

Werk

Label: Article **Jahr:** 1987

PURL: https://resolver.sub.uni-goettingen.de/purl?312901348_52-53|log15

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

UNIVERSITAS COMENIANA ACTA MATHEMATICA UNIVERSITATIS COMENIANAE LII—LIII—1987

THE MAXIMAL ADDITIVE AND MULTIPLICATIVE FAMILIES FOR FUNCTIONS WITH CLOSED GRAPH

ROBERT MENKYNA, Liptovský Mikuláš

In the present paper we shall deal with the functions whose domain is a topological space and the range is the set of real numbers R and which have the closed graph in $X \times R$. Let G_f denote the graph of a function f, U(X, R) the family of all functions with closed graph and C(X, R) the family of all continuous functions.

A. M. Bruckner in the monograph [1] has defined the maximal additive (multiplicative) family.

Definition 1. [1] Let \mathscr{D} be a family of real functions defined on a topological space X. A subfamily \mathscr{F} of \mathscr{D} is called the maximal additive (multiplicative) family for \mathscr{D} provided \mathscr{F} is the set of all functions f in \mathscr{D} such that $f + g \in \mathscr{D}$ $(f \cdot g \in \mathscr{D})$ whenever $f \in \mathscr{F}$ and $g \in \mathscr{D}$.

Lemma 1. Let $f \in U(X, R)$ be a function discontinuous at a point $x \in X$. Then there is a net $\{x_{\gamma}, \gamma \in \Gamma\}$ which converges to the point x such that a net $\{f(x_{\gamma}), \gamma \in \Gamma\}$ diverges to $+\infty$ or $-\infty$.

Proof. The function f is discontinuous at a point x, hence there is a net $\{x_{\gamma}, \gamma \in \Gamma\}$ which converges to the point x such that the net $\{f(x_{\gamma}), \gamma \in \Gamma\}$ does not converge to f(x). Since $f \in U(X, R)$, the net $\{f(x_{\gamma}), \gamma \in \Gamma\}$ is not bounded. Let \mathscr{A} be the family of sets $V \times (n, \infty)$ and \mathscr{B} be the family of sets $V \times (-\infty, -n)$, where V is an arbitrary neighborhood of x, $n = 1, 2, \ldots$ The net $\{(x_{\gamma}, f(x_{\gamma})), \gamma \in \Gamma\}$ is frequently in each member of \mathscr{A} or in each member of \mathscr{B} . The families \mathscr{A} and \mathscr{B} satisfy the conditions of Lemma 2.5 [2] and consequently there is a subnet $\{(x_{\gamma}, f(x_{\gamma})), i \in I\}$ which is eventually in each member of some of families \mathscr{A} or \mathscr{B} . Then obviously the net $\{f(x_{\gamma}), i \in I\}$ diverges to $+\infty$ or $-\infty$.

Theorem 1. C(X, R) is the maximal additive family for U(X, R).

Proof. According to Theorem 3 of paper [3] $C(X, R) \subset U(X, R)$ holds.

Suppose f is an arbitrary member of U(X, R) and g belongs to C(X, R). We shall show that $(f + g) \in U(X, R)$. Let the net $\{(x_{\gamma}, (f + g)(x_{\gamma})), \gamma \in I\}$ converge to a point (x, z). The function g is continuous and therefore the net $\{f + g\}(x_{\gamma})$,

 $\gamma \in \Gamma$ converges to z if and only if the net $\{f(x_{\gamma}), \gamma \in \Gamma\}$ converge to z - g(x). From the assumption $f \in U(X, R)$ it follows f(x) + g(x) = z, i.e. $(f + g) \in U(X, R)$.

Let $f \in U(X, R)$ be discontinuous at a point \tilde{x} . We shall show that there is a function $g \in U(X, R)$ such that $(f + g) \notin U(X, R)$. Without loss of generality [see Lemma 1] we can assume that there is a net $\{x_{\gamma}, \gamma \in \Gamma\}$, $x_{\gamma} \to \tilde{x}$, such that $f(x_{\gamma})$ diverges to $+\infty$. Choose $c > f(\tilde{x})$ and let $A = \{x \in X, f(x) \ge c + 1\}$,

$$B = \{x \in X, f(x) \le c\},\$$

$$C = \{x \in X, c \le f(x) \le c + 1\}.$$

Define the function g in the following way:

$$g(x) = \begin{cases} f(x) - 1 & \text{if } x \in A \\ c & \text{if } x \in C \\ f(x) & \text{if } x \in B. \end{cases}$$

From the first part of proof it follows that $f-1 \in U(X,R)$ and consequently the sets $G_{g/A} = G_{f-1} \cap (X \times [c,\infty))$, $G_{g/B} = G_f \cap (X \times (-\infty,c])$ are closed in $X \times R$. The set $G_{g/C} = C \times \{c\}$ is closed if and only if C is closed in X. Let a net $\{x_j, j \in J\}$, $x_j \in C$ converge to a point x_1 . Then the net $\{f(x_j), j \in J\}$ is contained in the compact [c, c+1] and there is a convergent subnet $\{f(x_j), i \in I\}$, $f(x_j) \to J \to J \in [c, c+1]$, of the net $\{f(x_j), j \in J\}$. The net $\{(x_{j_i}, f(x_{j_i}), i \in I\}$ converges to a point $(x_1, y) \in G_f$, hence $y = f(x_1), x_1 \in C$ and C is closed. The graph $G_g = G_{g/A} \cup G_{g/B} \cup G_{g/C}$ is a closed set in $X \times R$, i.e. $g \in U(X, R)$. It is easy to verify that $-g \in U(X, R)$ and $f + (-g) \notin U(X, R)$, since the net $\{(x_{\gamma}, (f-g)(x_{\gamma})), \gamma \in I\}$ converges to the point $(\bar{x}, 1)$ and $(f-g)(\bar{x}) = 0$.

In the next text we denote $N_f = \{x \in X, f(x) = 0\}$.

Lemma 2. Let $f \in C(X, R)$. Then the function g defined by

$$g(x) = \begin{cases} \frac{1}{f(x)} & \text{if } x \in X - N_f \\ 0 & \text{if } x \in N_f \end{cases}$$

belongs to the family U(x, R).

Proof. Let a net $\{(x_{\gamma}, g(x_{\gamma})), \gamma \in \Gamma\}$ converge to a point (x, y). If $x \in X - N_f$, then the function g is continuous at the point x and g(x) = y.

If $x \in N_f$, then y = 0 and consequently g(x) = y. The statement will be proved by contradiction.

Let $y \neq 0$. Choose n > |y|, then there is a $\gamma_0 \in \Gamma$ such that for every $\gamma > \gamma_0 x_\gamma$ belongs to $f^{-1}\left(\left(-\frac{1}{n},\frac{1}{n}\right)\right)$. From the definition of the function g it follows that $g(x_\gamma) = 0$ if $x_\gamma \in N_f$ or $|g(x_\gamma)| > n$ if $x_\gamma \in X - N_f$. It is a contradiction to the assumption $g(x_\gamma) \to y$.

Definition 2. [2] A topological space is normal if and only if for each disjoint pair of closed sets, A and B, there are disjoint open sets U and V such that $A \subset U$ and $B \subset V$.

Theorem 2. Let X be a locally compact normal topological space. Then the family of functions

$$M(X, R) = \{ f \in C(X, R), N_f \text{ is open} \}$$

is the maximal multiplicative family for U(X, R).

Proof. It is evident that $M(X, R) \subset C(X, R) \subset U(X, R)$. We shall prove the theorem in three parts.

Let $f \in U(X, R)$ be a discontinuous function. We show that f does not belong to the maximal multiplicative family for U(X, R).

Let \tilde{x} be a discontinuity point of the function f and let V be its compact neighborhood. From Lemma 1 it follows that the function f is not bounded in any neighborhood of \tilde{x} . Choose $b_1 \in V$ such that $|f(b_1)| > \max\{1, |f(\tilde{x})|\}$ and put $V_1 = X$. The sets $f^{-1}(f(b_1))$ and $f^{-1}(f(\tilde{x}))$ are closed (see Theorem 1 [3]) and disjoint. From normality of the topological space it follows that there exists a closed neighborhood V_2 of the set $f^{-1}(f(\tilde{x}))$ for which $V_2 \cap f^{-1}(f(b_1)) = \emptyset$. Choose $b_2 \in V_2 \cap V$ such that $|f(b_2)| > \max\{2, |f(\tilde{x})|\}$. Since the sets

 $\bigcup_{i=1,2}^{-1}(f(b_i))$ and $f^{-1}(f(\tilde{x}))$ are closed and disjoint, there is a closed neighborhood V_3 of the set $f^{-1}(f(\tilde{x}))$ such that $V_3 \subset V_2$ and $V_3 \cap f^{-1}(f(b_2)) = \emptyset$ We could continue in this way and construct a sequence of closed neighborhoods $V_1 \supset V_2 \supset \ldots$ of the point \tilde{x} and a sequence of the points $b_n \in V_n \cap V$, $n=1,2,\ldots$ such that $f^{-1}(f(b_n)) \cap V_{n+1} = \emptyset$ and $0 < |f(b_n)| \to +\infty$. Designate A the closure of the set $\{b_n, n=1, 2, \ldots\}$. Evidently $A = \begin{bmatrix} \bigcup_{n=1}^{\infty} \{\overline{b_n}\} \end{bmatrix} \cup \{x, x \text{ is an accumulation point of the sequence}\}$ and these two sets are disjoint. Define the function g in the following way

$$g(x) = \begin{cases} 0 & \text{if } x \text{ is an accumulation point of the sequence} \\ \frac{1}{f(x)} & \text{if } x \in \bigcup_{n=1}^{\infty} \{\overline{b_n}\}. \end{cases}$$

The function g is continuous on the set A and (according to Tietze's theorem) there is a continuous extension g^* of the function g on the space X. The function $g^* \in C(X, R) \subset U(X, R)$ but $f \cdot g^*$ does not belong to U(X, R). There is a convergent subnet $\{b_{n_i}, i \in I\}, b_{n_i} \to b \in V$ for which the net $\{(b_{n_i}, (f \cdot g^*)(b_{n_i})), i \in I\}$ converges to the point (b, 1) but $(f \cdot g^*)(b) = 0$.

In the second part we shall assume that the function $f \in C(X, R)$ and that the set N_f is not open. We show that f does not belong to the maximal multiplicative family for U(X, R).

Since the set N_f is not open, there is $\tilde{x} \in N_f$ and the net $\{x_\gamma, \gamma \in \Gamma\}$, $x_\gamma \in X - N_f$, which converges to the point \tilde{x} . We have $f(\tilde{x}) = 0$ and $f(x_\gamma) \neq 0$ for every $\gamma \in \Gamma$. Define the function g by

$$g(x) = \begin{cases} \frac{1}{f(x)} & \text{if } x \in X - N_f \\ 0 & \text{if } x \in N_f. \end{cases}$$

According to Lemma 2 $g \in U(X, R)$ but $(g \cdot f) \notin U(X, R)$, because the net $\{(x_r, (f \cdot g)(x_r)), \gamma \in \Gamma\}$ converges to the point $(\tilde{x}, 1)$ and $(g \cdot f)(\tilde{x}) = 0$.

In the last part suppose $f \in M(X, R)$ and $g \in U(X, R)$. It is sufficient to prove $(f \cdot g) \in U(X, R)$.

Let the net $\{(x_{\gamma}, (f \cdot g)(x_{\gamma})), \gamma \in \Gamma\}$ converge to a point (\tilde{x}, z) . If $\tilde{x} \in N_f$, then there is $\gamma_0 \in \Gamma$ such that $f(x_{\gamma}) = 0$ for every $\gamma > \gamma_0$. Then $(f \cdot g)(x_{\gamma}) \to 0$ and $z = (f \cdot g)(\tilde{x})$.

If $\tilde{x} \in X - N_f$, then from the continuity of the function f it follows that the net $\{(f \cdot g)(x_y), \gamma \in \Gamma\}$ converges to z if and only if the net $\{g(x_y), \gamma \in \Gamma\}$ converges to

 $\frac{z}{f(\tilde{x})}$. Since $g \in U(X, R)$, it is easy to see that $z = (f \cdot g)(\tilde{x})$. Hence $(f \cdot g) \in U(X, R)$.

REFERENCES

- 1. Bruckner, A. M.: Differentation of real functions, Berlin Heidelberg New York 1978.
- 2. Kelley, J. L.: General Topology, New York 1955.
- Kostyrko, P.: A note on the functions with closed graphs, Časopis pro pěstování matematiky, roč. 94 (1969), 202—205.

Author's address: Robert Menkyna Katedra matematiky VVTŠ ČSSP Liptovský Mikuláš Received: 1. 10. 1985

SÚHRN

MAXIMÁLNA ADITÍVNA A MULTIPLIKATÍVNA TRIEDA FUNKCIÍ S UZAVRETÝM GRAFOM

Robert Menkyna, Liptovský Mikuláš

V článku je daná charakterizácia maximálnej aditívnej a multiplikatívnej triedy v triede funkcií definovaných na topologickom priestore X s oborom funkčných hodnôt v množine reálnych čísel, ktoré majú uzavretý graf v $X \times R$. V článku sú dokázané nasledujúce vety:

- Veta 1. Množina všetkých spojitých funkcií je maximálna aditívna trieda v triede funkcií s uzavretým grafom.
- Veta 2. Nech X je lokálne kompaktný, normálny topologický priestor. Množina všetkých spojitých funkcií f, pre ktoré je $N_f = \{x \in X, f(x) = 0\}$ otvorená množina, je maximálna multiplikatívna trieda v triede funkcií s uzavretým grafom.

РЕЗЮМЕ

МАКСИМАЛЬНЫЙ АДДИТИВНЫЙ И МУЛЬТИПЛИКАТИВНЫЙ КЛАСС В КЛАССЕ ОТОБРАЖЕНИЙ С ЗАМКНУТЫМ ГРАФИКОМ

Роберт Менкина, Липтовскы Микулаш

В статье характеризуются максимальный аддитивный и мультипликативный классы в классе отображений определеных на топологическом пространстве X со значениями в множестве вещественных чисел R, графики которых являются замкнутыми подмножествами топологическово пространства $X \times R$. В работе доказаны следующие теоремы:

Теорема 1. Множество всех непрерывных отображений является максимальным аддитивным классом в классе отображений с замкнутым графиком.

Теорема 2. Пусть X будет локално-компактное нормальное топологическое пространство. Множество всех непрерывных отображений f, для которых $N_f = \{x \in X, f(x) = 0\}$ открытое множество в X является максимальным мультипликативным классом в классе отображений с замкнутым графиком.