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ON d-VARIATION AND d-SEMIVARIATION OF SET FUNKTIONS
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1 Introduction

Variation of set-functions taking values in normed spaces has been used
extensively in the generations of measure, or for that matter, outer measure
functions. Dinculeanu [2] used non-negative extended real valued functions as
well as functions having values in an arbitrary normed linear space for the
purpose. Pal [3] used non-negative extended real valued function to define what
he called a d-variation of u, namely 4, to obtain measure extension. Unlike
Dinculeanu, Pal [3] obtained g on #(¥) — a class of sets containing the
domain % of u by a method which is different from that used in [2]. Subsequent-
ly, Biswas [1] utilised Pal’s construction to give some properties of /.

In this note we take advantage of Pal’s construction to define variations of
set function taking values in normed spaces. We term this variation, following
Pal, d-variation. We have also made a comparative study of d-variation and
variation of set function as in [1]. Taking N, to be a Banach lattice we obtain
some properties.

We have further utilised the construction of Pal [3] to define a real-valued
function with the aid of a class of operator valued set functions. We call this
function d-semivariation. This function is found to be dominated by semivaria-
tion of operator valued set function as in ([2], Chapter I, §4). On 2(%), we claim
this construction to be new. We have not come across similar construction
elsewhere.

2 d-variation of set functions

Definition 2.1. Let R be the set of real numbers. Then R* = {x/x > 0} is the
positive cone of R. :
Definition 2.2 [4]. A vector space N over R, endowed with an order relation
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‘<", is called an ordered vector space if the following axioms are satisfied:

Dx<y=x+z<y+:zforallx,y zeN,
II) x<y=>Ax<Ayforall x, ye N, Ae R*.

A vector lattice N is an ordered vector space (over‘R) such that x v y =
=sup {x, y} and x A y = inf {x, v} exist for all x, ye N.

Definition 2.3 [4]. Let N be a vector lattice.
A function || - || : N> R* is a seminorm iff

@) lx+yll < x|l + Iyl

cand (i) [ Ax]| = [A] [|x]|
forallx,ye Nand A€ R; || - | is a norm iff, in addition, | x| = 0 implies x = 0.
Definition 2.4 [4]. Let N be a vector lattice. A seminorm (norm) || - || on N

is called a lattice seminorm (norm) if |x| < |y| implies ||x| < |y| for all x,
yeN.

If |- is a lattice norm on N, the pair (N, | - |) is called a normed
(vector)lattice; if, in addition, (N, | - ||) is norm complete, it is called a Banach
lattice.

Definition 2.5 [4]. A lattice norm x — ||x| on a vector latice N is called an
L-norm if it satisfies the axiom |x + y|| = || x| + ||y|| for x, ye N* — the
positive cone of N.

(N, || - II) is called an L-normed space, and an L-normed Banach lattice is

called an abstract L-space (briefly, 4 L-space).
Let S be a nonvoid set, ¥ be an arbitrary class of subsets of S with ¢ € € and
N — a normed space. Let m: ¥ — N be a set function with m(¢p) = 0.
Definition 2.6 [2]. For every set E c S, the variation i of m is defined by

m(E) = sup Zm(A4)|,

where the supremum is taken for all finite families {4}, , of disjoint sets of &
such that ( ) 4, c E.

iel
The following results are known ([2], Chapter I, § 3).
Theorem A. (i) m(¢p) =0;
(i) 0 <m(A) < v, Ac S;
(i) [[m(A4)|| < m(A);
(iv) m is increasing;
and (v) m is superadditive.

Definition 2.7 [3]. Let (%) be the class of sets E — S such that E — 4 € € for
every Ae€, A # é. .
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The following results are evident: :
(i) If A — Be ¥ for every A, Be €, then € < #(%);
(ii) if E€2(%¥) is disjoint from some set A €€ then, Ec % and
(iii) if & is a ring (o-ring) then 2(%¥) is a ring (o-ring) containing €.
Definition 2.8. For every E € (%), we define

m,(E) = sup [m(E — A)| ,

the supremum being taken for all A€ ¥, A = E and 4 # ¢ if E¢€. If there is
no Ae¥, A # ¢ when E # €, then we put ri,(e) = 0. The function r, is called
the d-variation of m (cf. [3]).
Theorem 2.1. 11, has the following properties:
(i) For Ee 2(¥), m E) < m(E);
(i) i) = 0;
(iti) mn, is the smallest of all non-negative set functions u defined
on 2(%) which are non-decreasing and satisfy the inequality

|m(E — A)|| < w(E — A) for every E€ #(¥) and A€e¥, A c E;

(iv) if m and u be two set functions defined on ¢ and abea scalar,'
then
(m+ w), < m,+ @, and (arn), = |alm,;

and (v) m, is monotone. A '
Proof. (i) For Ec (%) and A€ % such that 4 c E, we have |m(E — A)|| <
< m(E). Now, taking supremum for all A€ ¥, 4 c E we get m,(E) < m(E).
(i) We know () = 0 (cf. Th. A) and m,(d) < m(¢) by (i). Hence m,(d) = 0.
(iii) We have |m(E — A)|| < w(E — A) < u(E) for E€ #(¥) and A € ¥ such that
A c E. Taking supremum for all 4€ ¥, A < E we have m,(E) < u(E). Hence the
result.

(iv) Let E€c P(¥), E¢¥ if Ac ¥, A c E; we have
len + p(E — Al = [|m(E — A) + w(E - A)| <
< [[mE - D) + |WE - | <
< m[E) + A(E).
Taking supremum for all A€ ¥, A < E, A # ¢ we have

(m + WAE) < mE) + AE).
Next,

@)= sup [am(E—A)]| =

AcE
A # ¢ when E¢€
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=la sup [m(E—A)| =
Ae%

cE

#

A
A # ¢ when E¢¥

= |a| m,(E).
(v) Let E, FEP(¥), E c F; for every Ac %, A c E, we have
E—A=F—(F—(E—A),
where
E—Ae¥, F—(E— A)e¥.
' Accordingly,
| )= sup | m(E — 4| < sup | (F = E)ll = ri,(F).
AGCE FaiF

Theorem 2.2. Let N be an L-normed Banach lattice, m: € — N+ an additive set
function. Then 17, is superadditive on 2(%).
Proof:For &(>0), we can find 4, Be %, 4 c E and B c F such that

m(E) — &2 < |m(E — A)|, m(F) — &2 < |m(F — B)| .
mE) + mF) — & < |[m(E — A)|| + |m(F — B)| = |m(E — A) + m(F — B)|,
(since N is an Al — space)
= |m(E - AV (F - B))| = |[m(EVF)—(4UB)| <m (EUF).

&€(>0) being arbitrary, ri1,(E L F) > m,E) + m,(F). Hence, for every finite family
{E};e, of disjoint sets we deduce that

rh,,(U E,.) =Y myE).

ieJ ieJ
If {E};. , be a sequence of disjoint sets of (%) with (_) E; and | ) E;e 2(¥) for every

iel ieJ

finite subset J = I we have

sy <) £) <) ).

is monotone and hence

| S dE) < md<U E,)

iel el

This proves the theorem.

134



Theorem 2.3. Let N be an L — normed Banach lattice; € be a o-ring of sets, and
m: % — N* be a o-additive function. Then i, is o-additive on #(¥).

Proof. Let {E} be a disjoint sequence of sets in 2(%). Then U E.e #(€). For
i=1

Ac UE,and Ae¥, A # @, we have
i=1

[{(G12)- )] - (O o) -

< 3. ImE - A)] < T, iE).

i m(E; — A)” <

i=

Accordingly, taking supremum for all A€ €, A = | ) E;, A # ¢ we have
i=1

md(u E,-> < Y mAE). (2.4.1)
i=1 i=1
By the preceding theorem 1, is :superadditive, so

r (Q E,.) > 2 i AE). 2.4.2)

From (2.4.1) and (2.4.2), m,,(g E,) = 2 mAE).

Remark: 171, is a measure on (%) if m is o-additive on the o-ring 4.

3 Semi d-variation

Let S, €, (%) be defined as in §2. Let x, y be two normed spaces, # (x, y)
be the Banach space of all bounded linear operator f: x -+ y and m: € — £ (x,
y) be a set function such that m(¢) = 0.

Definition 3.1 [1]. For every E c S, the semivariation 77 of m is defined by

m(E) = sup || Y m(4)x;

iel

b

where the supremum is taken for all finite families {4}, , of disjoint sets of €
contained in E, and for all finite families {x},., of elements of X such that
x| <1 foreachiel

The following results are known ([2] Chapter 1, § 4).

-
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Theorem B.

() 0 <H(E)< o0, ECS.
(i) |Im(E)| < m(E), < m(E),for every Ec .

Definition 3.2. For every Ee 2(¥) we define ri,(E) = sup |[m(E — A)x|,
where the supremum is taken forall A€e ¥, A c Eand 4 # ¢ when E¢®%, and
for all x € X such that ||x|| < 1.

We call /1,(E) the d-semivariation of m.

Theorem 3.1. Let i1, be the d-semivariation of m: € — #(x, y). The r, has
the following properties:

(i) For every Ee 2(¥), 0 < m,(E) < oo and ri(E) < m(E);
(i) rmy($) =0
(iii) if m, and n: € > #(x, y) be two set functions with m(¢) =
=n($p) =0, and ‘a’ be a scalar, then (#+ n), < i, + A, and
(am), = |a|my
(iv) if m, be the restriction of m to a subclass o c ¥ with ¢ e .,
then (r#,), < my;
(v) my(E) < my(F), Ec F, E, Fe #(%);
(vi) m, = my(E) for every E e #(%¥);
(vii) [m(E)|| < my(E), E€€;
and (viii) ||m(E)| < m(E) < m(E) < m(E) = |m|(E), for every E€e ¥ < P(¥).

Proof.

The first part of (i) is clear from the definition.

Let E€ #(¥), A € € such that A = E. Then forevery xe X, ||x|| < 1 we have

= m(E),

Im(E — A)x|| < sup |y m(4)x;
iel i

where the supremum is taken for all finite disjoint sequences {4}, of sets of €
such that (J 4, = E and for all finite sequence {x;},., of elements of X with

iel
lx]l <
: Taking supremum for all A€ ¥, A < E and for all xe X, || x| < 1, we have,
my(E) < m(E).
(i) mfd) < m(¢p) < m(¢p) =0, [Th. B (i)]. So, by (i) ri1,(d) =
(iii) Let E€e #(¥), Ac€, A c E. Then for xe X, ||x|| < 1, we have
Iem + m)(E — A)x]| = IIM(E A)x + n(E — A)x|| <
< [m(E — A)x|| + |In(E — A)x| <
< miy(E) + fiy(E).
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Takiﬁg supremum for all A€ ¥, A = E and for all xe X, | x|| < 1, we have
(+ n)(E) < my(E) + A (E).
Next, '

(@i (E)= sup am(E— Ayl =

AcE
A # ¢, when E¢€
lxlh <1

=|a| sup  |m(E— A)x| = |alm,(E).
A€€,AcE
a # ¢, when E¢¥€
Il <1
(iv) For E€ (%) and for any x€ X, | x|l < 1 we have, since & c ¥, .
sup [Im(E — A)x| < sup | m(E — A)x|| < i (E).
deE AcE
Taking supremum for all xe X, || x|| < 1 we get
(M)a(E) < my(E).
(v) Let E, FE?(¥) and Ec F. For Ac¥, Ac Ec F we haveE — A =F —
—(F—(E—A)), F—(F—(E— A))e% and so for xe X, ||x|| < 1 we have

lm(E—A)x|| < sup Im(F — B)x|| < m,(F).
F:CE
F, # ¢, when E¢€

Taking supremum for all A€ ¥, A c E and for all xe X, |x|| <1 we get
my(E) < m(F).
(vi) For E€ (%) and A€ ¥, A c E we have
Im(E— )| = sup [m(E — A)x| < riu(E).

flxl <1

Now, taking supremum for all 4 ¢ E, A € ¢ we have
my(E) < m,(E). @3.L.1)
Also for any xe X, | x| < 1and 4 < E, A€ ¥, we have
lm(E — A)x|| < |m(E — A)|| < mE).
Taking supremum for all Ae ¥, A< Eand xe X, ||x|| <1,
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my(E) < my(E). (3.1.2)
From (3.1.1) and (3.1.2), m,(E) = m,(E).
(vil) For any E €% we have

Im(E)|| = Sup Im(E)x], (3.1.3).
ex'

Also for E€e% and for a xe X, ||x| < 1,

lm(E)x| < sup |im(E — A)x|| < my(E)* (3.1.4)

Ae%’

Taking supremum over x€ X, |x| <1 we have from (3.1.3) and (3.1.4),
Im(E)| < i, (E). |
(viii). We have for E € (%), m,(E) < m(E), by (i) and r,(E) = m,(E), by (vi).

Hence m,(E) = my(E) < m(E) for Ee 2(¥), (3.1.5)
and, a fortiori, for E€ .

But for Ee®we have |m(E)| < m,(E), [by (vii)], (3.1.6)
and m(E) < m(E) = |m|(E), (by Th. B). (3.1.7).

Hence from (3.1.5), (3.1.6) and (3.1.7) we have
Im(E)| < m E) = my(E) < m(E) < m(E) = |m|(E)

for every E € €. This proves the theorem.

Theorem 3.2. Let € be a o-ring of sets and m be o-additive. Then i, is
subadditive on 2(%).

Proof. Let {E} be a sequence of sets in 2(%). If m is additive, we suppose that

E; = ¢ except for a finite number of indices. We put E| = E, and E =E, —
n—1

- U E,n=2,3, ... The sets {E} are mutually disjoint and belong to 2(¥)
and U E = U E;. Since E;/c E; and is non-decreasing on 2(%), we have
md(E’) < md( ), for each i. Now for any Ae¥, A # ¢ and 4 c E)we have

(§)-4- U @-

" and hence m<(U Ef) = ) = Y m(E;— A), since E,— A€ %.
i=1
Therefore for any xe X, ||x|| < 1,

(G = 4)<| - &m0}

m(E,— A)x| <

i=
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el

< 3 Im(E— A)xl < 3. ().

i=1 i=

Now taking supremum for all 4€ ¥, A = ( ) Ejand for all xe X, ||x| < 1 we
ti=1

get

Q

| 'ﬁd(,-U E> < 3 dE).

i=1

Hence,

md(g)] E,) - m,,(C) E> < _i; m(E) < 2 y(E).

i=

Hence the theorem.
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SUHRN
. 0O d-VARIACIACH A d-POLOVARIACIACH MNOZINOVYCH FUNKCI{

S. K. Kundu — K. N. Bhaumik, India

Systematicky sa $tuduji d-variacie a d-polovariacie mnoZinovych funkcii s hodnotami v nor-
movanom priestore, resp. v L-normovanom Banachovom zvize.

139



PE3FOME
O D-BAPMALIMALX U d-TIOJTYBAPUALIUSAX MHOXXECTBEHHbBIX ®YHKLIMUN
C. K. Kynny — K. H. Baymuk, Unaus

CHCTEMATHYECKH H3Y4aIOTCA d-BapHaLMi M d-TIoJTyBpHALMHK (yHKUME MHOXECTB CO 3HA4YEHHSA-
MH B HOPMHPOBaHHOM TIPOCTPAHCTBE, H B YaCTHOCTH, B L-HOpMHPOBaHHOi# pelueTke Banaxa.
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