

Werk

Label: Article **Jahr:** 1987

PURL: https://resolver.sub.uni-goettingen.de/purl?312901348_52-53|log13

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

UNIVERSITAS COMENIANA ACTA MATHEMATICA UNIVERSITATIS COMENIANAE LII—LIII—1987

ON d-VARIATION AND d-SEMIVARIATION OF SET FUNKTIONS

S. K. KUNDU-K. N. BHAUMIK, India

1 Introduction

Variation of set-functions taking values in normed spaces has been used extensively in the generations of measure, or for that matter, outer measure functions. Dinculeanu [2] used non-negative extended real valued functions as well as functions having values in an arbitrary normed linear space for the purpose. Pal [3] used non-negative extended real valued function to define what he called a d-variation of μ , namely $\bar{\mu}$, to obtain measure extension. Unlike Dinculeanu, Pal [3] obtained $\bar{\mu}$ on $\mathcal{P}(\mathscr{C})$ — a class of sets containing the domain \mathscr{C} of μ by a method which is different from that used in [2]. Subsequently, Biswas [1] utilised Pal's construction to give some properties of $\bar{\mu}$.

In this note we take advantage of Pal's construction to define variations of set function taking values in normed spaces. We term this variation, following Pal, d-variation. We have also made a comparative study of d-variation and variation of set function as in [1]. Taking N, to be a Banach lattice we obtain some properties.

We have further utilised the construction of Pal [3] to define a real-valued function with the aid of a class of operator valued set functions. We call this function d-semivariation. This function is found to be dominated by semivariation of operator valued set function as in ([2], Chapter I, § 4). On $\mathcal{P}(\mathcal{C})$, we claim this construction to be new. We have not come across similar construction elsewhere.

2 d-variation of set functions

Definition 2.1. Let R be the set of real numbers. Then $R^+ = \{x/x \ge 0\}$ is the positive cone of R.

Definition 2.2 [4]. A vector space N over R, endowed with an order relation

'≤', is called an ordered vector space if the following axioms are satisfied:

I)
$$x \le y \Rightarrow x + z \le y + z$$
 for all $x, y, z \in N$,

II)
$$x \le y \Rightarrow \lambda x \le \lambda y$$
 for all $x, y \in \mathbb{N}, \lambda \in \mathbb{R}^+$.

A vector lattice N is an ordered vector space (over $\cdot R$) such that $x \vee y = \sup\{x, y\}$ and $x \wedge y = \inf\{x, y\}$ exist for all $x, y \in N$.

Definition 2.3 [4]. Let N be a vector lattice.

A function $\|\cdot\|: N \to R^+$ is a seminorm iff

(i)
$$||x + y|| \le ||x|| + ||y||$$

and (ii) $||\lambda x|| = |\lambda| ||x||$

for all $x, y \in N$ and $\lambda \in R$; $\|\cdot\|$ is a norm iff, in addition, $\|x\| = 0$ implies x = 0. **Definition 2.4** [4]. Let N be a vector lattice. A seminorm (norm) $\|\cdot\|$ on N is called a lattice seminorm (norm) if $|x| \le |y|$ implies $\|x\| \le \|y\|$ for all x, $y \in N$.

If $\|\cdot\|$ is a lattice norm on N, the pair $(N, \|\cdot\|)$ is called a normed (vector)lattice; if, in addition, $(N, \|\cdot\|)$ is norm complete, it is called a Banach lattice.

Definition 2.5 [4]. A lattice norm $x \to ||x||$ on a vector lattice N is called an L-norm if it satisfies the axiom ||x + y|| = ||x|| + ||y|| for $x, y \in N^+$ — the positive cone of N.

 $(N, \| \cdot \|)$ is called an L-normed space, and an L-normed Banach lattice is called an abstract L-space (briefly, AL-space).

Let S be a nonvoid set, \mathscr{C} be an arbitrary class of subsets of S with $\phi \in \mathscr{C}$ and N — a normed space. Let $m: \mathscr{C} \to N$ be a set function with $m(\varphi) = 0$.

Definition 2.6 [2]. For every set $E \subset S$, the variation \bar{m} of m is defined by

$$\bar{m}(E) = \sup_{i \in I} \Sigma \| m(A_i) \|,$$

where the supremum is taken for all finite families $\{A_i\}_{i\in I}$ of disjoint sets of \mathscr{C} such that $\bigcup_{i\in I} A_i \subset E$.

The following results are known ([2], Chapter I, § 3).

Theorem A. (i) $\bar{m}(\varphi) = 0$;

- (ii) $0 \le \bar{m}(A) \le \infty$, $A \subset S$;
- (iii) $||m(A)|| \leq \bar{m}(A)$;
- (iv) \bar{m} is increasing;

and (v) \bar{m} is superadditive.

Definition 2.7 [3]. Let $\mathscr{P}(\mathscr{C})$ be the class of sets $E \subset S$ such that $E - A \in \mathscr{C}$ for every $A \in \mathscr{C}$, $A \neq \Phi$.

The following results are evident:

- (i) If $A B \in \mathscr{C}$ for every $A, B \in \mathscr{C}$, then $\mathscr{C} \subset \mathscr{P}(\mathscr{C})$;
- (ii) if $E \in \mathcal{P}(\mathscr{C})$ is disjoint from some set $A \in \mathscr{C}$ then, $E \in \mathscr{C}$ and
- (iii) if \mathscr{C} is a ring (σ -ring) then $\mathscr{P}(\mathscr{C})$ is a ring (σ -ring) containing \mathscr{C} .

Definition 2.8. For every $E \in \mathcal{P}(\mathscr{C})$, we define

$$\bar{m}_d(E) = \sup \|m(E - A)\|,$$

the supremum being taken for all $A \in \mathcal{C}$, $A \subset E$ and $A \neq \phi$ if $E \notin \mathcal{C}$. If there is no $A \in \mathcal{C}$, $A \neq \phi$ when $E \neq \mathcal{C}$, then we put $\bar{m}_d(e) = 0$. The function \bar{m}_d is called the d-variation of m (cf. [3]).

Theorem 2.1. \bar{m}_d has the following properties:

- (i) For $E \in \mathcal{P}(\mathscr{C})$, $\bar{m}_d(E) \leq \bar{m}(E)$;
- (ii) $\bar{m}_d(\phi) = 0$;
- (iii) \bar{m}_d is the smallest of all non-negative set functions μ defined on $\mathcal{P}(\mathscr{C})$ which are non-decreasing and satisfy the inequality

$$||m(E-A)|| \le \mu(E-A)$$
 for every $E \in \mathscr{P}(\mathscr{C})$ and $A \in \mathscr{C}$, $A \subset E$;

(iv) if m and μ be two set functions defined on $\mathscr C$ and α be a scalar, then

$$(\overline{m+\mu})_d \leq \overline{m}_d + \overline{\mu}_d$$
 and $(\alpha \overline{n})_d = |\alpha| \overline{m}_d$;

and (v) \bar{m}_d is monotone.

Proof. (i) For $E \in \mathcal{P}(\mathscr{C})$ and $A \in \mathscr{C}$ such that $A \subset E$, we have $||m(E - A)|| \le \le \bar{m}(E)$. Now, taking supremum for all $A \in \mathscr{C}$, $A \subset E$ we get $\bar{m}_d(E) \le \bar{m}(E)$.

- (ii) We know $\bar{m}(\phi) = 0$ (cf. Th. A) and $\bar{m}_d(\phi) \le \bar{m}(\phi)$ by (i). Hence $m_d(\phi) = 0$.
- (iii) We have $||m(E-A)|| \le \mu(E-A) \le \mu(E)$ for $E \in \mathscr{P}(\mathscr{C})$ and $A \in \mathscr{C}$ such that $A \subset E$. Taking supremum for all $A \in \mathscr{C}$, $A \subset E$ we have $\bar{m}_d(E) \le \mu(E)$. Hence the result.
 - (iv) Let $E \in \mathcal{P}(\mathcal{C})$, $E \notin \mathcal{C}$ if $A \in \mathcal{C}$, $A \subset E$; we have

$$||(m + \mu)(E - A)|| = ||m(E - A) + \mu(E - A)|| \le$$

$$\le ||m(E - A)|| + ||\mu(E - A)|| \le$$

$$\le \bar{m}_d(E) + \bar{\mu}_d(E).$$

Taking supremum for all $A \in \mathcal{C}$, $A \subset E$, $A \neq \phi$ we have

$$(\overline{m+\mu})_d(E) \leq \bar{m}_d(E) + \bar{\mu}_d(E)$$
.

Next,

$$(\overline{\alpha m})_d(E) = \sup_{\substack{A \in \mathscr{C} \\ A \neq D \text{ when } E \notin \mathscr{C}}} \|\alpha m(E - A)\| =$$

$$= |\alpha| \sup_{\substack{A \in \mathscr{C} \\ A \subseteq E \\ A \neq \emptyset \text{ when } E \notin \mathscr{C}}} ||m(E - A)|| =$$

$$= |\alpha| \bar{m}_{d}(E).$$

(v) Let $E, F \in \mathcal{P}(\mathcal{C}), E \subset F$; for every $A \in \mathcal{C}, A \subset E$, we have

$$E - A = F - (F - (E - A),$$

where

$$E-A\in\mathscr{C}, F-(E-A)\in\mathscr{C}$$

Accordingly,

$$\bar{m}_d(E) = \sup_{\substack{A_a \in \mathscr{C} \\ A_a \subset E}} \|m(E - A_a)\| \le \sup_{\substack{F_a \in \mathscr{C} \\ F_a \subset F}} \|(F - F_a)\| = \bar{m}_d(F).$$

Theorem 2.2. Let N be an L-normed Banach lattice, $m: \mathscr{C} \to N^+$ an additive set function. Then \bar{m}_d is superadditive on $\mathscr{P}(\mathscr{C})$.

Proof: For $\varepsilon(>0)$, we can find $A, B \in \mathscr{C}, A \subset E$ and $B \subset F$ such that

$$\bar{m}_d(E) - \varepsilon/2 < ||m(E - A)||, \ \bar{m}_d(F) - \varepsilon/2 < ||m(F - B)||.$$

$$\bar{m}_d(E) + \bar{m}_d(F) - \varepsilon < ||m(E - A)|| + ||m(F - B)|| = ||m(E - A) + m(F - B)||.$$

(since N is an AI — space)

$$= ||m((E-A) \cup (F-B))|| = ||m((E \cup F) - (A \cup B))|| \le \bar{m}_d(E \cup F).$$

 $\varepsilon(>0)$ being arbitrary, $\bar{m}_d(E \cup F) \ge \bar{m}_d(E) + \bar{m}_d(F)$. Hence, for every finite family $\{E_i\}_{i \in J}$ of disjoint sets we deduce that

$$\bar{m}_d \left(\bigcup_{i \in J} E_i \right) \ge \sum_{i \in J} \bar{m}_d(E_i)$$
.

If $\{E_i\}_{i\in I}$ be a sequence of disjoint sets of $\mathscr{P}(\mathscr{C})$ with $\bigcup_{i\in I} E_i$ and $\bigcup_{i\in J} E_i \in \mathscr{P}(\mathscr{C})$ for every finite subset $J \subset I$ we have

$$\sum_{i \in J} \bar{m}_d(E_i) \leq \bar{m}_d \left(\bigcup_{i \in J} E_i \right) \leq \bar{m}_d \left(\bigcup_{i \in I} E_i \right), \, \bar{m}_d$$

is monotone and hence

$$\sum_{i \in I} \bar{m}_d(E_i) \leq \bar{m}_d \bigg(\bigcup_{i \in I} E_i \bigg).$$

This proves the theorem.

Theorem 2.3. Let N be an L — normed Banach lattice; \mathscr{C} be a σ -ring of sets, and $m: \mathscr{C} \to N^+$ be a σ -additive function. Then \bar{m}_d is σ -additive on $\mathscr{P}(\mathscr{C})$.

Proof. Let $\{E_i\}$ be a disjoint sequence of sets in $\mathscr{P}(\mathscr{C})$. Then $\bigcup_{i=1}^{\infty} E_i \in \mathscr{P}(\mathscr{C})$. For

 $A \subset \bigcup_{i=1}^{\infty} E_i$ and $A \in \mathcal{C}$, $A \neq \Phi$, we have

$$\left\| m\left(\left(\bigcup_{i=1}^{\infty} E_{i}\right) - A\right) \right\| = \left\| m\left(\bigcup_{i=1}^{\infty} (E_{i} - A)\right) \right\| = \left\| \sum_{i=1}^{\infty} m(E_{i} - A) \right\| \le$$

$$\le \sum_{i=1}^{\infty} \left\| m(E_{i} - A) \right\| \le \sum_{i=1}^{\infty} \bar{m}_{d}(E_{i}).$$

Accordingly, taking supremum for all $A \in \mathcal{C}$, $A \subset \bigcup_{i=1}^{\infty} E_i$, $A \neq \emptyset$ we have

$$\bar{m}_d \left(\bigcup_{i=1}^{\infty} E_i \right) \le \sum_{i=1}^{\infty} \bar{m}_d (E_i).$$
 (2.4.1)

By the preceding theorem \bar{m}_d is superadditive, so

$$\bar{m}_d \left(\bigcup_{i=1}^{\infty} E_i \right) \geqslant \sum_{i=1}^{\infty} \bar{m}_d(E_i).$$
 (2.4.2)

From (2.4.1) and (2.4.2), $\bar{m}_d \left(\bigcup_{i=1}^{\infty} E_i \right) = \sum_{i=1}^{\infty} \bar{m}_d(E_i)$.

Remark: \bar{m}_d is a measure on $\mathscr{P}(\mathscr{C})$ if m is σ -additive on the σ -ring \mathscr{C} .

3 Semi d-variation

Let $S, \mathcal{C}, \mathcal{P}(\mathcal{C})$ be defined as in §2. Let x, y be two normed spaces, $\mathcal{B}(x, y)$ be the Banach space of all bounded linear operator $f: x \to y$ and $m: \mathcal{C} \to \mathcal{B}(x, y)$ be a set function such that $m(\phi) = 0$.

Definition 3.1 [1]. For every $E \subset S$, the semivariation \tilde{m} of m is defined by

$$\tilde{m}(E) = \sup \left\| \sum_{i \in I} m(A_i) x_i \right\|,$$

where the supremum is taken for all finite families $\{A_i\}_{i\in I}$ of disjoint sets of \mathscr{C} contained in E, and for all finite families $\{x_i\}_{i\in I}$ of elements of X such that $||x_i|| \le 1$ for each $i \in I$.

The following results are known ([2] Chapter 1, § 4).

Theorem B.

- (i) $0 \le \tilde{m}(E) \le \infty$, $E \subset S$.
- (ii) $||m(E)|| \le \tilde{m}(E), \le \tilde{m}(E)$, for every $E \in \mathscr{C}$.

Definition 3.2. For every $E \in \mathcal{P}(\mathscr{C})$ we define $\tilde{m}_d(E) = \sup \|m(E - A)x\|$, where the supremum is taken for all $A \in \mathscr{C}$, $A \subset E$ and $A \neq \emptyset$ when $E \notin \mathscr{C}$, and for all $x \in X$ such that $\|x\| \leq 1$.

We call $\tilde{m}_d(E)$ the d-semivariation of m.

Theorem 3.1. Let \tilde{m}_d be the *d*-semivariation of $m: \mathscr{C} \to \mathscr{B}(x, y)$. The \tilde{m}_d has the following properties:

- (i) For every $E \in \mathcal{P}(\mathscr{C})$, $0 \le \tilde{m}_d(E) \le \infty$ and $\tilde{m}_d(E) \le \tilde{m}(E)$;
- (ii) $\tilde{m}_d(\phi) = 0$;
- (iii) if m, and $n: \mathscr{C} \to \mathscr{B}(x, y)$ be two set functions with $m(\phi) = n(\phi) = 0$, and 'a' be a scalar, then $(\tilde{m} + n)_d \le \tilde{m}_d + \tilde{n}_d$ and $(a\tilde{m})_d = |a|\tilde{m}_d$;
- (iv) if $m_{\mathscr{A}}$ be the restriction of m to a subclass $\mathscr{A} \subset \mathscr{C}$ with $\phi \in \mathscr{A}$, then $(\tilde{m}_{\mathscr{A}})_d \leq \tilde{m}_d$;
- (v) $\tilde{m}_d(E) \leq \tilde{m}_d(F), E \subset F, E, F \in \mathcal{P}(\mathcal{C});$
- (vi) $\tilde{m}_d = \bar{m}_d(E)$ for every $E \in \mathcal{P}(\mathscr{C})$;
- (vii) $||m(E)|| \leq \tilde{m}_d(E), E \in \mathscr{C};$
- and (viii) $||m(E)|| \le \tilde{m}_d(E) \le \tilde{m}(E) \le \tilde{m}(E) = |m|(E)$, for every $E \in \mathscr{C} \subset \mathscr{P}(\mathscr{C})$.

Proof.

The first part of (i) is clear from the definition.

Let $E \in \mathcal{P}(\mathscr{C})$, $A \in \mathscr{C}$ such that $A \subset E$. Then for every $x \in X$, $||x|| \le 1$ we have

$$||m(E-A)x|| \leq \sup_{i \in I} \left\| \sum_{i} m(A_i)x_i \right\| = \tilde{m}(E),$$

where the supremum is taken for all finite disjoint sequences $\{A_i\}_{i\in I}$ of sets of $\mathscr E$ such that $\bigcup_{i\in I}A_i\subset E$ and for all finite sequence $\{x_i\}_{i\in I}$ of elements of X with $\|x_i\|\leq 1$.

Taking supremum for all $A \in \mathcal{C}$, $A \subset E$ and for all $x \in X$, $||x|| \le 1$, we have, $\tilde{m}_d(E) \le \tilde{m}(E)$.

- (ii) $\tilde{m}_d(\phi) \le \tilde{m}(\phi) \le \tilde{m}(\phi) = 0$, [Th. B (i)]. So, by (i) $\tilde{m}_d(\phi) = 0$.
- (iii) Let $E \in \mathcal{P}(\mathcal{C})$, $A \in \mathcal{C}$, $A \subset E$. Then for $x \in X$, $||x|| \le 1$, we have

$$\|(m+n)(E-A)x\| = \|m(E-A)x + n(E-A)x\| \le$$

 $\le \|m(E-A)x\| + \|n(E-A)x\| \le$
 $\le \tilde{m}_d(E) + \tilde{n}_d(E).$

Taking supremum for all $A \in \mathcal{C}$, $A \subset E$ and for all $x \in X$, $||x|| \le 1$, we have

$$(\tilde{m}+n)_d(E) \leq \tilde{m}_d(E) + \tilde{n}_d(E).$$

Next,

$$(\alpha \tilde{m})_{d}(E) = \sup_{\substack{A \in \mathscr{C} \\ A \subset E \\ \|x\| \le 1}} \|\alpha m(E - A)\chi\| =$$

$$= |\alpha| \sup_{\substack{A \in \mathscr{C}, A \subset E \\ \alpha \neq \phi, \text{ when } E \notin \mathscr{C}}} \|m(E - A)\chi\| = |\alpha| \tilde{m}_{d}(E).$$

(iv) For $E \in \mathcal{P}(\mathscr{C})$ and for any $x \in X$, $||x|| \le 1$ we have, since $\mathscr{A} \subset \mathscr{C}$,

$$\sup_{A \in \mathcal{A} \atop A \subset E} \|m(E-A)x\| \le \sup_{A \in \mathcal{C} \atop A \subset E} \|m(E-A)x\| \le \tilde{m}_d(E).$$

Taking supremum for all $x \in X$, $||x|| \le 1$ we get

$$(\tilde{m}_{\mathcal{A}})_d(E) \leq \tilde{m}_d(E)$$
.

(v) Let $E, F \in \mathcal{P}(\mathscr{C})$ and $E \subset F$. For $A \in \mathscr{C}, A \subset E \subset F$ we have $E - A = F - (F - (E - A)), F - (F - (E - A)) \in \mathscr{C}$ and so for $x \in X$, $||x|| \le 1$ we have

$$\|m(E-A)x\| \leq \sup_{\substack{F_a \in \mathscr{C} \\ F_a \subset E \\ F_a \neq \emptyset, \text{ when } E \notin \mathscr{C}}} \|m(F-F_a)x\| \leq \tilde{m}_d(F).$$

Taking supremum for all $A \in \mathcal{C}$, $A \subset E$ and for all $x \in X$, $||x|| \le 1$ we get

$$\tilde{m}_d(E) \leq \tilde{m}_d(F)$$
.

(vi) For $E \in \mathcal{P}(\mathscr{C})$ and $A \in \mathscr{C}$, $A \subset E$ we have

$$||m(E-A)|| = \sup_{\substack{x \in X \\ ||x|| \le 1}} ||m(E-A)x|| \le \tilde{m}_d(E).$$

Now, taking supremum for all $A \subset E$, $A \in \mathscr{C}$ we have

$$\bar{m}_d(E) \le \tilde{m}_d(E) \,. \tag{3.1.1}$$

Also for any $x \in X$, $||x|| \le 1$ and $A \subset E$, $A \in \mathcal{C}$, we have

$$||m(E-A)x|| \leq ||m(E-A)|| \leq \bar{m}_d(E)$$
.

Taking supremum for all $A \in \mathcal{C}$, $A \subset E$ and $x \in X$, $||x|| \le 1$,

$$\tilde{m}_d(E) \le \tilde{m}_d(E). \tag{3.1.2}$$

From (3.1.1) and (3.1.2), $\tilde{m}_d(E) = \bar{m}_d(E)$. (vii) For any $E \in \mathscr{C}$ we have

$$||m(E)|| = \sup_{\substack{||x|| \le 1 \\ x \in X}} ||m(E)x||,$$
 (3.1.3)

Also for $E \in \mathscr{C}$ and for a $x \in X$, $||x|| \le 1$,

$$||m(E)x|| \le \sup_{\substack{A \subset E \\ A \in \mathscr{G}}} ||m(E - A)x|| \le \tilde{m}_d(E)$$
. (3.1.4)

Taking supremum over $x \in X$, $||x|| \le 1$ we have from (3.1.3) and (3.1.4), $||m(E)|| \leq \tilde{m}_d(E).$

(viii). We have for $E \in \mathcal{P}(\mathcal{C})$, $\tilde{m}_d(E) \leq \tilde{m}(E)$, by (i) and $\tilde{m}_d(E) = \tilde{m}_d(E)$, by (vi). Hence $\tilde{m}_d(E) = \bar{m}_d(E) \le \tilde{m}(E)$ for $E \in \mathcal{P}(\mathscr{C})$, (3.1.5)

But for
$$E \in \mathcal{C}$$
 we have $||m(E)|| \le \tilde{m}_d(E)$, [by (vii)], (3.1.6) and $\tilde{m}(E) \le \bar{m}(E) = |m|(E)$, (by Th. B). (3.1.7).

Hence from (3.1.5), (3.1.6) and (3.1.7) we have

$$||m(E)|| \le \tilde{m}_d(E) = \bar{m}_d(E) \le \tilde{m}(E) \le \bar{m}(E) = |m|(E)$$

for every $E \in \mathscr{C}$. This proves the theorem.

and, a fortiori, for $E \in \mathscr{C}$.

Theorem 3.2. Let \mathscr{C} be a σ -ring of sets and m be σ -additive. Then \tilde{m}_d is subadditive on $\mathcal{P}(\mathscr{C})$.

Proof. Let $\{E_i\}$ be a sequence of sets in $\mathscr{P}(\mathscr{C})$. If m is additive, we suppose that $E_i = \phi$ except for a finite number of indices. We put $E'_1 = E_1$ and $\hat{E}'_n = E_n$ $-\bigcup_{i=1}^n E_i$, $n=2, 3, \ldots$ The sets $\{E_i\}$ are mutually disjoint and belong to $\mathscr{P}(\mathscr{C})$

and $\bigcup_{i=1}^{\infty} E_i = \bigcup_{i=1}^{\infty} E_i'$. Since $E_i' \subset E_i$ and is non-decreasing on $\mathscr{P}(\mathscr{C})$, we have $\tilde{m}_d(E_i) \leq \tilde{m}_d(E_i)$, for each i. Now for any $A \in \mathcal{C}$, $A \neq \emptyset$ and $A \subset E_i$ we have

$$\left(\bigcup_{i=1}^{\infty} E_i'\right) - A = \bigcup_{i=1}^{\infty} \left(E_i' - A\right),\,$$

and hence $m\left(\left(\bigcup_{i=1}^{\infty} E_i'\right) - A\right) = \sum_{i=1}^{\infty} m(E_i' - A)$, since $E_i' - A \in \mathscr{C}$. Therefore for any $x \in X$, $||x|| \le 1$,

$$\left\| m\left(\left(\bigcup_{i=1}^{\infty} E_{i}^{\prime}\right) - A\right) x \right\| = \left\| \left\{ \sum_{i=1}^{\infty} m(E_{i}^{\prime} - A) \right\} x \right\| = \left\| \sum_{i=1}^{\infty} m(E_{i}^{\prime} - A) x \right\| \le$$

$$\leq \sum_{i=1}^{\infty} \|m(E_i' - A)x\| \leq \sum_{i=1}^{\infty} \tilde{m}_d(E_i').$$

Now taking supremum for all $A \in \mathcal{C}$, $A \subset \bigcup_{i=1}^{\infty} E_i'$ and for all $x \in X$, $||x|| \le 1$ we get

$$\tilde{m}_d\left(\bigcup_{i=1}^{\infty} E_i'\right) \leq \sum_{i=1}^{\infty} \tilde{m}_d(E_i).$$

Hence.

$$\tilde{m}_d\left(\bigcup_{i=1}^{\infty} E_i\right) = \tilde{m}_d\left(\bigcup_{i=1}^{\infty} E'_i\right) \leq \sum_{i=1}^{\infty} \tilde{m}_d(E'_i) \leq \sum_{i=1}^{\infty} \tilde{m}_d(E_i).$$

Hence the theorem.

REFERENCES

- 1. Biswas, Arati.: A note on extension of measures, Ind. J. Mechanics and Mathematics. Vol. XIX, No. 2, pp. 1—6.
- 2. Dinculeanu, N.: Vector Measures, Pargamon Press, 1967.
- 3. Pal, S.: Extensions of measures, Universitas Comeniana Acta Facultatis Rerum Naturalium Universitatis Comenianae MATHEMATICA XXXIII (1977), pp. 59—61.
- 4. Schaefer, H. H.: Banach lattice and positive operators, Springer Verlag, 1974.

Authors' addresses:

West Bengal, India

Received: 16. 9. 1985

S. K. Kundu
Department of Mathematics,
Jadavpur University
Calcuta — 700032, India
and
K. N. Bhaumik
Department of Mathematics
Barvackpove R.S.N. College
Barvackpove, 24 — Davganas

SÚHRN

O d-VARIÁCIÁCH A d-POLOVARIÁCIÁCH MNOŽINOVÝCH FUNKCIÍ

S. K. Kundu - K. N. Bhaumik, India

Systematicky sa študujú d-variácie a d-polovariácie množinových funkcií s hodnotami v normovanom priestore, resp. v L-normovanom Banachovom zväze.

РЕЗЮМЕ

О *D*-ВАРИАЦИЯЦХ И *d*-ПОЛУВАРИАЦИЯХ МНОЖЕСТВЕННЫХ ФУНКЦИЙ

С. К. Кунду — К. Н. Баумик, Индия

Систематически изучаются d-вариации и d-полувриации функций множеств со значениями в нормированном пространстве, и в частности, в L-нормированной решетке Банаха.