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THE MAXIMAL ADDITIVE AND MULTIPLICATIVE
FAMILIES FOR FUNCTIONS WITH CLOSED GRAPH

ROBERT MENKYNA, Liptovsky Mikulas

In the present paper we shall deal with the functions whose domain is a
topological space and the range is the set of real numbers R and which have the
closed graph in X x R. Let G, denote the graph of a function f, U(X, R) the
family of all functions with closed graph and C(X, R) the family of all con-
tinuous functions. .

A. M. Bruckner in the monograph [1] has defined the maximal additive
(multiplicative) family.

Definition 1. [1] Let 2 be a family of real functions defined on a topological
space X. A subfamily # of 2 is called the maximal additive (multiplicative)
family for 2 provided & is the set of all functions fin 2 such that f+ ge 2
(f- g€ 2) whenever fe # and ge 2.

Lemma 1. Let fe U(X, R) be a function discontinuous at a point x € X. Then
there is a net {x,, y € I'} which converges to the point x such that a net {f(x,),
ye I'} diverges to + oo or — oo. '

Proof. The function f is discontinuous at a point x, hence there is a net
{x,, y € I'} which converges to the point x such that the net {f(x,), y € I'} does not
converge to f(x). Since fe U(X, R), the net {f(x,), y€ I'} is not bounded. Let &/
be the family of sets ¥ x (n, c0) and & be the family of sets V' x (— oo, —n),.
where V is an arbitrary neighborhood of x, n =1, 2, .... The net {(x,, f(x,)),
ye I'} is frequently in each member of &/ or in each member of #. The families
of and 4 satisfy the conditions of Lemma 2.5 [2] and consequently there is a
subnet {(x,, f(x,)), i € I} which is eventually in each member of some of families.
s/ or . Then obviously the net {f(x,), i€ I} diverges to + c0 or — co.

Theorem 1. C(X, R) is the maximal additive family for U(X, R).

Proof. According to Theorem 3 of paper [3] C(X, R) c U(X, R) holds.

Suppose fis an arbitrary member of U(X, R) and g belongs to C(X, R). We
shall show that (f + g) € U(X, R). Let the net {(x,, (f + g)(x,)), y€ I'} converge
to a point (x, z). The function g is continuous and therefore the net {f + g)(x,),
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ye I'} converges to z if and only if the net {f(x,), ye I'} converge to z — g(x).
From the assumption fe U(X, R) it follows f(x) + g(x) =2z, i.e. (f+g)e
e U(X, R).

Let fe U(X, R) be discontinuous at a point X. We shall show that there is a
function g € U(X, R) such that (f + g)¢ U(X, R). Without loss of generality [see
Lemma 1] we can assume that there is a net {x,, ye I'}, x, - X, such that f(x,)
diverges to + 00. Choose ¢ > f(X) and let A = {xe X, f(x) = ¢ + 1},

: B={xeX, f(x)<c},
C={xeX,c<f(x)<c+1}. -

Define the function g in the following way:

fx)—1 if xe4
gx) =4 ¢ if xeC
f(x) if xeB.

From the first part of proof it follows that f — 1 € U(X, R) and consequently the
sets G,y = G, N (X X [c, 0)), G = G, (X X (— 0, c]) areclosed in X.x R.
The set G, = C x {c}is closed if and only if Cis closed in X. Let a net {x;, j € J},
x;€ C converge to a point x,. Then the net {f(x), je J} is contained in the
compact [c, ¢ + 1] and there is a convergent subnet {f(x)), i€}, f(x;)—
- y€lc, ¢ + 1], of the net {f(x)), j € J}. The net {(x;, f(x;)), i € I} converges to a
point (x;, y) € G;, hence y = f(x,), x,€ C and C is closed. The graph G, =
=G,V Gypu Gyeisaclosed setin X x R, i.e. ge U(X, R). It is easy to verify
that —ge U(X, R) and f+ (—g)¢ U(X, R), since the net {(x,, (f — g)(x,)),
ye I'} converges to the point (£, 1) and (f — g)(¥) = 0.

In the next text we denote N, = {x€ X, f(x) = 0}..

Lemma 2. Let fe C(X, R). Then the function g defined by

L itxex—n,
gx) =< f(x)

0 if xeN;

belongs to the family U(x, R).
Proof. Let a net {(x,, g(x,)), y€ I'} converge to a point (x, y). If xe X — N/,

then the function g is continuous at the point x and g(x) = y.
If xe Ny, then y = 0 and consequently g(x) = y. The statement will be proved
by contradiction.
Let y # 0. Choose n > |y|, then there is a ¥, € I" such that for every y> 7, x,

belongs to ! ((— 1, l)) From the definition of the function g it follows that
n n

g(x)=0if x,e N, or |g(x,)] >n if x,e X — N,. It is a contradiction to the
assumption g(x,) = y.
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Definition 2. [2] A topological space is normal if and only if for each disjoint
pair of closed sets, 4 and B, there are disjoint open sets U and V such that
AcUand Bc V.

Theorem 2. Let X be a locally compact normal topological space. Then the
family of functions

M(X, R) = {fe C(X, R), N,is open}

“is the maximal multiplicative family for U(X, R).
Proof. It is evident that M (X, R) =« C(X, R) < U(X, R). We shall prove the
theorem in three parts.
Let fe U(X, R) be a discontinuous function. We show that f does not belong
to the maximal multiplicative family for U(X, R).
Let £ be a discontinuity point of the function f and let V' be its compact
neighborhood. From Lemma 1 it follows that the function f'is not bounded in
any neighborhood of %. Choose b, € V' such that |[f(b,)| > max {1, |[f(X)|} and put
V, = X. The sets f~'(f(b,)) and f~'(f(X)) are closed (see Theorem 1 [3]) and
disjoint. From normality of the topological space it follows that there exists a
closed neighborhood V¥, of the set f~'(f(%)) for which V,nf~'(f()) =0
Choose b,e V;nV such that |f(b,)| > max{2, |f(X)|}. Since the sets

U ¢ (b )) and f~'(f(X)) are closed and disjoint, there is a closed neighbor-
i=1,2

hood ¥; of the set f~'(f(%)) such that ¥; = ¥, and V;nf~'(f(b,)) = OWe could

continue in this way and construct a sequence of closed neighborhoods

V; o ¥, o ... of the point X and a sequence of the points b,e V,n V,n= 1,2, ...

such that f~'(f(6,)) " V,,, =0and 0 < |f (b, )| — + o00. Designate A the closure
of the set {b,, n =1, 2, ...}. Evidently 4 = U {b,} | v {x, x is an accumulation

- point of the sequence} and these two sets are dlSJomt Define the function g in
the following way

0 if x is an accumulation point of the sequence

gx) =4 1 . 1
R if xeﬂk;)l {b,}.

The function g is continuous on the set 4 and (according to Tietze’s theorem)
there is a continuous extensidn g* of the function g on the space X. The function
g*eC(X, R) c U(X, R) but f-g* does not belong to U(X, R). There is a
convergent subnet {b, , i€ I}, b, > be V for which the net {(b,,, (f- 8%)(b,)), i€ 1}
converges to the point (b, 1) but (f- g*)(b) = 0.

In the second part we shall assume that the function fe C(X, R) and that the
set N, is not open. We show that f does not belong to the maximal multiplicative
family for U(X, R).
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Since the set N,is not open, there' is Xe N,and the net {x,, ye I'}, x,e X — N/,
which converges to the point X. We have f(X) = 0 and f(x,) # 0 for every ye I.
Define the function g by :

L if xeX— N,
gx) =< f(x)

0 if xeN,.

According to Lemma 2 ge U(X, R) but (g-f)¢ U(X, R), because the net
{(x,, (f - 8)(x,)), ye I'} converges to the point (X, 1) and (g - f)(X) = 0.
In the last part suppose fe M(X, R) and g e U(X, R). It is sufficient to prove

(f-8eUX, R).
Let the net {(x,, (- g)(x,)), y € I converge to a point (%, z). If X € N/, then there
is Y€ I" such that f(x,) =0 for every y> ¥. Then (f- g)(x,)) >0 and z =
= (f- g)(%).
If e X — N,, then from the continuity of the function f it follows that the net
{(f- 8)(x,), ye I'} converges to z if and only if the net {g(x,), y€ I'} converges to
f%. Since ge U(X, R), it is easy to see that z = (f- g)(X). Hence (f- g)e

£ .
e U(X, R).
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SUHRN

MAXIMALNA ADIT{VNA A MULTIPLIKATIVNA TRIEDA
FUNKCIi S UZAVRETYM GRAFOM

Robert Menkyna, Liptovsky Mikula$
V ¢&lanku je dana charakterizacia maximalnej aditivnej a multiplikativnej triedy v triede funkcii

definovanych na topologickom priestore X s oborom funk&nych hodn6t v mnoZine realnych &isel,
ktoré maji uzavrety graf v X x R. V ¢lanku si dokéazané nasledujiice vety:
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Veta 1. Mnozina vietkych spojitych funkcii je maximalna aditivna trieda v triede funkcii s
uzavretym grafom. )

Veta 2. Nech X je lokalne kompaktny, normalny topologicky priestor. MnoZina vsetkych
spojitych funkcii f, pre ktoré je N, = {x € X, f(x) = 0} otvorena mnoZina, je maximalna multiplika-
tivna trieda v triede funkcii s uzavretym grafom.

PE3IOME

MAKCUMAJIbHBIV AJJAUTUBHBIA U MYJIbTUTIJIMKATUBHBINA KJIACC
B KJIACCE OTOBPAXEHU! C 3AMKHYTBIM I'PA®HUKOM

Pobepr MenkuHa, JlnntoBckel Mukynam

B cTaThe XxapakTepH3yIOTCS MaKCHMaJIbHbIH aJUIMTHBHBIA H MYJIbTHIUIHKATHBHLIA KJIacChl B
KJlacce OTOOpaXkeHH# ompeneneHbIX Ha TOMOJOrMYECKOM MPOCTPAHCTBE X CO 3HAYEHHSAMH B
MHOXECTBE BEIIECTBEHHBIX YKCEN R, rpaMKH KOTOPBIX ABJIAIOTCA 3aMKHY THIMH ITOJAMHOXECTBAMH
TOTNOJIOTHYECKOBO NMpocTpaHcTBa X x R. B paboTe moka3aHbl ClieayIOLIME TEOPEMBI:

Teopema 1. MHOXeCTBO BCeX HENMPEPBIBHBIX OTOOpaXK€HHH SABIAETCH MaKCMMaJIbHBLIM aul-
HTHBHBIM KJIaCCOM B KJlacce 0TOGpaxeHH# C 3aMKHYThIM IpadHKoM.

Teopema 2. IlycTe X Oyner JIoKaJIHO-KOMNAKTHOE HOPMaJIbHOE TOMOJIOTMYECKOE NMPOCTPAaHC-
TBO. MHOXECTBO BCEX HEMPEPHIBHBIX O0TOOpaxeHui f, i koTopeix N, = {x € X, f(x) = 0} oTk-
PBITOE MHOXECTBO B X SIBJISETCS MAaKCHMAJbHBIM MYJIbTHILUIMKATHBHBIM KJIACCOM B KJIacce OTO-
6paxkeHnii ¢ 3aMKHYTHIM TpapuKOM.
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