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1 Introduction

L. Alseda, J. Llibre and R. Serra in [1] have characterized periodic orbits of
even periods which are potentially minimal (in our terminology). Another but
similar problem is solved in [3]. In the present paper which has arisen indepen-
dently of [1] and [3], the potentially minimal periodic orbits of even periods are
characterized, too. Our results are proved without using computers and Straf-
fin’s graphs. We think that our proofs are shorter and simpler than those in [1].

Let I be a compact interval on the real line and C°(l, I) the space of
continuous maps from 7 into itself. Let N denote the set of positive integers. For
any ne N and fe C°(I, I) we define /" inductively by f' = fand f" = fo /",
where the symbol - denotes the composition of functions. Let f° denote the
identity map of 1. A point x e/ is said to be a periodic point of f'if f"(x) = x for
some ne N. In this case the smallest element of {ne N: f"(x) = x} is called the
period of x. We define the orbit of x to be {f"(x): ne{0} U N}. If x is a periodic
point we say the orbit of x is a periodic orbit, and we define the period of the
orbit to be the period of x. The symbol conv A4 denotes the convex hull of the
set A < R, f| A denotes the restriction of f to the set 4 and card A4 is the
cardinality of 4. All the functions in this paper are assumed to be continuous.

Let fe C°(1, I). Consider the following ordering of the positive integers:

I<K5<T7<...<23<25<27<...<43<45< ...
e X8I L B<KA2=< 1.
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A. N. Sarkovskii (see [6] or [7]) has proved that if f has a periodic orbit P, of
period n, then for every n < m the function f has a periodic orbit P, of period
m with conv P, > conv P,. This result holds also for continuous real functions
defined on an arbitrary connected set on the real line. (Similarly, all results of
our paper remain valid for such functions though they are formulated for
functions belonging to C°(/, 1).)

It is known that for every n there exists a function f such that fhas a periodic
orbit of period m if and only if m is not less (in the Sarkovskii sense) than n.
Similarly, there exists a function f such that f has a periodic orbit of period m
if and only if m is a power of 2 (1 = 2° is also a power of 2 ).

P. Stefan in [7] has defined the periodic orbit of an odd period > 3 to be
minimal. We extend his definition for all periods.

Definition. A periodic orbit P of fe C°(I, I) of period n is said to be a minimal
periodic orbit of f'iff f has no periodic orbits of periods less (in the Sarkovskii
sense) than n.

Suppose that P is a periodic orbit both of g and A, glP=nh|Pand Pis a
minimal periodic orbit of g. These assumptions do not imply that P is a minimal
periodic orbit of 4. Therefore the following notion seems to be more suitable.

Definition. A periodic orbit P of fe C°(/, I) is said to be a potentially minimal
periodic orbit ifff there exists a function Fe C°(/, I ) such that f|P = F|P and P
is a minimal periodic orbit of F.

It is easy to see that the condition Fe C°(/, I) can be equivalently replaced
by Fe C°(conv P, conv P). (We will use this fact in the proofs of Theorems 4,5
and 6.) '

We will shortly write “PMPO” instead of “potentially minimal periodic
orbit”. ,

If P is a periodic orbit of £ which is not a PMPO of /, then f must have a
periodic orbit Q with period less (in the Sarkovskii sense) than the period of P.
Note that f'can have such an orbit Q also in the case that P is a PMPO of f- (But,
of course, f need not have such an orbit Q in this case.).

The aim of the present paper is to characterize periodic orbits which are
potentially minimal. Periodic orbits of periods 1, 2 or 3 are not interesting
because they are always potentially minimal. The potentially minimal periodic
orbits of odd periods were recently characterized by P. Stefan. He has shown
that there are only two “types” of such orbits. (See [7], pp. 243 and 245.)

Theorem 1. (P. Stefan [7].) Let p be a positive integer and let P be a periodic
orbit of fe C°(1, I) of period 2p + 1. Then P is potentially minimal if and only
if there is a point b, € P such that

by <by_,<..<by<b <b<.. <by_,<b,

_or
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by <by 1< ... <by<b <by<..<by_<by,,

-where for each i with 1 <i < 2p, f(b) = b, ,, and f(b,,,,) = b,.

The point b, or the points b,,, b,, , ; will be called the middle point of P or
the endpoints of P, respectively. Clearly, b,, and b,, , , are the endpoints of the
set conv P. _ ’

In the present paper we give a characterization of potentially minimal period-
" ic orbits of even periods. This notion was introduced by L. Block in [2] for
periodic orbits of period a power of 2. Now we extend his definition for periodic
orbits of all even periods. (A slightly different but equivalent formulation can
be found in [4]. For other equivalent formulations see our Lemma 4.)

Definition. Let P be a periodic orbit of fe C°(J, T) of period 2*- (2p + 1),
where ke N and pe{0} U N. We say P is simple iff for every positive integers n,
r with the property 2-(2p + 1) =n-r and r = 2* for some se€{0, 1, 2, ...,
k — 1}, and for every periodic orbit of /" of the form{q, < ¢, < ... < g,} = Pwe
have )

S s oes 4y =y, oo )

L. Block has proved the following results.

Theorem 2. (L. Block [2].) Let fe C°(Z, I). Then f has a periodic point whose
period is not a power of 2 if and only if f has a periodic orbit of period a power
of 2 which is not simple.

Theorem 3. (L. Block [2].) Let fe C°(/, I). Suppose f has a periodic orbit of
period 2* for some k > 2 which is not simple. Then f has a periodic point of
period 3.2¢ -2,

We have immediately the following corollary from this Block’s result.

Corollary. Let P be a periodic orbit of fe C°(I, I) of period a power of 2. If
P is potentially minimal, then P is simple. (This is true also for period 2'.)

Now we are mitivated for characterizing potentially minimal periodic orbits
of even periods. We start with some preliminaries. Our main results are those
in Theorems 4, 5, 6.

2 Preliminary results

Let P be a periodic orbit of f containing at least two points. Let P, and P,,,
denote the smallest and the largest element of P, respectively. Let
U(f) ={xel: f(x) > x} and D(f) = {xel: f(x) < x}.

Let P,(f) denote the largest element of P n U(f) and P,(f) the smallest element
of Pn D(f).
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We will use the following three lemmas proved e.g. by P. Stefan in [7] (see
(17), (9) and (10) in [7]).

Lemma 1. (see [7]) Let fe C°(Z, I) and let f* have a periodic orbit of period
n > 2. Then f has a periodic orbit of period 2n.

Lemma 2. (see [7] or [2]) Let fe C°(Z, I') and let P be a periodic orbit of f. If
/[ has a fixed point between P, and Py(f) (or between P,(f) and F,,,),then f
has periodic orbits of every period.
~ Lemma 3. (see [7] or [2]) Let fe C°(Z, I) and let P be a periodic orbit of f. If
P,(f) < Py(f), then f has periodic orbits of every period.

We will use the following notation. Let P = {a; < a, < ... < a,,} be a period-

ic orbit of f of period m. Let n divide m. Fork =1, 2, ..., " we write
n

P k)y={a;i=(k—Dn+1,(—Dn+2, ..., kn}.

Now let a, b be real numbers and let A, B be subsets of the real line. We

denote f(a) = bor f(4) = Bbya Lborad B, respectively. Similarly, A4 La
means f(4) = B and f(B) = A. Further let 4;, i =1, 2, ..., r be subsets of the
real line. We will write

@) f1 {4y, ..., 4
(b) fII <A\’ S521) A,>
(C) fTT <Al’ DAL | A,>

iff there exists a permutation (a(1), a(2), ..., a(r)) or the set {1, 2, ..., r} such that

/ i S
@) Au)= Augy = - = Auy

(b) Ay D Ay B oo D Ay S A
) f(Ag) 2 Agirnyfori=1,2, ..., r—1and f(4,,) > 44,

respectively. Instead of (4,, ...,4,) we will write also {A4;:i=1,2, ..., r). If
E ={e,, ey, ..., ¢}, then we will write /1 E instead of /] {{e}, ..., {e,}>. Hence
there is a difference between /] (E) and f] E.

Further if {4,, ..., 4,} is a family of nonempty pairwise disjoint sets, then
every set S consisting of exactly one element from each A, is called a choice set
for this family of sets. Let x, y, z be real numbers. We say x lies between y and
z if x lies in the open interval with endpoints y and z.

Lemma 4. Let P be a periodic orbit of f of period 2* - (2p + 1), where keN
and pe {0} U N. Then the following three conditions are equivalent:

(i) P issimple _

(i) for every positive integers n, r with the property 2 - (2p + 1) = n - r and
r =2' for some te{0, 1, ..., k} there is f1]<P(n, 1), ..., P(n, r))
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(iii) for every positive integers n, r with the same property as in (ii) the sets
P(n, 1), ..., P(n, r) are periodic orbits of /™ of period n.

Proof. The implication (ii) = (iii) is obvious.

(iii)= (i). Let our periodic orbit P fulfil the condition (iii) and let
2.2p+1)=n-r, where r =2* for some se{0, 1, ..., k—1}. Let Q =
={q, < ¢, < ... < q,} = P be a periodic orbit of /. We are going to prove that

j’(Q (g, l)) =0 <g , 2) . The set Q is one of the sets P(n, 1), ..., P(n, r) because
these sets are also periodic orbits of /7 and their union is the whole set P.

Further, the integer n is even, since s < k. Hence the sets Q (g ; l) and Q <g ; 2)
are two from the sets P (g . 1) S P(—;— . 2r> . According to (iii) they are periodic
orbits of /% of period g We have the following situation. The set Q is a periodié
orbit of /" and the sets Q<§ I) - Q(;, 2> are periodic orbit§ of f¥. Now it is

easy to see that_f’(Q (g l)) = Q<—'21 2). Thus P is simple.

(i) = (ii). Let P be simple. We are going to show that for each te{0, 1, ..., k}
the integers r = 2'and n = 2~ ' - (2p + 1) satisfy the condition f1] {P(n, 1), ...,
P(n,r)>.If t =0, then r = 1, P(n, 1) = P and clearly /] (P). Now suppose by
induction that the relation

FLI<P, 1); .05 Pln, 1)) (1)
holds for some t€{0, 1, ..., k — 1} and corresponding r, n. Let us take t* = ¢ + 1
and r*, n* with r* = 2, 2. (2p + 1) = n* - r*. Clearly, r* = 2r, n* = g— and n*

is an integer. It suffices to prove

11 <P<g, 1), P(%, 2r)>. ©

From (1) we have that each of the sets P(#n, 1), ..., P(n, r) is a periodic orbit of

f* of period n. Further, for each je{l, 2, ..., r} there is P(n, j) = P(r_21’

2j — 1) v P(g Zj). Since P is simple we have

P<g,2j—1>i—/:P(g,2j), j=1,2, ..., r. 3)
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Now (2) follows from (1) and (3). In fact, (1) implies that for every xe PG ) 1) =

< P(n,1)theset A = {f"(x):m=0, 1, ..., r — 1} is a choice set for the family
of sets {P(n,j):j=1,2,...,r}. Foreveryje{l, 2, ..., r} let a(j)e{2j — 1, 2j} be

chosen such that P ;, a(j) ) n A is nonempty. Then the set A is a choice set for
the family of sets {P(g, a(j)): i=12, .., r}. By (3), the set B = {f"(x):
m=0,1,...,2r — 1} is a choice set for the family of sets {P(g, i)l i=12,..., 2'}

and ¥ (x)e P(g , l). Since x was an arbitrary point belonging to P(g , l) , (2)

is true Q.E.D. .

Lemma 5. Let p be a positive integer and let P = {a, < a, < ... < a,,,} be
a PMPO of 4 of period 2p + 1. Then there exists such a permutation (&(1), £2))
of the set {a,, a,,,,} that

(1) > e2) > ay

Moreover, if p > 2, then the point A(a, , ) lies between &(1) and a, ,

Proof. See Theorem 1.

Lemma 6. Let the assumptions of Lemma 5 be satisfied (p is any positive
integer). Then each point ze{a,, a3, ..., @y} lies between h(z) and H(2).

Proof. See Theorem 1.

Lemma 7. Let n be a positive integer and let P={a, < a, < ... < a,,} be a
periodic orbit of fe C°(1, I) of period 2n.

(a) If P is a PMPO of f, then

Pn, )S P@n, 2). )

(b) If (4) does not hold, then f has a periodic point of period s, where
3 <s5<2n-— 1,and s divides 2n — 1 (consequently, s is odd).

Proof. It suffices to prove (b), since (a) is a consequence of (b). Suppose that (4)
does not hold. There are two possibilities.

Case 1. {a,, a,, ...,a,} ¢ U(f). Let k be the smallest element of {1, 2, ..., n}
such that g, e D(f). lffor some me{k + 1,k + 2, ..., 2n}, a,,€ U(f), then f has
periodic points of every period (see Lemma 3). Now let {a; , |, ;. 5, ..., @y} <
< D(f). Since the cardinality of {a,, a,, ..., a, _,} is less than the cardinality of
{a,,, ..., a,,}, there exist b, fela,,,, ..., a5}, b < B such that f(B) = b.
Further, there obviously exists a€{q,, ..., a, _,} with f(@) = a,,. Thus we have
S Yay) = a < a,, and f7"~'(b) = B > b. Hence f~"~ ' has a fixed point bet-

116



ween b and a,,. This point is a periodic point of f of period s, where s divides
2n — 1. If s = 1, f has periodic points of every period (see Lemma 2). If s > 1,
we have 3 <s <2n—1.

Case 2. {a,, a, ..., a,} = U(f). In this case, by our assumption that (4) does
not hold, there is a point xe{q,, ..., a,} such that x < z = f(x)e{a,, ..., a,}.
Then /"~ '(a,) > a,and f*"~'(z) = x < z. Hence f*" ! has a fixed point between
a, and z. Now the proof can be finished in a similar way as in Case 1. Q.E.D.

Remark. We see that our Lemma 7 is stronger than Proposition 9 in [2].
Further, Lemma 10 in [2] is a special case of our Lemma 7.

Lemma 8. Let n be a positive integer and let the set P be a PMPO of fe C°(/,
I) of period 2n. Then the sets P(n, 1) and P(n, 2) are potentially minimal periodic
orbits of f? of period n.

Proof. There exists a function Fe C°(/, I) such that f|P = F|P and F has no
periodic orbit of period less (in the Sarkovskii sense) than 2n. Further, by
Lemma 7, the sets P(n, 1) and P(n, 2) are periodic orbits of f2 (and also of F?)
of period n. We show . that they are potentially minimal. Assume, on the
contrary, that e.g. the set P(n, 1) is not a PMPO of f2. Hence the function F>
has a periodic orbit of period m < n (in the Sarkovskii sense). But then the
function F has a periodic orbit of period 2m < 2n (see Lemma 1). A contradic-
tion. Q.E.D. '

We will use the following notation. Let ke N, pe {0} U N and let P be a simple
periodic orbit of fe C°(I, I) of period 2¢- (2p + 1). Forne{0, 1,2, ..., k — 1},
ie{l, 2, 3, ..., 2"} we define open intervals

GR2" i) =]maxPQ* """ 2p+1),2i— 1), minPQ2* "' (2p + 1), 2i)
where, as usual, max 4 denotes the maximum of the set 4. Similarly min 4.

Lemma 9. Let ke N, pe{O}UN and let P={q, < a, < ... <a,}, where
w = 2¥. (2p + 1), be a simple periodic orbit of fe C°(/, I') of period 2 - (2p + 1).
Let ge C° (conv P, conv P) be such a function that f|P = g|P and g is linear on

every interval whose endpoints are two neighbouring points from P. Then all
. k-1 2"

periodic points of g lying in the () () G(2", i) have periods from the set {2’:

n=0i=1
j=0,1,2, ..., k} _
Proof. Let 0 <m <k —1,1 <t <2"and xeG(2", t). We prove that if x is
a periodic point of g, then its period is 2 for some 0 <j < k. We have

convP2* ™. 2p+ 1), i) =conv PR* " '.(2p+1),2i — 1) UG(2", Hu
uconv PQ2*—™-1.(2p+ 1), 2i),

where the three sets on the right side are mutally disjoint. By Lemma 4 and by
the definintion of g there is

g1t {conv P(2*—™.(2p + 1), i): i=1,2,3,..,2" (5)
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g1l Cconv P(2*-"1.2p+ 1), i=1,2,3,..,2""). (6)
It follows
g1 LG @2, i): P=1,2,3, wscs. 2™ ‘ 7
Let us define

2’"
A=)convP(2*""-(2p+1),1)
i=1

om+ 1

B= .~L=Jn PR 2p+ 1), )

zm
C = U G@2m, i)
i=1
We have -
xeCcA=BuC, BnC=09. 8)

There are two possibilities.

Case 1. There exists such an s€ N that g'(x) ¢ C. Then by (5) and (8) we have
g’(x)e B and by (6) and (8) the point x is not a periodic point of g.

Case 2. Forevery se N there is g'(x)e C. Put S = {y e G(2", t): for every se N,
£(»)e C}. By (7), (8) and (5), if xe S is a periodic point of g, then its period is
2™ . g for some positive integer g. Then x is a periodic point of the function g*"
of period g. But this function is linear on S (because of (7) and linearity of g on
each G(2™, i)), xe S and g?"(S) = S. Hence ge{l, 2}. We have shown that if

xeG(2™, 1) is a periodic point of g, then its period is 2™ or 2" *'. Consequently,
k—1 27

all the periodic points of g lying in the set () | ) G(2", i) have periods from {2

n=0 izl
j=0,1,2,..,k}. QED.

Remark. We were interested in those periodic points of the function g (see
k—1 2n

Lemma 9) which liein the set () () G(2", i). It would not be too difficult to find

n=0i=1

all such points but we did not need to do it for our purposes.

Lemma 10. Let P be a periodic orbit of fe C°(Z, I) of period 2% - (2p + 1),
where ke N and pe{0} U N. Let P-be potentially minimal. Then P is simple.

Proof. Let the assumptions be satisfied. There exists a function Fe C°(/, I)
such that f|P = F|P and F has no periodic orbits with a period less (in the
Sarkovskii sense) than 2* - (2p + 1). We are going to prove that P is a simple
periodic orbit of f or equivalently, of F.

Solet2*- (2p + 1) = n - r, where r = 2° for some s€{0, 1, ..., k — 1} and let
0={9, <¢g,<..<gq,c P be a periodic orbit of F'(see the definition of

simple periodic orbits). We claim that F '(Q (g 1)) = Q(g, 2). Suppose the
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claim is false. Then by Lemma 7 (note that our integer » is even) the function
F’, r = 2* has a periodic orbit of odd period z > 3. But then by Lemma 1 the
function F has a periodic orbit of period 2° - z. Since for p = 0 and also forp > 0
the period 2°- z is less (in the Sarkovskii sense) than 2 - (2p + 1), we have a
contradiction. Q.E.D.

3 Main results

In the following three theorems we give a full characterization of potentially
minimal periodic orbits of even periods.

Theorem 4. Let P be a periodic orbit of fe C°(1, I) of period 2%, where ke N.
Then P is potentially minimal if and only if P is simple.

Proof. According to Lemma 10 (or to the corollary of Theorem 3) it suffices
to prove the “if”” part of the theorem. Suppose that P is simple and define the
function ge C° (conv P, conv P) such that f|P = g|P and g is linear on every
interval whose endpoints are two neighbouring points from P. It suffices to show
that g has no periodic point of period 2¢*'. Let us define the sets G(2", i)
analogously as in Lemma 9 (we have p = 0). Then

k-1 2

convP=PulJ (JG@2, D Q)

n=0i=1

and, by Lemma 9, it suffices to prove that no point from P is a periodic point
of g of period 2¢*!. But it is clear, since P is a periodic orbit of g of period 2.
Q.E.D.

Theorem 5. Let P be a periodic orbit of fe C°(Z, I) of period 3.2, where ke N,
Then P is potentially minimal if and only if P is simple.

Proof is similar to that of Theorem 4. It suffices to prove the “if”” part. Let
P be simple and let the function g be defined in the same way as in the proof
of Theorem 4. We are going to show that g has no periodic point of period
2¥=1.(2p + 1), pe N. Now instead of (9) we have

2k k—1 27
conv P= () conv P3,))u ) U G2, 0).
i=1 n=0i=1

If zeconv P is a periodic point of g of period m # 27, ¢ =0, 1, 2, ..., then by
Lemma 9, zeconv P(3, r) for some re{l, 2, ..., 2¢}. Lemma 4 and the definition
of g imply g 3 {conv P(3,1), ..., conv P(3,2¥)>. Hence m must be divisible by
2% and thus m# 2~'. (2p + 1), pe N. QE.D.

In Theorem 6 we use the following notation. Let P be a periodic orbit of
feC°(, I) of period 2% - (2p + 1), where ke N, pe N. Then E denotes the set
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2k

(J {min P(2p + 1, j), max P(2p + 1, j)}
=1

of all endpoints of the intervals conv P(2p + 1, ),j=1,2,3, ..., 2~

Theorem 6. Let P be a periodic orbit of fe C°(I, I) of period 2*- (2p + 1)
where ke N, pe N and p > 2. Consider the following four conditions: :

(C1) P is simple

(C2) thesets P2p+1,)),j=1,2,3, ..., 2* are potentially minimal pe-

riodic orbits of f* (see Theorem 1)
(C3-a) fIE
(C3-b) f is monotonic on each of the sets PQp+ 1, ), j=1, 2,3, ..., 2*
exept for one of them.
Then the following three conditions are equivalent:

(i) P is potentially minimal

(ii)) (Cl1) and (C2) and (C3-a)

(iii) (C1) and (C2) and (C3-b).

Proof. (i) = (ii). Let P be a PMPO of f. Then Lemma 10 implies (C1) and
Lemma 8 (used k-times) implies (C2). Thus it suffices to prove that (i) implies
(C3-a). Actually, we will show that this implication is true under more general
assumptions, namely, that P is a PMPO of f of period 2*- (2p + 1), where
ke{0}UN, peN, p > 2. Fix some p. If k = 0, then f] E, i.e. (C3-a) is true, cf.
Lemma 5. Now suppose by induction that /' Efork = n — 1. Let P be a PMPO
of fof period 2" - (2p + 1). We prove that /] E. Take a function Fe C°(1, I) such
that f|P = F|P and F has no periodic orbit with period less (in the Sarkovskii
sense) than 2"-(2p + 1). Clearly, it suffices to show that F] E. Denote
P=PQ2""'-2p+1),i)and E,;= En Pfor i =1, 2. By Lemma 8 and induc-
tion hypothesis we have F?1 E, and F? E,. Hence there exist permutations
(a(1), a(2), ..., a(2™) and (B(1), B(2), ..., B(2")) of the sets E, and E,, respectively,
such that

al) B a2) 5 ... 5 a2 (10)
BB A2) B ... B g2Y. (11)
Furher, by Lemma 7,
pE P, ' (12)
Now we claim that
F(a(1))e E, and F(B(1)eE, (13)

simultaneously. Suppose for a moment the claim is true (the proof will be given
later). We show that then either F(a(1)) = B(1) or F(B(1)) = a(1), which by (10)
and (11) immediately implies F{ E.
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Thus assume on the contrary that F(a(1)) = (1 + i) and F(5(1)) = «(1 +)),
where i, j > 0. By (10), F*(a(1)) = F(B(1 + i)) = a(2), and using again (10) and
(11) we have

a(l+j)=F* V" Ya2)) = F'*> V= D(B(1 + i) =

=Fl+2-(i—l)+2|‘(ﬁ(l))=F2-(i—l)+2i(a(l +j))

Consequently, the period 2"-(2p + 1) of a(l + ) is less than or equal to
2-G—1)4+2i.But2p+1>5and 2-(j— 1)+ 2i <4.2", since i, j < 2". We
have a contradiction.

It remains to prove (13). Assume, on the contrary, that (13) does not hold.
Then, by (12), there exists x € {a(1), A(1)} such that F(x)¢ E. Denote p = F*(x),
z=F"(y)and G = F*"~'. We have '

xE5F) Sy EFp) S HFz). (14)

By Lemma 4 (note that P is a simple periodic orbit of F), every set P(2p + 1,
i) is a periodic orbit of F” and F{{ < P2p + 1, 1), ..., P(2p + 1, 2")). Hence
there exist u, ve{l, 2, 3, ..., 2"}, u # v such that {x, y, z} € P(2p + 1, u) and
{F(x), F(y), F(z)} =« P2p + 1, v). Since P(2p + 1, u) and P(2p + 1, v) are
periodic orbits of F¥of period 2p + 1 > 5, all the points in (14) are mutually
different. The point x belongs to E, since xe{a(1), A(1)}. We claim that also ye E.
In fact, if we denote F> = H, we have y = H*''(x). But in each of the relations
(10) and (11) there 2"~ ' arrows and 2" ' < 2" — 1 for n > 1. Hence the points
x and y must be endpoints of conv P(2p + 1,u). Since we have proved
(i) = (C2), the set P(2p + 1, u) is a PMPO of F”'. By Lemma 5, z is the middle
point of P(2p + 1, u) and F”(z) lies between x and z. On the other hand, F(x)¢
¢ E. By Lemma 6, F(x) lies between F(y) = F¥(F(x)) and F(z) = F* o F*(F(x)).
Thus there is a point w between y and z with f(w) = F(x) and, consequently,
F”(w) = y. Therefore the function F?' has a fixed point between y and w.
Clearly, this fixed point lies between y and z. Further, if y < z or y > z, then
both y and z belong to U(F*") and D(F?”"), respectively. In each of these cases
F? has a periodic orbit of period 3 (see Lemma 2). But then, by Lemma 1, the
function F has a periodic orbit of period 2" - 3, a contradiction. (The function
F was chosen such that it has no periodic orbit with a period less (in the
Sarkovskii sense) than 2" - (2p + 1), where p > 1.) The proof of (i)=> (ii) is
finished.

(ii) = (iii). Let (ii) be satisfied. We need to prove (C3-b). There exist a
permutation (e(1), e(2), ..., e(2* ")) of theset Eand te{1, 2, 3, ..., 2¢} such that

e be@)d...5e@YeP2p+1,1).

Note that f(e (2** ")) ¢ E, but f(En P(2p + 1, i)) < Eforeachie{l,2,3, ..., 2%
except for i = t. Now it suffices to prove that f is monotonic on every such set
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P(2p + 1, i).So let re{l, '2, 3, ..., 2\{#}. We have f(ENnP(2p+1,r)) c E.
Moreover, by Lemma 4, f(P(2p + 1,r)) = P(2p + 1, s) for some se{l, 2, 3, ...,
24, s # r and, consequently,

f(ENnP2p+1,r)=EnP2p+1,5s). (15)

By (C2), the sets P(2p + 1, r) and P(2p + 1, s) are potentially minimal periodic
orbits of /. By Lemma 5,

fLEnP@p+1,r) and f1ENPQp+1,5). (16)

Since we have (15) and (16), it is easy to see that there exist permutations (a(1),
a(2), ..., a(2p + 1)) and (A(1), B(2), ..., P(2p + 1)) of the sets P(2p + 1, r) and
P(2p + 1, s) respectively, such that the following four conditions are fulfilled
simultaneously:

al)<a@)<..<aCp+1) or al)>a2)>..>aCp+1) (7)
(@) =a2p + 1) (18)

Sfla(l)) = A1) and f(a(2p+ 1)) =p(2p + 1) (19)

B <p2)<..<P2p+1) or B1)>pR2)>...>p2p+1). (20)

It follows
FAB) =+ (1)) = f(a@@p + 1)) = B2p + 1). (21)

The relations (18), (21) and Theorem 1 imply that for eachje{1,2,3, ...,2p + 1}
there exists a number n(j)€{0, 1, 2, ..., 2p} such that /> " (a(1)) = a(j) and
£ "9(B(1)) = B(j) simultaneously. Then for each je{l, 2, ..., 2p + 1}

f@()) = f1+2 "D (a(1)) = £ D) = B().

~ Hence we have permutations (a(1), ..., a(2p + 1)) and (f(1), ..., f(2p + 1) of the
sets P(2p + 1, r) and P(2p + 1, s) respectively such that they satisfy (17), (20)
and f(a(j)) = B(j) foreach je{l, 2, ..., 2p + 1}. Now it is easy to see that if the
inequalities in (17) are of the same or opposite sense as those in (20), then f
restricted to the set P(2p + 1, r) is increasing or decreasing, respectively, which
finishes the proof of (ii) = (iii).

(iii) = (i). Let (iii) be satisfied. Let f be monotonic on each of the sets
P(Q2p + 1, i) for ie{l, 2, 3, ..., 2%}, i # t. Take the function ge C° (conv P,
conv P) such that f|P = g|P and g is linear on every interval whose endpoints
are two neighbouring points from P. It suffices to show that g has no periodic
point of period 2*- (2p — 1). Suppose, on the coxztrary, that g has a periodic

2

orbit Q of period 2 - (2p — 1). By Lemma 9, Q < ( ) conv P(2p + 1, ). Fuither,
i=1
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Lemma 4 implies
gltdlconvP(2p+ 1, 1), ...,conv P(2p + 1, 2. (22)

Consequently, each of the sets conv P(2p + 1, i) contains 2p — 1 points of Q
which form a periodic orbit of g* of period 2p — 1. On the other hand, denote
by c the positive integer for which g(P(2p + 1, 1)) = P(2p + 1, ¢). We show that
the interval conv P(2p + 1, ¢) contains no periodic orbit of g* of period 2p — 1.
By (C2), the set P(2p + 1, ¢) is a PMPO of g* of period 2p + 1. Moreover, if
J is an arbitrary ‘interval whose endpoints are two neighbouring points from
P(2p + 1, ¢), then by (22) and definitions of g and P(2p + 1, ¢), g~ '(J) is an
interval whose endpoints are two neighbouring points from P(2p + 1, ¢). Since
g% ~'is linear on J and g is linear on g* ~ ' (J), the function g** is linear on J. We.
have shown that P(2p + 1, ¢) is a PMPO of g% of period 2p + 1 and g* is linear
on each interval whose endpoints are two neighbouring points from P(2p + 1, ¢).
Hence there exists no periodic orbit of g of period 2p — 1 lying in the set
conv P(2p + 1, ¢) (see [7], p. 245). A contradiction. Q.E.D.

Remark. It can be shown that f is not monotonic on P(2p + 1, t) (see the
proof of (ii) = (iii)). '

4 Remarks

(A) A. N. Sarkovskii in {6] has proved that his theorem remains valid if we
assume that fis a continuous real function defined on an arbitrary connected set
on the real line. In the same way it can be shown that Theorems 1, 2, 3, 4, 5,
6 imply analogous theorems for functions defined on such sets.

(B) Every function having some periodic orbit which is not potentially
" minimal has a minimal periodic orbit (see the Sarkovskii’s ordering and Theo-
rems 3, 4). The following problem seems to be interesting. For every integer
n >4, to characterize the set of periods of minimal periodic orbits of all
functions belonging to C°(Z, I) and having a periodic orbit of period n which is
not potentially minimal. This problem is solved in [5].

Acknowledgement. 1 wish to thank Jaroslav Smital for bringing the problem of minimal periodic
- orbits to my attention and for several very helpful discussions.
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SUHRN

CHARAKTERIZACIA POTENCIALNE MINIMALNYCH PERIODICKYCH ORBIT
SPOJITYCH ZOBRAZENI INTERVALU

Lubomir Snoha, Banska Bystrica

R. 1977 P. Stefan zaviedol pojem minimalnej periodickej orbity spojitého zobrazenia intervalu.
Ukazal, Ze pre kazdé neparne n > 3 existuju len dva ,,typy* periodickych orbit periody n, ktoré
mozu byt minimalnymi periodickymi orbitami. Inak povedané, charakterizoval takzvané poten-
cialne minimalne periodické orbity neparnych peridd.

V praci je podana charakterizicia potencialne minimalnych periodickych orbit parnych period.

PE3FOME

XAPAKTEPU3ALIMA ITOTEHUHMAJIBHO MUHUMAJIbHBIX IEPUOAUYECKUX OPBUT
HEINPEPBIBHbIX OTOBPAXXEHUY OTPE3KA

JIro60omup CHora, Baxcka BeicTpuua
B 1977 r. xapaxtepu3osan I1. litepan noTeRuManb-HO MHHHMAILHBIE TIEPHOAUYECKHE OPOHTHI
HEYETHBIX NIEPHOJIOB HEMPEPLIBHLIX OTOOpaXEHHH 3aMKHYTOrO BEILIECTBEHHOTO OTpe3ka B ce6s.

I'napHbi pe3yabTaT paGoTHl — XapaKTEpH3aLHA MOTEHUHAILHO MHHEMAJIBHBIX NEPHOHYEC-
KHX OPOHMT YETHBIX MEPHOMOB.
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