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SOME CONDITIONS THAT IMPLY CONTINUITY OF ALMOST
CONTINUOUS MULTIFUNCTIONS

LUBICA HOLA, Bratislava

This paper presents a generalization of some results of [1] for multifunctions.
The main theorem states that if F: X — Y is an almost continuous compact-
valued multifunction, the set of points of quasicontinuity is dense in X, and Y
is a regular space, then F is continuous. '

We show the situation in the case of Theorem 3.3. [1] is different for multifun-
ctions. A generalization of this theorem for spaces complete in the sense of Cech
is given in [4].

In what follows X, Y denote topological spaces.

A multifunction F: X — Yis a mapping defined on X with values in the power
set of Y. A single-valued mapping f: X — Y may be interpreted as a multifun-
ction assigning to x € C a one-point set {f(x)}.

For a multifunction F: X — Y we suppose F(x) # 0 for any xe X. If Fis a
multifunction from X into Y, then for any 4 = Y we denote F~(4) =
={xeX: F(x)n A # 0}, F*(4) = {xe X: F(x) = A}. For a subset 4 of topolo-
gical space, 4 and Int 4 denote the closure and the interior of A4 respectively.

A multifunction F: X — Y is called upper (lower) almost continuous at a
point x,€ X if for any open set V' < Y such that x,e F* (V) (x,€ F~(V)),
xo € Int F*(V) (x,€ Int F~(V)).

In the case of single-valued function the upper and the lower almost continu-
ity coincides with the notion of almost continuity as defined in [8].

A multifunction F: X — Y is called upper (lower) quasicontinuous at a point
x,€ X if for any open set V such that x,e F*(V) (xoe F~(V)), xo€ Int F* (V)
(xo€ Int F~(V)).

If Fis upper and lower almost continuous (upper and lower quasicontinuous)
at x,, then it is said to be almost continuous (quasicontinuous) at x,.

If F is upper almost continuous (lower almost continuous, upper quasicon-
tinuous, lower quasicontinuous, almost continuous, quasicontinuous) at any
x € X, then it is said to be upper almost continuous (lower almost continuous,
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- upper quasicontinuous, lower quasicontinuous, almost contmuous quasicon-
tinuous).

1

If F: X > Y is a multifunction from X into Y, let K(F)={xeX: F is
quasicontinuous at x} and C(F) = {xe X: F is continuous at x}.

Theorem 1.1. Let Y be a regular space and F: X — Y be an almost continuous
multifunction. Let K(F) = X. Then F is lower semicontinuous. Moreover, if F
is a compact-valued multifunction, then F is upper semicontinuous and thus
continuous.

Proof: First we prove the case of the lower semicontinuity of F. Suppose there
exists x,€X such that F is not lower semicontinuous at X,. Then there exists
an open set V in Y such that x,e€ F~(¥) but F~(¥) is not a neighbourhood
of x, (1).

Let y,e F(x,) < V Smce Y is a regular space, there exist two open sets V;,
V;in Y such that y,e V|, ype V;and ¥, c ¥, < W, < V,c V().

Lower almost continuity of Fat x,and ¥, N F  F(x,) # 0 imply that there exists
an open set U in X such that xpe Uand U < F-(¥)) (3). If se U n K(F), then
se F~ (V) (4).

Suppose (4) does not hold. Then there exists se U n K(F) such that
se F*(Y — V). Upper quasicontinuity of F at s implies that there exists a
non-empty open set W < U such that W < F*(Y — V)) « F*(Y — V) (5).

Since (5) is in contradiction with (3), (4) holds.

By (1) there exists x € U such that xeF'(Y-V).ByQY-VcY-V,.
Upper almost continuity of F at x implies that there exists an open set G in X
such that xe'G, G =« U and G = F*(Y — 1) (6).

Letze G K(F). By (4) ze F~(V;). Thus ze F~ (V). Since F is lower quasi-
continuous at z, there exists an open set H in X such that H # 0, H = G and
H < F~(V) (7).

(7) implies F(x) n ¥; # 0 for any x € H. Thus for any x € H, x¢F+(Y V),
i.e. x¢ F*(Y — V). That is in contradiction with (6).

Now we prove the second part. The proof is similar.

Let F be a compact-valued multifunction. Suppose there exists Xo € X such
that F is not upper semicontinuous at x,. There exists an open set Vin Y such
that x,e F*(¥), but F*(¥) is not a neighbourhood of X, (17).

Let ¥}, V; be open sets in Y such that x,e F*(¥}) and ¥, VicV,c Ve
c V(@) /

Upper almost continuity of F at f F at x, implies that there exists an open set U in
X such that x,e U and U < F* (V) (3).

If se U K(F), then se F*(V) (4').
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Suppose (4”) does not hold. There exists se Un K(F) such that
se F~(Y — V}). Lower quasicontinuity of F at s implies that there exists a
non-empty open set W < U such that W < F~(Y — V}) <« F~(Y — V) (5).

But sihce (57) is in contradiction with (3”), (4”) holds.

By (1) there exists xe U such that x¢ F*(V). By ') F (Y —-V) c
< F~(Y — V) and thus xe F~(Y — V). Lower almost continuity of F at x
implies that there exists an open set G such that xe G, G< U and G c
cF(Y—=V,) (6).

Letze G n K(F).By(4’) ze F*(V}) = F*(V,). Upper quasicontinuity of Fat
z implies that there exists a non-empty open set H < G such that H <« F* (V%)
(7).

(7’) implies xe F*(¥,) for any xe H. That is contradiction to (6’). The
theorem is proved.

Corollary 1.2. Let Y be a regular space and f: X — Y be a single-valued
almost continuous and K(f) = X. Then f is continuous.

Corollary 1.3. (Theorem 2.1. [1]) Let Y be a regular space and f: X - Y be
a single-valued mapping. Let f be almost continuous and C(f) ) = X. Then fis
continuous.

It is easy to see that Theorem 1.1. is valid if F is an almost continuous
closed-valued multifunction and Y is a normal space.

We verify that the assumptions in Theorem 1.1. are essential. The following
example shows that the regularity of Y is essential.

Example 1.4. et X = [0, 1] with the usual topology. Put Y = [0, 1], where the
topology of Y consists of the usual topology and, moreover, of all the sets G —
= {], %, l} where G is open in the usual topology. The spacce Y is not

n
-regular. The identity / from X onto Y is quasicontinuous and almost con-

tinuous but / is not continuous at 0, since the set V' = [0, 1] — {l, % l, } is
n

not the neighbourhood of 0 in the usual topology.

If we require only lower or upper almost continuity mstead of almost con-
tinuity, Theorem 1.1. need not apply. ‘

Example 1.5. Let X = Y = [0, 1] with the usual topology. We define F: X — Y

as follows: F(x) = {0, 1} forx;él, n=1,2, .. F(x)={0} forx=l, n=1,2,...
n

Then F is lower almost contmuous, but F is not almost continuous.
C(F) = X. F is not lower semicontinuous at 0.
Example 1.6. Let X = Y = [0, 1] with the usual topology. We define F: X - Y

as follows: F(x) = {0} for x;él, n=1,2 .. F(x)={0, 1} forx=-, n=
n

SI'—'
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=1, 2 ... Then Fis upper almost continuous, but F is not almost continuous.

C(F)= X,since C(F) = X — {O, 1, %, -l—} F is not upper semicontinuous
n

at 0.

The assumption of compactness in the second part of Theorem 1.1. is
essential.

Example 1.7. Let X = Y = R with the usual topology. We define F: X - Y
as follows: F(x) = [0, 1] for x rational and F(x) = (0, 1] for x irrational.

Then F is almost continuous at every xe€ X and F is continuous at every
rational x € X. Thus C(F) = X. However, F is not upper semicontinuous at any
irational x € X.

Definition 2.1. A topological space Y is said to be c-locally compact (c-locally
countably compact) if each point of Y has a basis of compact (countably
compact) neighbourhoods. A topological space Y is said to be strongly locally
compact [6] if each point of Y has a basis of closed compact neighbourhoods.

Every locally compact regular and locally compact Hausdorff space are
strongly locally compact, every locally countably compact regular space is
c-locally compact and every strongly locally compact space is a c-locally com-
pact space.

There exists a ¢-locally compact space which is not strongly locally compact.

Example 2.2. Let Y be the set of all positive integers. Let 4 = {{1, n}: ne N}
be the base for topology of Y. The space Y is a c-locally compact space, but Y
is not strongly locally compact, because if H is a closed set containing 1, then
H=Y.

Thus Theorem 7. in [6] is slightly extended as follows:

Proposition 2.3. Let F: X — Y be lower (upper) almost continuous. Let Y be
a c-locally compact space. Let F~ (K) (F*(K)) be a closed set for every compact
K <'Y. Then F is lower (upper) semicontinuous.

Proof: We prove the case of lower almost continuity, the other case is similar.

Let xoe X. Let V' be an open set in Y such that x,e F~(V). Let y,€ F(xp) n V.
Then there exists a compact neighbourhood W of y, such that W < V. Lower
almost continuity of F at x, implies that x,eInt F~ (Int W). Thus we have
xo€Int F~(V), because F- (Int W) < F-(W)=F~ (W) < F~ (V).

The proof of the following Proposition 2.4. is similar.

Proposition 2.4. Let F: X — Y be lower (upper) almost continuous. Let Y be
a c-locally countably compact space. Let F~(K) (F*(K)) be a closed set for
every countably compact set K < Y. Then F is lower (upper) semicontinuous.

Recall that the graph G(F) of a multifunction F: X — Y is the set G(F) =
= {(x, y): y€ F(x)}. It is said to be closed if the set G(F) is closed in X x Y.
~ Corollary 2.5. Let F: X — Y be a lower almost continuous multifunction with
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a closed graph. Let Y be a c-locally compact space. Then F is lower semicon-
tinuous.

Corollary 2.6. Let F be a lower almost continuous multifunction with a closed
graph. Let Y be a c-locally countably compact space and X a first countable
space. Then F is lower semicontinuous.

Proof: The assumptions imply that F~ (K) is a closed set for every countably
compact set K < Y. '

Corollary 2.7. (See [6].) Let /2 X — Y be a single-valued almost continuous
function with a closed graph. Let Y be a strongly locally compact space. Then
fis continuous.

Corollary 2.8. (See [1].) Let f: X — Y be a single-valued function. Let Ybea
locally countably compact regular space and X be a Frechet space (i.e. if pe X
is a limit point of a set C < X, then there is a sequence of points from C
converging to p).

Let f be an almost continuous function with a closed graph. Then f is
continuous. .

Proof: If X is a Frechet space and f'is a function with a closed graph, then
the set /= (K) = {xe X: f(x) e K} = {xe X: F(x) n K # 0} where F(x) = {f(x)}
for every x € X, is a closed set for every countably compact set K = Y.

The c-local compactness in Proposition 2.9. and c-local countable compact-
ness in Proposition 2.3. are essential as shown in the following example.

Example 2.9. Put X = [0, 1] with the usual topology. Let Y be the set of all
rational numbers with the usual topology. It is obvious that Y is not a c-locally
countably compact space and thus Y is not a c-locally compact space.

Define a multifunction F: X — Y as follows: F(x) = {1} for x irational and
F(x) = {x, 1} for x rational. The multifunction F is almost continuous and the
graph of Fis closed, thus F~ (K) is a closed set for every compact set K = Y and
F~(K) is a closed set for every countably compact set K = Y too. However, F
is not lower semicontinuous at rational numbers except for x = 1.

The main theorem of [1] states that if /2 X — Y is almost continuous with a
closed graph (closed in X x Y) and X and Y are complete metric spaces, then
fis continuous.

The following counterexample shows that this theorem does not hold for a
multifunction.

Example 3.1. Let X = R with the usual metric. Let Y = Q’ with the usual
metric d, wher Q" is the set of irational numbers. Then (Y, d) is topologically
complete [9], that is, there exists a metric g such that g and d are topologically
equivalent, and (Y, @) is complete.

We define F: X - Y as follows: F (x) = {e} for x rational and F(x) = {x, e}
for x irational. F is almost continuous with a closed graph. (Let (x, y) ¢ (G(F).

163



Then y # e. There exists open sets V|, ¥, in X such that xe V|, ye V;, e¢ V; and
Vin V;=0.Theset (¥, x (V,n Y)) n G(F) = 0, that means that G(F) is closed
in X x Y.). But F is not continuous, since F is not lower semicontinuous at
irational numbers different from e and F'is not upper semicontinuous at rational
numbers.

The author wishes to acknowledge with thanks the helpful comments of Prof. Neubrunn.
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SUHRN

NEJAKE PODMIENKY, KTORE IMPLIKUJU SPOJITOST
SKORO SPOJITYCH MULTIFUNKCI{

Lubica Hola, Bratislava

Hlavnym vysledkom tohto ¢lanku je tvrdenie, Zze ked F: X — Y je skoro spojita kompaktne
hodnotova multifunkcia, mnozina bodov kvazispojitosti je husta v X a Y je regularny préestor, tak
F je spojita. _

Dalej ¢lanok obsahuje zovseobecnenie niektorych vysledkov z [1] pre multifunkcie.
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PE3FOME

HEKOTOPBIE YCJIOBH A, U3 KOTOPBIX CJEAYET HENNPEPBIBHOCTD IMTOYTH
HEIPEPBIBHBIX OTHOIEHUNA

JIro6a I'ona, Bpatucnasa

I"'naBHBIM pe3yJIbTaTOM 3TOH CTaThH ABJIAETCH yTBepxAcHue: Ecnu F: X — Y noyTH HenpepkiB-
HOE OTHOLIEHHE, 3HAYEHHA KOTOPOro ABJIAIOTCA OHKOMNAKTHBIMbI MHOXECTBAMH €CJIH MHOXECTBO
TOYEK KBa3HHENPEPHIBHOCTH TUIOTHOE B X, H Y-peryyispHoe NpocTpaHCTBO, Toraa F npeacTaBiseT
co6oii HenpepbiBHOE OTHOLUEHHE. [lasiee, 3/1eCh MPUBOAATCA HEKOTOPLIE 06OBLIEHHS Pe3yIbTATOB
u3 [1] ang OTHOLIEHHHM.
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