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®-SUMMING OPERATORS IN BANACH SPACES

R. KHALIL*) — W. DEEB, Kuwait

0 Introduction

Let @: [0, o0) — [0, c0) be a continuous function. Then function @ is called a
modulus function if

(1) D(x + y) < O(x) + D(y)
(i) @(0) =
(iii) D is stnctly increasing.
The functions@(x) = x*, 0 < p < 1 and @(x) = In(1 + x) are examples of
modulus functions.
For Banach spaces E and F, a bounded linear operator 4: E — F is called
p-summing, 0 < p < oo, if there exists A > 0 such that

Z [Ax]” < A Sup Z [<x;, x*> 17,
*lh<1li=1
for all sequences {x,, ..., x,} < E. For p = 1, this definition is due to Grothen-
dieck [3], and for p # 1, the definition was given by Pietsch [6]. If IT?(E, F) is
the space of all p-summing operators from E to F, then it is well known
[3, p. 293] that IT?(E, F) = IT°(E, F) for 0 < p, ¢ < 1. If E and F are Hilbert
spaces then IT°(E, F) = IT'(E, F) for 0 < p < ¢ < o0, [6, p. 302].

The object of this paper is to introduce #-summing operators for modulus
functions @. The basic properties of these operators are studied. We, further,
prove that @-summing operators are p-summing for 0 < p < 1, in case of
Banach spaces having the metric approximation property.

Throughout this paper, L(E, F) denotes. the space of all bounded lmear
operators from E to F. The dual of E is E*. The compact elements in L(E, F)

*) The first author would like to thank Prof. J. Jacod for helpful discussions.
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will be denoted by K(E, F). The unit sphere of a Banach space E is denoted by
S(E). The set of complex numbers is denoted by 0.

LT°E, F)

Let E and F be two Banach spaces and @ be a modulus function on [0, o0).
Consider the following two spaces:

() 1°%¢CE) = {(xn) sup Z D|{x,, x*>| < ©, x, eE}

flx*) <

(i) 1°(F) = {(x"): Y olx,l < oo, xneE}'
For x = (x,)e[°(E), we define
lxll.= ol ;‘DKX", x*>1,
and for y = (y,)e%F) we define
Iylle= Zd)lly,.ll -

It is a routine matter to verify the following result:

Theorem 1.1. The spaces (I°¢E), | |,) and (I°(F), || ||,) are complete metric
linear spaces

Remark 1.2. The spaces [?(E) and [®(E) are generalizations of the spaces
PCE) and "(E) for 0 < p < 1. We refer to [6, Chap. 16] and [1] for a discussion
of such spaces.

A linear operator T: [®{E) — [®(F) will be callled metrically bounded if there
is a A > 0 such that

ITx] . < Allxll

for all x = (x,)el®?<E). Clearly, every metrically bounded operator is con-
tinuous. We let L®(E, F) denote the space of all metrically bounded operator
from 1°{E) into 1®(F). For Te L®(E, F), we set |T|,=inf{A: | Tx|, <
< Allx|l,, xI®°¢E)}. The proof of the following result is similar to the proof in
case of Banach spaces, [7, p. 185], and it will be omitted.

Theorem 1.3. The space (L®(E, F), | || ) is a complete metric linear space.

Definition 1.4. Let £ and F be two Banach spaces. Then, a bounded linear
operator T: E — Fis called @-summing if there is A > 0 such that

ZCPII Tx,|| <4 sup ):G’KXM x*)| *)

for all sequences {x,, ..., x,} € E.
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The definition is a generalization of the definition of p-summing operators for
0 <p < 1. We refer to [6] for a full study of p-summing operators 0 < p < 0.

Let IT®(E, F) be the set of all @-summing operators from E to F. Every
Te IT*(E, F) defines an element TeL*E, F) via:

T: 1°¢EY > 1%(E)
T((x,) = ((Tx,)).

For Te IT®(E, F) we define the ®-summing metric of T as: || Tlo=IITlo.
Hence || T'|| 5 = inf {A: * holds}. The definition of @-summing operators together
with Theorem 1.2 implies:

Theorem 1.5. (IT*(E, F), | | 4) is a complete metric linear space.

Theorem 1.6. Let A€ I1°(E, F), Be (G, E) and De L(F, H). Then ABe
eII°(G, E) and DAeII®(E, H). Further: |AB|,< (|B| + 1)|A|l, and
IDAllo < (D] + D[ A] .

Proof: The proof folows from the fact that for alla > 0 ®@(at) < (a + 1) &(1),
which is a consequence of the monotonocity and subadditivity of &.

Q.E.D.

Let B,(E*) be the unit ball of E* equipped with the w*-topology, and M be
the space of all regular Borel measures on B,(E*). The unit sphere of M is
denoted by S(M).

Theorem 1.6. Let A€ L(E, F). The followings are equivalent:

(i) Ae ITI°(E, F).

(i1) Tthere exists A > 0 and ve S(M) such that

Q| Ax| < AJ D|{x, x*>| dv(x*).
By (E®)

Proof. (ii) — (i). This is evident.
(i) — (ii). Let Ae IT®(E, F) and 1| 4| o.

- For every finite sequence {x,, ..., x4} < E, define the map:
Q:SM)-¢
’ N N
Q) = ), @|Ax,| —l‘;L(E) @|<x,, x*>|du... **)
n=1 |(E*

Clearly, the function Q is convex. Further, there is a point g e S(M) such that
Q(y) < 0. Indeed, choose y, = the dirac measure at x}, where

N N
Y O Cxy 51 = sup ¥ OI<x, x*]
1 x| <
Further: If {Q,, ..., Q,} is a collection of such functions defined by (**), then
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for any a,, ..., a,, Z a, = 1, there is Q defined in a similar way, such that
1

Y @ 0:(1) < Q(p) for all pe S(M). Hence the collection of functions on S(M)
| .

defined by (**) satisfies Fan’s Lemma [6, p. 40]. Consequently there is a measure
v in S(M) such that Q(v) < 0 for all Q defined by (**). In particular, if Q is
defined by (**) with an associated sequence {x}, x€ E, we get

D Ax| < lj P|<x, x*>| dv,
B\(E*)
This completes the proof. Q.E.D.
Remark 1.7. The proof of Theorem 1.6 is similar to the proof of Theorem
17.3.2in [6], where &(¢) = * 0 < p < 1. We included the detailed proof here for
completeness and to include modulus functions.

1L IT°(H, H) = IT’(H, H),0<p< 1

Let m be the Lebesgue measure on / = [0, 1]. For the modulus function @,
set L® to denote the space of all measurable functions f onI[O, 1] for which

1
j D|f(t)|dm(t) < . For fe L® we define | f| o= d"_’j Dlf(t)|dm(t).
0 0

The function | || »is not a metric on L®. However, we can define a topology via:
fo—=fin L®if @' [ ®|f, — f]1dm (1) — 0. It is not difficult to prove that such a
topology makes L a topological vector space. Incase @(t) =10 <p<1,L®

is a quasi-normed space, [4, p, 159]. If @(1) = -It— we write L for L?.
+t

The concept of @-summing operators is still valid for operators T: E — L?,
where E is a Banach space.

Definition 2.1. Let E be a Banach space. A linear map T: E — L? is called
®d-decomposable if there is a function y: [0, 1] - E* such that

(i) The function {x, y(t)) is m-measurable and (Tx)(?) = {x, y(?)) a.e.m
for all xeE.

(i) There exists fe L' such that | y(¢)| < f(¢) a.e.m.

This definition is due to Kwapien [5] for @(¢) = 7. In [5], the function f'in (ii)
is assumed to belong to L”.

Since L? < L° for all modulus functions @, the following lemma is imm-
ediate:

Lemma 2.2. Every ®&-decomposable map T: E — L?® is 0-decomposable.

Theorem 2.3. Let E be any Banach space. If a linear map T: E— L? is
@-decomopsable, then T is @-summing.
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Proof: Let y: [0, 1] - E* be as in Definition 2.1, and {x,, ...,xy} < E. Then:

N N 1
DLEARES) a{dr' J' O <x.. y(1)>] dm (D)

<Zf (vl + 1)<n'< "’E’;mdm(z)

<+ sup 5. BICx,, X1
G QE.D.
Before we state the next theoerem, we should remark that the topology on L®
generated by the gauget ||f]l, = @' | ®|f]dm, is equivalent to the topology

generated by the metric |||f]ll, = j’ @|f] dm. Consequently, the bounded sets in
both topologies coincide.

Theorem 2.4. Let Te L(E, F) such that T* e IT®(F*, E*). If F has the metric

approximation property, then for any continuous linear map y: F— L, the
map yT is P-decomposable.

Proof: First, we claim that there exists an M > 0 such that for all x,, x,, ...

X €E, |x] <1 and for all measurable disjoint sets 4,, ..., 4, in [0, 1] we
have

5[ orwoesmn. *

By the remark preceeding the theorem and the assumption that F has the metric
approximation property, it is enough to prove (*) for operators y = 2 yi® lg,
yie F * and B, measurable in [0, 1]. One can take B; to be disjoint of equal length
and Ul B, =0, 1].

k
Lety= ) yi® 15,, B;disjoint in [0,1] and m(B,) = i,y,feF*, fori=1,...,k.
j=1

If x,, ..., x,e E, with || x;|| < 1andif 4,, ..., A4, are disjoint measurable subsets
in [0, 1], then:

Z D|yT(x) (1) dm (1)

i=1JA4;

-£1.9l2

n k '
< i; ; @< Tx;, yjy| m(B,~ 4) (since @ is subadditive)

5 (D) dm (0)

i
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k

Z Q| T*yjll - ZM(BﬁA)

=
—

< Z ; @||T*y/|l (since A are disjoint)
j=1

<A sup Z Dy}, x*>|m(B) since T*e IT°(F*, E*))

UV'H slj 1

= A sup ~[‘d)lyx"(t)ldm(t).

et <1

Since y is continuous, by the remark preceeding the theorem we get
sup J | yx*(t) dm(t) < M for some M > 0, and (*) is proved.
s Joer

It follows from (*) that the image of the unit ball of E under yT is bounded
in the lattice L. If ge L? such that y7T(x) < g for all xe E, | x|| < 1, then the
function 6(¢) = yTx(t)/g(t) if g(¢) + 0 and 6(0) = 0, is an element of L™. Conse-
quently, the linear map

S:E-L*,
S(x) = yTx|g
is continuous and ||S|| < 1. Hence, by the lifting theorem, there exists
Q: [0, 1]= (L*)* such that the function {(Q(t), /> is m-measurable a.e., for all
feL*, and f(¢t) = {Q(¢), /> a.e. Further |Q(¢)] =1 for all t€[0, 1]. Now,
consider the function y: [0, 1] > E* defined by w(z) = g(¢) - S*(Q(¢)). It is not
difficult to see that y is the function needed for T to be d-decomposable, noting
that ge L* < L®. Q.E.D.
Before we prove the next result, we need the following two lemmas:
Lemma 2.5. Let T: L — L* be continuous linear operator. Then || Tf| <

/'LJ @|f (1) dm (¢) for all fe L® for which J Dlf () dm () = |IIflle < 1.

Proof: First we prove it for feL? |||flllo = 1. If the inequality |7f]|| <
< AllIAll o is not true, then we can find a sequence (f,) such that |||f,lll, = 1 but

| Tf, Il > nlllf,llle- Then the sequencef" —0in L% but ” Tji ” > 1, which con-

tradicts the continuity of T..

Now, let fe L?. |||flll» < 1. Then one can find an a > 1 such that |||af]||, = 1.
Hence

1771 =L | Tap)
a
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A
<-lllflllo
a

a+ 1
a

<2 o-

<

ANl

Q.E.D.

It should be remarked that for every r > 0 there exists A > 0 such that || Tf|| <
< Al for all fe L2, [Ifllo < r. :

Lemma 2.6. Let 7) L? > L? be p-summing operator. Then ST: L? — L? is
p-summing for continuous operators S: L® — L.

Proof: Using Lemma 2.5 and the arguement in the proof of Theorem 1.6, the
result follows. Q.E.D.

Now we prove:

Theorem 2.7. Let ¢ be any modulus function. Then IT*(L?, [%) = IP(L?, LY.

Proof: Let T: L?>— L? be ®-summing operator. By Theorem 2.4: yT*:
L? - [* - L®is @ decomposable for all continuous linear operators y: L* — L°.
In particular, we can choose ¥(f) = [f(t)dx,, [2, 5], where (x,) is a symmetric
stable process on ([0, 1], m) with exponent 2. This makes y an isomorphic
embedding of L? into L®and also into L°. Hence yT*: L* —» L’ is zero decompos-
able. Using Theorem 3 in [5], we get T*: L?— L’ is zero summing. By
Lemma 2.6, yT*: L* - L" is zero decomposable. By another application of
Theorem 3 in [5], we get T: L* - L? is zero-summing. However, every zero-
summing map is 2-summing, [5]. Hence Te IF(L? L?).

Theorem 2.8. For any modulus function @, IT*(L?, L?) < IT®(L?, L?).

Proof: Let T: L? —» L? be 2-summing operator. If y is the isomorphic embed-
ding of L? into L® as in Theorem 2.7, then using Theorem 3 in [5], we get:

yT: [’ > L* > L®

is @-decomposable. By Theorem 2.3, yT is @-summing. Using Lema 2.5, we get
T: L - L’ is ®@-summing. Q.E.D.
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SUHRN
®-SUMACNE OPERATORY V BANACHOVYCH PRIESTOROCH
R. Khalil — W. Deeb
Nech E a F si Banachove priestory. Nech @: [0, oc) — [0, oc) je spojita, subaditivna a rastiica
funkcia s vlastnostfou @(0) = 0. K nim sa definuje @-sumaény operator z E do F. Priestor vietkych

takych operatorov znaé¢ime ako IT®(E, F).
V praci sa tuduje priestor IT°(E, F).

PE3FOME
®-CYMMMUPVYIOLIUI ONMEPATOP B [TIPOCTPAHCTBAX BAHAXA
M. Kanun — B. Iu6
Myctb E u F-— npoctpasctea banaxa. [1ycts @: [0, oc) — [0, o) HenpepbiBHOE, CyOaAHTHBHOE
1 Bo3pacTalollee oTobpaxeHue ynossieTBopsuiee csoictsy @(0) = 0. [1pu nomoum 3THX OTO-
Gpaxenuii onpenensercs P-cyMMHpYIOILIMI onepaTop ¢ npoctpancTsa E no F. IT°(E, F) 0603-

H4Y4€T NPOCTPAHCTBO BCEX TAKHX ONEPATOPOB.
B pa6ote miyuaercs npoctpanctso IT°(E, F).
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