

Werk

Label: Article Jahr: 1987

PURL: https://resolver.sub.uni-goettingen.de/purl?312901348_52-53|log14

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

UNIVERSITAS COMENIANA ACTA MATHEMATICA UNIVERSITATIS COMENIANAE LII—LIII—1987

Φ-SUMMING OPERATORS IN BANACH SPACES

R. KHALIL*) - W. DEEB, Kuwait

0 Introduction

Let $\Phi: [0, \infty) \to [0, \infty)$ be a continuous function. Then function Φ is called a modulus function if

- (i) $\Phi(x+y) \leq \Phi(x) + \Phi(y)$
- (ii) $\Phi(0) = 0$
- (iii) Φ is strictly increasing.

The functions $\Phi(x) = x^p$, $0 and <math>\Phi(x) = \ln(1 + x)$ are examples of modulus functions.

For Banach spaces E and F, a bounded linear operator A: $E \to F$ is called p-summing, $0 , if there exists <math>\lambda > 0$ such that

$$\sum_{i=1}^n \|Ax_i\|^p \leq \lambda \sup_{\|x^*\| \leq 1} \sum_{i=1}^n |\langle x_i, x^* \rangle|^p,$$

for all sequences $\{x_1, \ldots, x_n\} \subseteq E$. For p = 1, this definition is due to Grothendieck [3], and for $p \neq 1$, the definition was given by Pietsch [6]. If $\Pi^p(E, F)$ is the space of all p-summing operators from E to F, then it is well known [3, p. 293] that $\Pi^p(E, F) = \Pi^q(E, F)$ for $0 < p, q \le 1$. If E and F are Hilbert spaces then $\Pi^p(E, F) = \Pi^q(E, F)$ for 0 , [6, p. 302].

The object of this paper is to introduce Φ -summing operators for modulus functions Φ . The basic properties of these operators are studied. We, further, prove that Φ -summing operators are p-summing for 0 , in case of Banach spaces having the metric approximation property.

Throughout this paper, L(E, F) denotes the space of all bounded linear operators from E to F. The dual of E is E^* . The compact elements in L(E, F)

^{*)} The first author would like to thank Prof. J. Jacod for helpful discussions.

will be denoted by K(E, F). The unit sphere of a Banach space E is denoted by S(E). The set of complex numbers is denoted by \emptyset .

$$I\Pi^{\phi}(E, F)$$

Let E and F be two Banach spaces and Φ be a modulus function on $[0, \infty)$. Consider the following two spaces:

(i)
$$I^{\Phi}\langle E \rangle = \left\{ (x_n) : \sup_{\|x^*\| \le 1} \sum_n \Phi |\langle x_n, x^* \rangle| < \infty, x_n \in E \right\}.$$

(ii)
$$I^{\phi}(F) = \left\{ (x_n) : \sum_{n} \phi \| x_n \| < \infty, x_n \in E \right\}.$$

For $x = (x_n) \in l^{\Phi} \langle E \rangle$, we define

$$||x||_{\varepsilon} = \sup_{\|x^*\| \le 1} \sum_{n} \Phi |\langle x_n, x^* \rangle|,$$

and for $y = (y_n) \in I^{\Phi}(F)$ we define

$$||y||_{\Pi} = \sum_{n} \mathbf{\Phi} ||y_{n}||.$$

It is a routine matter to verify the following result:

Theorem 1.1. The spaces $(I^{\Phi}\langle E \rangle, \| \|_{\varepsilon})$ and $(I^{\Phi}(F), \| \|_{\pi})$ are complete metric linear spaces

Remark 1.2. The spaces $I^{\Phi}\langle E\rangle$ and $I^{\Phi}(E)$ are generalizations of the spaces $I^{p}\langle E\rangle$ and $I^{p}(E)$ for 0 . We refer to [6, Chap. 16] and [1] for a discussion of such spaces.

A linear operator $T: I^{\Phi} \langle E \rangle \to I^{\Phi}(F)$ will be callled **metrically bounded** if there is a $\lambda > 0$ such that

$$||Tx||_{\pi} \leq \lambda ||x||_{\epsilon}$$

for all $x = (x_n) \in I^{\Phi} \langle E \rangle$. Clearly, every metrically bounded operator is continuous. We let $L^{\Phi}(E, F)$ denote the space of all metrically bounded operator from $I^{\Phi} \langle E \rangle$ into $I^{\Phi}(F)$. For $T \in L^{\Phi}(E, F)$, we set $||T||_{\Phi} = \inf\{\lambda \colon ||Tx||_{\pi} \le \le \lambda ||x||_{\varepsilon}, xI^{\Phi} \langle E \rangle\}$. The proof of the following result is similar to the proof in case of Banach spaces, [7, p. 185], and it will be omitted.

Theorem 1.3. The space $(L^{\Phi}(E, F), \| \|_{\Phi})$ is a complete metric linear space. **Definition 1.4.** Let E and F be two Banach spaces. Then, a bounded linear operator $T: E \to F$ is called Φ -summing if there is $\lambda > 0$ such that

$$\sum_{1}^{N} \boldsymbol{\Phi} \| Tx_{n} \| \leq \lambda \sup_{\|x^{*}\| \leq 1} \sum_{1}^{N} \boldsymbol{\Phi} |\langle x_{n}, x^{*} \rangle| \tag{*}$$

for all sequences $\{x_1, \ldots, x_n\} \subseteq E$.

The definition is a generalization of the definition of p-summing operators for 0 . We refer to [6] for a full study of p-summing operators <math>0 .

Let $\Pi^{\phi}(E, F)$ be the set of all Φ -summing operators from E to F. Every $T \in \Pi^{\phi}(E, F)$ defines an element $\hat{T} \in L^{\phi}(E, F)$ via:

$$\hat{T}: l^{\Phi}\langle E \rangle \rightarrow l^{\Phi}(E)$$

$$\hat{T}((x_n)) = ((Tx_n)).$$

For $T \in \Pi^{\Phi}(E, F)$ we define the Φ -summing metric of T as: $||T||_{\Phi} = ||\hat{T}||_{\Phi}$. Hence $||T||_{\Phi} = \inf \{\lambda : * \text{ holds} \}$. The definition of Φ -summing operators together with Theorem 1.2 implies:

Theorem 1.5. $(\Pi^{\Phi}(E, F), \| \|_{\Phi})$ is a complete metric linear space.

Theorem 1.6. Let $A \in \Pi^{\Phi}(E, F)$, $B \in L(G, E)$ and $D \in L(F, H)$. Then $AB \in \Pi^{\Phi}(G, E)$ and $DA \in \Pi^{\Phi}(E, H)$. Further: $||AB||_{\Phi} \le (||B|| + 1)||A||_{\Phi}$ and $||DA||_{\Phi} \le (||D|| + 1)||A||_{\Phi}$.

Proof: The proof follows from the fact that for all a > 0 $\Phi(at) \le (a + 1)\Phi(t)$, which is a consequence of the monotonocity and subadditivity of Φ .

O.E.D

Let $B_1(E^*)$ be the unit ball of E^* equipped with the w^* -topology, and M be the space of all regular Borel measures on $B_1(E^*)$. The unit sphere of M is denoted by S(M).

Theorem 1.6. Let $A \in L(E, F)$. The followings are equivalent:

- (i) $A \in \Pi^{\Phi}(E, F)$.
- (ii) There exists $\lambda > 0$ and $v \in S(M)$ such that

$$\Phi \|Ax\| \leq \lambda \int_{B_1(E^*)} \Phi |\langle x, x^* \rangle| \, dv(x^*).$$

Proof. (ii) \rightarrow (i). This is evident.

(i)
$$\rightarrow$$
 (ii). Let $A \in \Pi^{\Phi}(E, F)$ and $\lambda ||A||_{\Phi}$.

For every finite sequence $\{x_1, ..., x_N\} \subseteq E$, define the map:

$$Q: S(M) \to \mathbb{C}$$

$$Q(\mu) = \sum_{n=1}^{N} \Phi \|Ax_n\| - \lambda \sum_{1}^{N} \int_{b_1(E^*)} \Phi |\langle x_n, x^* \rangle| d\mu \dots$$
 (**)

Clearly, the function Q is convex. Further, there is a point $\mu_0 \in S(M)$ such that $Q(\mu_0) < 0$. Indeed, choose μ_0 = the dirac measure at x_0^* , where

$$\sum_{1}^{N} \boldsymbol{\Phi} |\langle x_{n}, x_{0}^{*} \rangle| = \sup_{\|x^{*}\| \leq 1} \sum_{1}^{N} \boldsymbol{\Phi} |\langle x_{n}, x^{*} \rangle|.$$

Further: If $\{Q_1, \ldots, Q_r\}$ is a collection of such functions defined by (**), then

for any $a_1, \ldots, a_r, \sum_{1}^{r} a_k = 1$, there is Q defined in a similar way, such that $\sum_{1}^{r} a_k Q_k(\mu) \leq Q(\mu)$ for all $\mu \in S(M)$. Hence the collection of functions on S(M) defined by (**) satisfies Fan's Lemma [6, p. 40]. Consequently there is a measure v in S(M) such that $Q(v) \leq 0$ for all Q defined by (**). In particular, if Q is

$$\Phi \|Ax\| \leq \lambda \int_{B_1(E^*)} \Phi |\langle x, x^* \rangle| dv,$$

defined by (**) with an associated sequence $\{x\}$, $x \in E$, we get

This completes the proof.

Q.E.D.

Remark 1.7. The proof of Theorem 1.6 is similar to the proof of Theorem 17.3.2 in [6], where $\Phi(t) = t^p 0 . We included the detailed proof here for completeness and to include modulus functions.$

II
$$\Pi^{\Phi}(H, H) = \Pi^{p}(H, H), 0 \le p \le 1$$

Let m be the Lebesgue measure on I = [0, 1]. For the modulus function Φ , set L^{Φ} to denote the space of all measurable functions f on [0, 1] for which $\int_0^1 \Phi|f(t)| \, \mathrm{d}m(t) < \infty$. For $f \in L^{\Phi}$ we define $||f||_{\Phi} = \Phi^{-1} \int_0^1 \Phi|f(t)| \, \mathrm{d}m(t)$. The function $|| ||_{\Phi}$ is not a metric on L^{Φ} . However, we can define a topology via: $f_n \to f$ in L^{Φ} if $\Phi^{-1} \int \Phi|f_n - f| \, \mathrm{d}m(t) \to 0$. It is not difficult to prove that such a topology makes L^{Φ} a topological vector space. In case $\Phi(t) = t^p \, 0 , <math>L^{\Phi}$ is a quasi-normed space, [4, p, 159]. If $\Phi(t) = \frac{t}{1+t}$, we write L^0 for L^{Φ} .

The concept of Φ -summing operators is still valid for operators $T: E \to L^{\Phi}$, where E is a Banach space.

Definition 2.1. Let E be a Banach space. A linear map $T: E \to L^{\Phi}$ is called Φ -decomposable if there is a function $\psi: [0, 1] \to E^*$ such that

- (i) The function $\langle x, \psi(t) \rangle$ is *m*-measurable and $(Tx)(t) = \langle x, \psi(t) \rangle$ a.e.m for all $x \in E$.
 - (ii) There exists $f \in L^1$ such that $\|\psi(t)\| \le f(t)$ a.e.m.

This definition is due to Kwapien [5] for $\Phi(t) = t^p$. In [5], the function f in (ii) is assumed to belong to L^p .

Since $L^{\Phi} \subseteq L^0$ for all modulus functions Φ , the following lemma is immediate:

Lemma 2.2. Every Φ -decomposable map $T: E \to L^{\Phi}$ is 0-decomposable.

Theorem 2.3. Let E be any Banach space. If a linear map $T: E \to L^{\Phi}$ is Φ -decomposable, then T is Φ -summing.

Proof: Let ψ : $[0, 1] \rightarrow E^*$ be as in Definition 2.1, and $\{x_1, \dots, x_N\} \subseteq E$. Then:

$$\sum_{1}^{N} \boldsymbol{\Phi} \| Tx_{n} \|_{\boldsymbol{\Phi}} = \sum_{1}^{N} \boldsymbol{\Phi} \left[\boldsymbol{\Phi}^{-1} \int_{0}^{1} \boldsymbol{\Phi} |\langle x_{n}, \boldsymbol{\psi}(t) \rangle| \, \mathrm{d}\boldsymbol{m}(t) \right]$$

$$\leq \sum_{1}^{N} \int_{0}^{1} (\| \boldsymbol{\psi}(t) \| + 1) \boldsymbol{\Phi} \left| \left\langle x_{n}, \frac{\boldsymbol{\psi}(t)}{\| \boldsymbol{\psi}(t) \|} \right\rangle \right| \, \mathrm{d}\boldsymbol{m}(t)$$

$$\leq (\| f \|_{1} + 1) \sup_{\| \boldsymbol{x}^{\bullet} \| \leq 1} \sum_{1}^{N} \boldsymbol{\Phi} |\langle x_{n}, \boldsymbol{x}^{\bullet} \rangle|.$$
Q.E.D.

Before we state the next theorem, we should remark that the topology on L^{Φ} generated by the gauget $||f||_{\Phi} = \Phi^{-1} \int \Phi |f| dm$, is equivalent to the topology generated by the metric $|||f|||_{\Phi} = \int \Phi |f| dm$. Consequently, the bounded sets in both topologies coincide.

Theorem 2.4. Let $T \in L(E, F)$ such that $T^* \in \Pi^{\Phi}(F^*, E^*)$. If F has the metric approximation property, then for any continuous linear map $\gamma: F \to L^{\Phi}$, the map γT is Φ -decomposable.

Proof: First, we claim that there exists an M > 0 such that for all $x_1, x_2, ...$..., $x_n \in E$, $||x_i|| \le 1$ and for all measurable disjoint sets $A_1, ..., A_n$ in [0, 1] we have

$$\sum_{i=1}^{n} \int_{A_i} \Phi |\gamma T(x_i)(t)| \, \mathrm{d}t \le M \,. \tag{*}$$

By the remark preceding the theorem and the assumption that F has the metric approximation property, it is enough to prove (*) for operators $\gamma = \sum_{i=1}^{k} y_i' \otimes 1_{B_i}$, $y_i' \in F^*$ and B_i measurable in [0, 1]. One can take B_i to be disjoint of equal length and $\bigcup_{i=1}^{k} B_i = [0, 1]$.

Let
$$\gamma = \sum_{j=1}^k y_i' \otimes 1_{B_i}$$
, B_i disjoint in [0,1] and $m(B_i) = \frac{1}{k}$, $y_i' \in F^*$, for $i = 1, ..., k$.

If $x_1, \ldots, x_n \in E$, with $||x_i|| \le 1$ and if A_1, \ldots, A_n are disjoint measurable subsets in [0, 1], then:

$$\sum_{i=1}^{n} \int_{A_{i}} \boldsymbol{\Phi} | \gamma T(x_{i})(t) | dm(t)$$

$$= \sum_{i=1}^{n} \int_{A_{i}} \boldsymbol{\Phi} \left| \sum_{j=1}^{k} \langle Tx_{i}, y_{j} \rangle 1_{B_{j}}(t) \right| dm(t)$$

$$\leq \sum_{i=1}^{n} \sum_{j=1}^{k} \boldsymbol{\Phi} | \langle Tx_{i}, y_{j} \rangle | m(B_{j} \cap A_{i}) \text{ (since } \boldsymbol{\Phi} \text{ is subadditive)}$$

$$\leq \sum_{j=1}^{k} \boldsymbol{\Phi} \| T^* y_j' \| \cdot \sum_{i} m(B_j \cap A_i)$$

$$\leq \sum_{j=1}^{k} \frac{1}{k} \boldsymbol{\Phi} \| T^* y_j' \| \quad \text{(since } A_i'^s \text{ are disjoint)}$$

$$\leq \lambda \sup_{\substack{\|x^*\| \leq 1 \\ x^* \in F}} \sum_{j=1}^{k} \boldsymbol{\Phi} | \langle y_j', x^* \rangle | m(B_j) \quad \text{since } T^* \in \boldsymbol{\Pi}^{\boldsymbol{\Phi}}(F^*, E^*)$$

$$= \lambda \sup_{\|x^*\| \leq 1} \int \boldsymbol{\Phi} | \gamma x^*(t) | \, \mathrm{d} m(t) \, .$$

Since γ is continuous, by the remark preceding the theorem we get $\sup_{\|\cdot\| \le 1} \int \Phi |\gamma x^*(t)| dm(t) \le M \text{ for some } M > 0, \text{ and (*) is proved.}$

It follows from (*) that the image of the unit ball of E under γT is bounded in the lattice L^{Φ} . If $g \in L^{\Phi}$ such that $\gamma T(x) \leq g$ for all $x \in E$, $||x|| \leq 1$, then the function $\theta(t) = \gamma Tx(t)/g(t)$ if $g(t) \neq 0$ and $\theta(0) = 0$, is an element of L^{∞} . Consequently, the linear map

$$S: E \to L^{\infty},$$

$$S(x) = \gamma T x | g$$

is continuous and $||S|| \le 1$. Hence, by the lifting theorem, there exists $Q: [0, 1] \Rightarrow (L^{\infty})^*$ such that the function $\langle Q(t), f \rangle$ is *m*-measurable a.e., for all $f \in L^{\infty}$, and $f(t) = \langle Q(t), f \rangle$ a.e. Further ||Q(t)|| = 1 for all $t \in [0, 1]$. Now, consider the function $\psi: [0, 1] \to E^*$ defined by $\psi(t) = g(t) \cdot S^*(Q(t))$. It is not difficult to see that ψ is the function needed for γT to be Φ -decomposable, noting that $g \in L^{\infty} \subseteq L^{\Phi}$. Q.E.D.

Before we prove the next result, we need the following two lemmas:

Lemma 2.5. Let $T: L^{\Phi} \to L^2$ be continuous linear operator. Then $||Tf|| \le \Delta \int \Phi |f(t)| \, \mathrm{d}m(t)$ for all $f \in L^{\Phi}$ for which $\int \Phi |f(t)| \, \mathrm{d}m(t) = |||f|||_{\Phi} \le 1$.

Proof: First we prove it for $f \in L^{\Phi}$, $|||f|||_{\Phi} = 1$. If the inequality $||Tf|| \le \le \lambda |||f|||_{\Phi}$ is not true, then we can find a sequence (f_n) such that $|||f_n|||_{\Phi} = 1$ but $||Tf_n|| > n |||f_n|||_{\Phi}$. Then the sequence $\frac{f_n}{n} \to 0$ in L^{Φ} , but $||T\frac{f_n}{n}|| > 1$, which contradicts the continuity of T.

Now, let $f \in L^{\Phi}$. $|||f|||_{\Phi} < 1$. Then one can find an $\alpha > 1$ such that $|||af|||_{\Phi} = 1$. Hence

$$||Tf|| = \frac{1}{\alpha} ||T\alpha f||$$

$$\leq \frac{\lambda}{\alpha} |||\alpha f|||_{\Phi}$$

$$\leq \lambda \frac{\alpha + 1}{\alpha} |||f|||_{\Phi}$$

$$\leq 2\lambda |||f|||_{\Phi}.$$

Q.E.D.

It should be remarked that for every r > 0 there exists $\lambda > 0$ such that $||Tf|| \le \le \lambda |||f|||_{\varphi}$ for all $f \in L^{\varphi}$, $|||f|||_{\varphi} \le r$.

Lemma 2.6. Let T) $L^2 \to L^{\Phi}$ be p-summing operator. Then $ST: L^2 \to L^2$ is p-summing for continuous operators $S: L^{\Phi} \to L^2$.

Proof: Using Lemma 2.5 and the argument in the proof of Theorem 1.6, the result follows. Q.E.D.

Now we prove:

Theorem 2.7. Let ϕ be any modulus function. Then $\Pi^{\Phi}(L^2, L^2) \subseteq \Pi^2(L^2, L^2)$. **Proof:** Let $T: L^2 \to L^2$ be Φ -summing operator. By Theorem 2.4: $\gamma T^*: L^2 \to L^2 \to L^{\Phi}$ is Φ decomposable for all continuous linear operators $\gamma: L^2 \to L^{\Phi}$. In particular, we can choose $\gamma(f) = \int f(t) dx_t$, [2, 5], where (x_t) is a symmetric stable process on ([0, 1], m) with exponent 2. This makes γ an isomorphic embedding of L^2 into L^{Φ} and also into L^0 . Hence $\gamma T^*: L^2 \to L^0$ is zero decomposable. Using Theorem 3 in [5], we get $T^*: L^2 \to L^2$ is zero summing. By Lemma 2.6, $\gamma T^*: L^2 \to L^0$ is zero decomposable. By another application of Theorem 3 in [5], we get $T: L^2 \to L^2$ is zero-summing. However, every zero-summing map is 2-summing, [5]. Hence $T \in \Pi^2(L^2, L^2)$.

Theorem 2.8. For any modulus function Φ , $\Pi^2(L^2, L^2) \subseteq \Pi^{\Phi}(L^2, L^2)$.

Proof: Let $T: L^2 \to L^2$ be 2-summing operator. If γ is the isomorphic embedding of L^2 into L^{Φ} as in Theorem 2.7, then using Theorem 3 in [5], we get:

$$\gamma T: L^2 \to L^2 \to L^{\Phi}$$

is Φ -decomposable. By Theorem 2.3, γT is Φ -summing. Using Lema 2.5, we get $T: L^2 \to L^2$ is Φ -summing. Q.E.D.

REFERENCES

- 1. Apiola, H.: Duality between spaces of p-summable sequences, (p, q) summing operators, and characterization of nuclearity, Math. Ann. 219 (1976), 53—64.
- 2. Doob, J. L.: Stochastic processes, 1953.
- Grothendieck, A.: Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 16, Providence, 1955.
- 4. Köthe, G.: Topological vector spaces, Berlin-New York, 1969.

5. Kwapien, S.: On a theorem of L. Schwartz and its applications to absolutely summing operators. Studia Math. 38 (1970), 193—210.

Received: 1. 10. 1985

- 6. Pietsch, A.: Operator ideals, North Holand Comp. 1980.
- 7. Royden, J. L.: Real Analysis, McMillan Comp. Toronto, 1968.

Authors' addresses:
Khalil R. and Deeb W.
Kuwait University
Department of mathematics
Kuwait

SÚHRN

Φ-SUMAČNÉ OPERÁTORY V BANACHOVÝCH PRIESTOROCH

R. Khalil - W. Deeb

Nech E a F sú Banachove priestory. Nech $\Phi: [0, \infty) \to [0, \infty)$ je spojitá, subaditívna a rastúca funkcia s vlastnosťou $\Phi(0) = 0$. K nim sa definuje Φ -sumačný operátor z E do F. Priestor všetkých takých operátorov značíme ako $\Pi^{\Phi}(E, F)$.

V práci sa študuje priestor $\Pi^{\Phi}(E, F)$.

РЕЗЮМЕ

Ф-СУММИРУЮЩИЙ ОПЕРАТОР В ПРОСТРАНСТВАХ БАНАХА

П. Калил — В. Диб

Пусть E и F— пространства Банаха. Пусть Φ : $[0, \infty) \to [0, \infty)$ непрерывное, субадитивное и возрастающее отображение удовлетворящее свойству $\Phi(0) = 0$. При помощи этих отображений определяется Φ -суммирующий оператор с пространства E до F. $\Pi^{\Phi}(E, F)$ обозначает пространство всех таких операторов.

В работе изучается пространство $\Pi^{\phi}(E, F)$.