Then F(LiA4,) < Li F(A4,), where: F: 2¥ 27
is the function defined by F(B) = f(B) for any Be 2*.

Proof. Let ye F(Li A,). There is xe Li A, such that y = f(x). There is a
sequence {x,}, x,€ 4, (n =1, 2, ...) which is'convergent to x.

The continuity of f at x implies that {f(x,)} converges to f(x), i.e. y =
=f(x)eLif(4,) = Li F(4,).

Proposition 2.2. Let X, Y be metric spaces. Let f: X — Y be a function with
aclosed graph. Let 4,e2* (n = 1, 2, ...). If X is compact, then Ls F(4,) < F(L-
s A,), where F: 2¥ — 27 is the function defined by F(B) = f(B) for any Be 2",

Proof. Let y € Ls F(A,). There is an increasing sequence of positive integers
{n,} and a sequence {y, }, y, € F (4,,) such that {y, } converges to y. Let {x, } be

a sequence of points of X such that f(x, ) = Vn, for any K. Let x be a cluster point
of the sequence {x, }. Then x is an element of Ls 4,. The point (x, y) is a cluster
point of the sequence {(x,, f(x,)}, i.e. (x, y)eG(f). Since G(f) = G(/),
y =f(x), and thus ye f(Ls 4,) = F(Ls 4,).
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Proposition 2.3. If X is a noncompact metric space, then there are a con-
tinuous function f: X —» R and a sequence {4,}, 4,€2¥ (n =1, 2, ...) such that
Lsf(4,) ¢ f(Ls 4,). -

Proof. There is a sequence {x,} of distinct points of X which has no cluster
point in X. Choose ¢, for any n € N such that 0 < &, < l/n and the family S, [x:]
is pairwise disjoint and define a function /> X — R by: f(x) =1 — (1/&y)d.(xy, x)
for xeS, [xyl k=1,2, ... and f(x) = 0 for other x.

Define a sequence {4,} in 2 as follows: A4, = {x,, x, forn=1, 2, .... Then
Ls A, = Lim A4, = {x;} and Lsf(4,) = {0, 1}. Thus Ls f(A4,) £ f(Ls 4,).

Let 4, (n=1, 2, ...) be subsets of X, and f: X — Y be a continuous function.
Suppose that there exists Lim 4,. The proof of Proposition 2.3. shows that Lim -
J(4,) need not exist for a noncompact metric space X.

Proposition 2.4. Let X be a compact metric space, Y be a metric space. Let A4,
A4,€2*(n=1,2,..)and 4 = Lim 4,. Let /* X — Y be a continous function. Then
F(A) = Lim F(A,), where the function F: 2* — 2" is defined by F(B) = f(B) for any
Be2X,

Proof. Since X is compact, by Theorem in [7] we have lim hs (A, A,) = 0. The

compactness of A4 and Proposition 1.2. imply that lim hy (F(A), F(4,)) =0, i.e.

F(A)=Lim F(4,).

For a sequence of connected subsets of X, Proposition 2.4. remains valid also for
a locally tompact metric space X.

In the following assertions we suppose that topological limits of sequences exist
and that they are nonempty sets.

Proposition 2.5. Let (X, d,) be a metric space. Let F (n=1,2, ...) be connected
subset of X and let Lim F, exist. Then for any open set U for which U > Lim E and
U is compact, there exists Nyé€ N such that F, < U for any n > N,,.

Proof. The compactness of Lim E, implies -that there exists £> 0 such that
Sy[Lim F] < U. Suppose that for any ne N there exists k,>n such that
E n(X\U)#0. Put F=LimF,. '

There are two possibilities:

@ {xeX:d(x, =& =0

(b) {xeX:d(x, F)=¢g #0.

@) If {x: d(x, F) = & =0, then S[F] = {x: d.(x, F) < &} is an open and closed
subset of X. ; , ,

Since Lim F, # @, there exists ze Lim E. There exists N,eN such that En
NSfz] #0 for any n< N,. By assumption there exists ky, = N, such that
E, n(X\U) %9,

Then E,N‘ = (I‘,}MI hSe[Fj)u(IiHI N (X\S,[F]) and that is contradictory to the
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connectedness of £ - sine F,; N S,[F] and Ew N (X\ S,[F]) are both open in Ii
(b) Suppose {x: d, (x F)=¢g ;é 0.
Choose ze Lim F,. There exists N,e N such that for any n > N, F,n S,[z] # 0.
By assumption there exists ky, 2 N, such that

E, n(N\U) #0,ie. E, n(X\{x: d(x, ) <&) #90.

The connectedness of £, implies that there exists y € £ for which d,(y, F) = &.
2 2 2
Let {k,} be an increasing sequence of positive integers such that

F, iy d,F) =¢ #0.

Since the set {y: d.(y, F) = &} is compact, there is a point y,e Ls F,n {y: d.(y, F) = &}
and that is a contradiction.

Corollary 2.1. Let (X, d,) be a locally compact metric space. Let F,(n = 1,2, ...)
be connected subsets of X and let Lim F, exist. If Lim F, is a compact set, then

lim h, (F,, Lim F) =

Corollary 2.2. Let (X, d,) be a locally compact metric space. Let iY, d,) be metric
space. Let F, (n = 1, 2, ...) be connected subsets of X and let Lim F, exist. If Lim F,
is a compact set and f: X — Y is a continuous function, then Lim f(F) = f(Lim F).

3 A remark on the sets of distances

Let (X, d) be a metric space. If 4 and B are nonempty subsets of X, let D(A4, B)
denote the set of all numbers d(x, y) xe 4, ye B. If A = B we put D(A, B) = D(A)
and for 4 = @ we put D(4) = 0. The set D(A) is called the set of distances of A.

We can consider D as a function on the space of all subsets of the set X to the
space of all subsets of R, which assings to any subset 4 of X the subset D(4) of R.

Proposition 3.1. The function D: (2%, h;) = (2%, h,) is uniformly continuous.

Proof. The metric d: X x X — R is uniformly continuous with respect to the
product metric g, o, [(x, y), (4, v)] = max {d(x, u), d(y, v)}.

Define F: 2%, h,) - (2%, h,) by: F(C) = {d(x, y): (x, y)€ C}. By Proposition
1.1. F is uniformly continuous.

Let Be2”*. Then D(B) = F(B x B). We show that the function D: (2%, h,) -
— (2%, h,) is also uniformly continuous. Let £ > 0. There exists 6 > 0 such that for
any I, J€2** ¥ such that h, (1, J) < & we have h(F(I), F(J)) < &.

Let 4, Be2" be such that h,(4, B) < 6. Since h, (4 x A, B x B) < 8, we have
h,(D(A), D(B)) < &.

Proposition 3.2. Let X be a compact metric space, let 4,€2¥ (n=1, 2, ...) and

‘let Lim A, exist. Then D(Lim A4,) = Lim D(4,).
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Proof. By Theorem in [7] we have lim 4,(Lim 4,, 4,) = 0 and by Proposition 3.1.

we have lim 4,(D (Lim 4,), D(4,)) = 0, i.e. Lim D(A4,) = D(Lim A4,).

Proposition 3.3. Let X be a locally compact metric space. Let F,(n = 1,2, ...) be
connected subsets of X and let Lim F, exist. If Lim F, is a compact set, then
Lim D(E) = D(Lim E). :

Proof. By Corollary 2.1. limAy(F,, LimE)=0 and by Proposition 3.1.

lim 4, (D(F), D(Lim E)) = 0. Thus Lim D(£) = D(Lim E).

Remark. The certain type of continuity of the function D is also considered in [6].
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SUHRN
POZNAMKA K TEORII MNOZIN VZDIALENOST]
Lubica Hola, Bratislava
Nech 2%, 2" si systém.y vietkych podmnozin metrickych priestorov X, Y. Nech f: X - Y je
funkcia. Pre 4 € 2* polozme F(A) = f(A). Potom F je funkcia z 2* do 2". V ¢&lanku sa uvadzaji

podmienky, pri ktorych funkcia F zachovava topologicki konvergenciu a kovergenciu mnoZin
v Hausdorffovskej metrike. Vysledky s aplikované na mnoZiny vzdialenosti.

174



PE3FOME
MMPUMEYAHW S K TEOPUU MHOXECTB PACCTOSIHUIA

JIro6una INona, Bpartucnasa

1

Mycts 2%, 2 — cucTeMBl Bcex MOAMHOXECTB METPHYECKUX mpocTpaHcTs X, Y. Iycrs f — oTo-
6paxenue X B Y. [Ina A€ 2¥ nonoxum F(A) = f(A). otom F — otobpaxenne 7xB 2*. B crathe
MPUBOAATCA YCJIOBHS TPH KOTOPLIX 0TOOpaxeHHe F COXpaHAET TOMOJIOTHYECKYIO CXOOHMMOCTh U
CXOIMMOCTb MHOXECTB B MeTpHKe Xaycaoppda. PeaynbTaThl npUMEHEHBI K MHOXECTBAM paccTos-
HHUH.
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