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Introduction

The notion of continuity is one of the most important tools of whole mathe-
matics. )

Starting from early years of modern mathematics, many different types of
almost continuity notions were introduced, e.g., lower (upper) semi-continuity,
Baire classes of functions or functions which have the Baire property, etc.
Today, they are “normal and nice.”

Here, we will especially investigate the following classes of almost continuous
functions: quasi-continuous, somewhat continuous, nearly continuous and
somewhat nearly continuous.

Quasi-continuity was introduced in 1932, by S. Kempisty [12]. He considered
this class while extending some classical results of H. Hahn and R. Baire
concerning separately continuous real-valued functions of many real variables.
Also A. Alexiewicz and W. Orlicz [1] used quasi-continuous functions inves-
tigating some function spaces.

Somewhat continuous functions, defined by Z. Frolik [7], arise naturally
while studying the invariance of Baire spaces under mappings, see also [18].

Every mathematician agrees on the importance of Banach’s Closed Graph
Theorem. But observe, this “almost continuity” hypothesis in this theorem is
just, near continuity (see [3], thm 4 p. 40)!

Due to the fact that somewhat nearly continuous functions generalize simul-
taneously two important classes, namely near continuous and quasicontinuous,
it is hoped that somewhat near continuity may be used in both separate versus
joint continuity problems as well as in the Closed Graph Theorem.

The numeration of the results is continuous. To preserve the completeness of
the reasonings we quote the published results or well-known facts. They are
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denoted here only by numbers (without the word Theorem or Lemma, etc.). In
contrast to this, new results are called Theorems, Lemmas, Examples, etc.

Basic definitions

A space means a topological space. All kinds of spaces related to the com-
pactness (like locally compact spaces etc.) are assumed to be Hausdorff.

A subset A4 of a space X is said to be semi-open if there exists an open set U
in X such that U« 4 < C1U.

A subset B of a space X is said to be nearly-open if it is contained in the
interior of its closure. A subset C is somewhat nearly-open if the interior of its
closure is not empty. \

II. Functions.

Functions are not necessarily assumed to be continuous.

Let f: X — Y be a function. We say that f'is
(i) quasi-continuous if inverse image of every open set is semi-open, or, which is
equivalent, see [2] and [20], if for every point x € X and every open sets U and
V containing x and f(x), respectively, U Intf~'(V) # 0. :

(ii) somewhat-continuous if inverse image of every open set, if not empty, has a
non-empty interior [7].

(iii) nearly continuous, if inverse image of every open set is nearly-open, or, which
is equivalent, if for every point x € X and for every open set V' containing f(x),
the point x is in the interior of the closure of f~'(V) [27].

(iv) somewhat nearly continuous, if inverse image of every open set, if not empty,
is somewhat nearly-open.

The following Diagram 1 illustrates the relations between these classes of
functions (=> denotes the inclusion). None of these implications can, in general,
be replaced by an equivalence. The examples showing this are not difficult and
the reader can construct them easily.

(continuous)
quasi- (nearly )
-continuous continuous,
somewhat s somewhat
continuous nearly
continuous.

Diagram 1
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Notation

The closure of a set 4 we denote by Cl 4, the interior by Int A. We use the
standard set-theoretical notation. For a given set X we use many times some
families of subsets of X. Let us write them together.

Namely:
S.0.(X) denotes the family of all semi-open subsets of X.
W.I.(X) denotes the family of all subsets of X having non-empty interior
relative to X.

N.O.(X) denotes the family of all nearly-open subsets of X.

S.N.O.(X) denotes the family of all somewhat nearly open subsets of X.

As remarked at the beginning of Introduction. a.c. function stands for almost
continuous function. The letters N, Z, Q and R stand for the set of natural,
integer, rational and real numbers, respectively. The letter I stands for the unit
interval <0, 1). For a given function f, the set of points of continuity of f is
denoted by C(f). The open ball with the centre p and the radius q is denoted by
S(p, 9.

Comprehensive investigations of some classes of almost continuous functions

§ 1. On S.0.(X), W.L(X), N.O.(X) and S.N.O.(X)

In this paragraph we state some technical lemmas; all of them will be used
in the sequel.

Lemma 1.1. LetXbeaspace If Disdensein X, 4€S.0.(X),then AnDe-
S.0.(D).

Proof. A is semi-open in X, i.e., there is an open set G = X such that

GcAcClG
Now we have '

GNnDcAnDcCly,GnD=Cl,Gn D =Cl,(Gn D)

and thus 4 n D is semi-open in D. []

Remarks 1.2. One may show that Lemma 1.1 holds also for W.L(X).

For some similar results to the following lemmas, however concerning
S.0.(X), the reader is referred to [24].

Proofs of these lemmas are rather standard and thus they can be omitted.
Lemma 1.3. If 4 is a non-empty nearly-open set, then IntClA4 # 0, i.e. 4 is
somewhat nearly-open.

(1.4) ([13], § 16, I, p. 151. 152) Let {X,|¢T} be any family of spaces and let

"I1A, be a subset of the Cartesian product ITX, of X,. !
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Then:
(1) IntI14, = Il Int 4,, if 4, = X, except for a finite number of t’s.

(2) ClII4, =T1ICl 4,
Lemma 1.5. Let {4,|te T} be a collection of

sets with the non-empty interiors
nearly-open sets

somewhat nearly-open set

in X. Then | 4,

teT

set with the non-empty interior
is a < nearly-open set in X.
somewhat nearly-open set

Lemma 1.6. Let {X,|te T} be any family of spaces X,, let X = I1X, and
[T 4., x ][ X, a non-empty subset of X, where ne N.

J=tE g
- (A4,eWLX)
” Then A,jeN.O.(X,/,) foreach j (1 <j<n)if
A,€S.N.O.(X,)

Ae W.1(X)
and only if < 4e N.O.(X) ;.
AeS.N.O.(X)
Proof. It easily holds if we recall that by (1.4)

IntClA =[] IntCl 4, x I1 X..

j=1 taérj

§ 2 Classes of functions

In this paragraph we will investigate the behaviour of some types of a.c.
functions under the operations like the composition, the graph-function, the
generalized product, some special restrictions, taking limits of some sequences
of them, invariance of them under some topological properties. We will also
prove some special properties of these functions. Each time we recall then the
behaviour of a continuous function.

Obviously, it is true that:

(2.1) The composition of two continuous functions is a continuous function.

It is proved in [14], Remark 12, p. 40.
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(2.2) The composition of two quasi-continuous functions need not be quasi-
continuous.

Using the same functions as in [14], Remark 12, p. 40 one can verify the
following

Propositione 2.3.

somewhat continuous

The composition of two { )
somewhat nearly continuous

} functions need not be

{somewhat continuous
somewhat nearly continuous
A standard example shows the following

Proposition 2.4. The composition of two nearly continuous functions need
not be nearly continuous.

Let A4 be a class of functions. If fo g € A implies that fe 4 and g€ A4, then we
say that 4 possesses the factorization property of the composition.

Not difficult example shows that

Proposition 2.5.

continuous
quasi-continuous
The class of < somewhat continuous
nearly continuous
somewhat nearly continuous
functions does not possess the factorization property of the composition.
However, the following is true
(2.6) ([25], Thm Ip. 289). If g in a somewhat continuous and somewhat open
function from X onto Y, fis a function from Y onto Z, then:
fis somewhat continuous if and only if fo g is somewhat continuous.
(2.7) ([25] Corollary p. 290) If g is a continuous and open function from X
onto Y, and f'is a function from Y into Z, then: '
fis somewhat continuous if and only if fo g is somewhat continuous.
Letf: X —» Y beafunctionandletg: X — X x Y be given by g(x) = (x, f(x)).
We say that g is the graph-function of f.
It is well-known that
(2.8) A function g: X - X x Y is continuous if and only if f: X —» Y is
continuous.
It is proved in [23], Theorem 2, p. 401.
(2.9) A function g: X - X x Y'is quasl-contmuous ifand only if f: X - Y
is quasi-continuous.
Carnahan and Long proved ([5], Theorem 2, p. 414)
(2.10) A function g: X - X x Y is nearly-continuous if and only if /: X — Y
is nearly-continuous.
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somewhat continuous

One may conjecture that if f is . )
y conj § {somewhat nearly contmuous}, then g is

{somewhat continuous }
somewhat nearly continuous )
It is not so even in the case when X = Y = R, f being a bijection.

Example 2.11. We make use of the example of a somewhat continuous
bijection which is not quasi-continuous ([18], Proposition 1, p. 174). Let f:
R — R be defined as follows: f(x) = x, if x # 0, x # 1; f(0) = 1, f(1) = 0. Take

the open ball S ((0, 1), %) We see that g~ (S((O, 1], %)) is non-empty.

However, Intg™! (S((O,l), -;:)) =,

Let 4 be a class of functions. If g: X - X x Y given by g(x) = (x, f(x))
belongs to ‘4 and this implies that f: X — Y belongs to 4, then we say that 4
possesses the factorization property of the graph-function.

~ It follows from (2.8) —(2.10) that the classes of continuous, quasi-continuous
and nearly-continuous functions have the factorization property of the graph-
function. .

In [2], Theorem 2.8, p. 320, a stronger result is proved than the following

(2.12) If the graph-function g of a function f is somewhat continuous, then
fis somewhat continuous.

Proposition 2.13. If the graph-function g of a function fis somewhat nearly
continuous, then fis somewhat nearly continous.

Proof. Let ¥ < Y be an open set with f~'(¥) # 0 and since g is somewhat
nearly continuous, @ # IntClg='(X x V) =IntCl(X nf~'(V)) = IntCLf'(V).
Then fis somewhat nearly continuous.

Let {X,|te T} and {Y,|te T} be any two families of spaces with the same
index set 7. For each teT, let f: X,— Y, be a function. Let a function
f: I1X, - ITY, defined by f((x,)) = f,(x,) be given. The function f is called the
product of functions. Let A be a class of functions. If f: I1X, — ITY, defined by
f((x,)) = f.(x,) belongs to A and this implies that f,, for all e T, belongs to 4,
then we say that A possesses the factorization property of the product of fun-
ctions, or shortly, the factorization property of the product.

It is well-known that

(2.14) A function f: I1X, — ITY, is continuous if and only if f, is continuous,
for each re T. ‘

In [24], Theorem S5, p. 135, it is proved that

(2.15) A function f: I1X, - I1Y, is quasi-continuous if and only if f, is
quasi-continuous, for each reT.

Proposition 2.16. A function f: I1X, - I1Y, is
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{somewhat continuous

nearly continuous if and only if f] is
somewhat nearly continuous

somewhat nearly continuous

Proof. We will prove Proposition 2.16 for the class of nearly continuous
functions. Proofs of the other cases are similar.

Sufficiency. Let ¥ be an open set in ITY,. Then, thereare t,e T(1 <j < n)and ,
open sets V,/ in ¥, Y, such that V' = n [1r, Y,. Since f,i is nearly continuous,

Jj=1 t#1
f,]‘_ I(V,I_) is nearly-open in X, for each j (1 <j < n). If there exists ¢; such that

1, (V) =0, thenf~'(V) = Hf, (V) % [T X, = 0. Hence f~'(V) is nearly-open
l;ét
in ILX,.

Iff, (V) # 0 for all j (1 <j<n), then nf, (V) x [T X, # 0. Hence by

1#!

somewhat continuous
nearly continuous , foreach teT.

Lemma 1.6.,f~'(V) = Hf, (V) x [T X, is nearly-open in ILX,. Now, for any

t#1;
open set Win Y there exists a family ~‘: V| Be B} of open sets such that W=

= [1/7'(Vp. Hence by Lemma 1.5. f~'(W) = | f~'(V,p is nearly-open in
BeB B#B
I1X,. This implies that f is nearly-continuous. i

Necessity. For each fixed te T, let p,: [ | ¥, — ¥, be the projection. Suppose

aet

V,is an arbitrary open setin ¥,. Thenp, ' (V) = ¥, x [] Y,is openinITY,. Since

a#r

fis nearly-continuous, /' (p;'(V)) =f ['(V) x [] X, is nearly-open in ITX,.
a#t

Iff;' (V) is empty, then it is obvious that f, is nearly-continuous. If /' (¥)) is not

empty, then £ ' (V) x H X, # 0 and hence by Lemma 1.6., f; (V) is nearly-

open in X,. This 1mphes that fiis nearly-contmuous O

Now, we will investigate the behaviour of a.c. functions under certain types
of restrictions.

It is well known that:

(2.17) Arbitrary restrictions of a continuous function are continuous.
It is proved in [24], Theorem 3, p. 134, that:
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(2.18) The restriction of a quasi-continuous function to an open subspace is
quasi-continuous.

(2.19) ([15] Theorem 4, p. 177) The restriction of a nearly-continuous fun-
ction to an open subspace is nearly-continuous.

(2.20) ([2] Example 2.6., p. 319) The restriction of a somewhat continuous
function to an open subspace need not be somewhat continuous.

Proposition 2.21. The restriction of a somewhat nearly continuous function
to an open subspace need not be somewhat continuous.

Proof. Take the example of a somewhat continuous bijection which is not
quasi-continuous, [18], Proposition 1, p. 174.

Then G = (— —;—, %) is the open subspace with the required property:

(2.22) ([16], [2], Example 1.10). The restriction of a quasi-continuous function
to a closed subspace need not be quasi-continuous.

(2.23) ([2], Example 2.7, p. 319). The restriction of a somewhat continuous
function to a closed subspace need not be somewhat continuous.

.(2.24] ([15], Example 3, p. 177). The restriction of a nearly continuous
function to a closed subspace need not be nearly continuous.

Using’ [18] Proposition 1, p. 174, one may prove the following, <take

< — % %> as the closed subspace)

Proposition 2.25. The restriction of a somewhat nearly continuous function
to a closed subspace need not be somewhat nearly continuous.

Proposition 2.26. The restriction of a quasi-continuous function to a dense
subspace is quasi-continuous.

Proof. Let D be a dense subspace of X. Let V be an open subset of Y such
that f~'(V) D # 0. Since f'is quasi-continuous, f~'(V) is semi-open in X. Now,
apply Lemma 1.1.

Proposition 2.27. The restriction of a somewhat continuous function to a
dense subspace is somewhat continuous.

Proof. Similar as in the proof of Proposition 2.26. Next, apply Remark 1.2.

Proposition 2.28.

nearly continuous
somewhat nearly continuous
nearly continuous
somewhat nearly continuous
Now we turn to the problem whether the limit of a sequence of a.c. functions
belonging to a class 4 is a function from 4.
Take {f,},-_, defined on <0, 1) as f,(x) = x", for each n = l, 2, .... The limit

The restriction of a { } function to a dense

subspace need not be
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function f'given by f(x) =0 for0 < x < 1 and f (1) = 1 is not somewhat nearly
continuous though £, is continuous, n = 1, 2, ... . So, we obtain
Proposition 2.29. The limit of a sequence of

( continuous )
quasi-continuous

somewhat continuous > functions need not be
nearly continuous

\_somewhat nearly continuous J

3 3

A

continuous
quasi-continuous _
< somewhat continuous >
nearly continuous
_somewhat nearly continuous J

In this part (X, o) denotes a separable metric space and (Y, @’) any metric
space. The functions are defined on X and take values in Y. Let €2 be the first
uncountable ordinal number. The transfinite sequence {a.}; . , of elements of a
metric space with the metric ¢’ is said to be convergent and have a limit ae Y
if for every € < 0 there exists an ordinal number y < £ such that for each £ with
u < & < Qthe inequality 9’ (a;, a) < eholds. A transfinite sequence {f}; . o on
a set X with the values in a metric space Y is said to be pointwise convergent to
a fuction f, defined on X, if {f;(x)}; . , is convergent to f(x) for any xe X.

It follows from [28] Theorem 1, p. 158.

(2.30) Let {f;} (£ < ) be a transfinite sequence of continuous functions
pointwise converging to a function f. The f is continuous.

(2.31) ([21] Theorem 1, p. 110). Let {f;} (£ < £2) be a transfinite sequence of
quasi-continuous functlons p01ntw1se converging to a function f. Then f is
quasi-continuous.

Proposition 2.32. Let {f;} (£ < ) be a transfinite sequence of somewhat
continuous functions pointwise converging to a function f. Then f'is somewhat
continuous. .

Proof. (Compare [21] Theorem 1, p. 110). Let f be not somewhat continuous
at x,€ X. Then there is an € > 0 and a § > 0 such that for any non-empty open
set G < S(x,, 0) there exists fe G with

(1 (@) = f(xo)| > €.

Hence the set T of all ¢ for which (1) is true is dense in S(x,, 6). Let D be a
countable dense subset of T. There is u < €2 such that for & > u

) fx)=f(x)  (for xe D).
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The last fact easily follows from the following result of Salat [28], p. 158.

(2.33) Let Z be a metric space, a;€ Z(& < £2) and a; — a. Then there exists
an ordinal number @ < £ such that a; = a for each §, a < £ < Q.

Now, let §, > u be any fixed ordinal number. The somewhat continuity of Iz,

at x, implies the existence of a non-empty open set U — S(x,, ) such that
1f;, (x) = f: (xo)| < efor xe U. Evidently, Un D # 0, D being dense in S(x,, J).

=)

For any 1e Un D we have |f; (x,) —f;, (1)} < & In view of (2.33) we may
assume f: (xo) = f(x,), S5, (1) = f(1) (in view of (2)), hence |f(x,) = f(2)| < &,
which is a contradiction to (1). This finishes the proof of Proposition 2.32. []

(2.34) ([22], Theorem 3, p. 124). Let {f} (£ < £2) be a transfinite sequence of
nearly continuous functions pointwise converging to a function f. Then f need
not be nearly continuous.

Proposition 2.35. Let {f:} (£ < £2) be a transfinite sequence of somewhat
nearly continuous functions pointwise convernging to a function f. Then f need
not be sumewhat nearly continuous.

Proof. One may verify that the function f in [22], Theorem 3, p. 124, is not
somewhat nearly continuous, though f.({ < £) are somewhat nearly con-
tinuous. [

Now we turn to the uniform convergence of functions.

The following result is well-known:

(2.36) Let X be a space (Y, g), be metric and let {f;} be a sequence of
continuous functions from X to Y. If the sequence {f;} is uniformly convergent
to a function f, then f'is continuous.

Proposition 2.37. Let X be a space, (Y, o) be metric and let {f} be a sequence

quasi-continuous
of somewhat continuous
nearly continuous
somewhat nearly continuous

functions from X to Y. If the sequence {f;}

quasi-continuous
somewhat continuous
nearly continuous
somewhat nearly continuous
Proof. We will prove Proposition 2.37 for the class of somewhat continuous
functions. The proofs for the other cases are similar.
In fact, we will show that for every x,€ X and any & > 0 there exists an open,
non-empty set U such that o(f(x,), f(x,)) < &, for every x,e U.
Let us take k such that

(*) o(f(x), £.(x)) < g, for e‘very xeXand n> k.

is uniformly convergent to a function f; then fis

Since the function £, is somewhat continuous, there is an open, non-empty set U with

’
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(x#) (o), (X)) < ‘—; for every x, e U.

Now we will prove that the set U has the required property. Let us take x,e U.
It follows form (*) and (**) that

o(f (%), f(x1)) < o(f (xp), (X)) + @(fi(Xo), fil X)) +
+ Q(f;t(xl)af(xl)) <§+§+'§= . O

The most of the results of § 2 obtained up to now are summarized in the following
Table 1.

Table 1
> | 2 2 > 8 L 8
5|5 5 g2 158l B |2 g8
g |5 B | 8 |8S|E |2 |§E |3 |,2|5¢
= = = O Q = 3| 0 o o o = 8|9 3
g |ag|l 8 |a2| & |a&]|qg o o Q g 2|
s |les| &8 |legg|l & |[ex|= 2 |2 E |E€E|E%
. § |8=| B8 |e5| <« |&8°]|% * 5 2 2|E g
Functions = |23 g [e&] © [Eg|8 ] i) g 3|0 2
‘D S 8_ B S = Y 83 «* . » 3 ECl|lE ¢
o o= T -2 8, o B -8 2 4 2 - =18 2
& |5E|l 5 |sg| & |8 5 5 «2l8 g wl| 5 g
E |88 |35 2 |5a|l58|E8|gd|cE|zts
S |Sp| B |Sg| 8 |EgERIERIERI=E|28|2§
g |23 2 |23 2 |2Z|c8|88|88|E5|Eg|E
Elfs| E |Es| € |Es|e3|£2|22|5 358|355
continuous o+ = + + 4 + L 4 AL — o} 3
functions | (2.1) | 2.5) | 2.8)] (2.8]|(2.14)|(2.14){(2.17){(2.17)| (2.17) | (2.29) | (2.30) | (2.36)
‘-]cl:)?tli-nuous . - * i K A * N + ~ + +
functions 22| @5 | 29| 2.9]@2.15](2.15](2.18)|(2.22)[(2.26) | (2.29) | (2.31) | (2.37)
somgwhat _ _ _ 2 4 5 _ _ " _ N +
continuous |, 3y | 5 5) 12.11)[(2.12)|2.16)| 2.16) | 2.20) | 2.23) | 2.27) | 2.29) | 2.3) | 2.37)
functions . ] : ) : ) i ; ) . ; !
Ezil:fmous - = s + + i = - N - - +
fonctions | @4 | @9 (210)|(210)((2.16)2.16)| (2.19) | 2.24) (2.28)((2.29)| (2.34)| (2.37)
somewhat
nearly - - -=-t+1+1+]-=-1-1-=-1-1-1H+
continuous | (2.3) | (2.5) [(2.11)[(2.13)|(2.16)| (2.16) [ (2.21) [ (2.25) | (2.28) | (2.29) | (2.35) | (2-37)
" functions

Now we turn to the investigations of the ‘invariants and special properties of
considered a.c. functions.

It is well known that

(2.38) Separability, connectedness and compactness are the invariants under
continuity. '
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Proposition 2.39. Connectedness or compactness are not the invariants under
quasi-continuity
somewhat continuity
near continuity
somewhat near continuity

(2.40) ([2], Theorem 2.9, p. 320). Separability is an invariant under somewhat
continuity (thus under quasi-continuity). '

Proposition 2.41. Separability is not an invariant under near continuity (thus
under somewhat near continuity).

If Fis a linear subspace of a linear topological space X, the linear topological
space is the quotient space X/F with the topology such that the set U in X/Fis open
if and only if Q ~'(U) is open in X, where Q: X — X/F is the quotient functions; that
is Q(x) = x + F. For all notions used but undefined here see [11], pp. 9, 34 and 39.

(2.42) ([11], Theorem 5.7. p. 39). Let F be a linear topological subspace of a linear
topological space X and let X/F be the quotient space. Then the quotient function
Q: X — X/F is linear, continuous and open.

The following result which is a consequence of (2.42) and (2.7), generalizes the
second part of Theorem 5.7 of [11].

(2.43) [2.5], Thm 3p. 290). A function T on X/F is somewhat continuous if and
only if the composition T Q is somewhat continuous.

(2.44] (25], Thm 4p. 290). If T is a somewhat continuous linear transformation
from a linear topological space X to a linear topological space Y, then T is
continuous.

(2.45) (25], Thm 4p. 290). If fis a somewhat continuous functional on a linear
topological space, then f'is continuous.

Corollary 2.46. If T is a quasi-continuous linear transformation from a linear
topological space X to a linear topological space Y, then 7 is continuous.

(2.47) (cf. [10], p. 214). If T is a nearly continuous (thus somewhat nearly
continuous) linear transformation from a linear topological space X to a linear
topological space Y, then T need not be continuous.

However, if we assume that 7T has the closed graph and X and Y are “nice” linear
topological spaces, then T is continuous — see [30].

The following result may be found in [8], p. 11.

(2.48) If fis a somewhat continuous (thus quasi-continuous) homomorphism
between topological groups, then f'is continuous.

Modifying the example in [10], Problem R p. 214, we obtain

(2.49) If fis a nearly continuous (thus somewhat nearly continuous) homomor-
phism between topological groups, then f need not be continuous.

Let X be a space and Y be a Hausdorff space. It is well-known that if a continuous
function f of a dense subset D of a space X to Y is continuously extendable over X,
then the extension is uniquely determined by f.
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quasi-continuous
somewhat continuous
nearly continuous
somewhat nearly continuous
quasi-continuously
somewhat continuously
near continuously
somewhat near continuously
then the extension is not uniquely determined by f.

Now we summarize the results of §2 concerning the discussed invariants and
special properties of a.c. functions — see

Proposition 2.50. If a function f of a dense

.

subset D of space X to Y is extendable over X, s

Table 2
&
] @ = =] = an =
. :::T g s & E 2 EEE ,58'5
Functions 8B S8 8 S B g 2| Ee®m (2553
i g8 §8 | 85E| 5§62 |85t
£ 8 Z E z E = RS CEQ % =2 E
) L 0 v o = 8 @ > g & (o £ 2
§,,, 2 o 25 2= g o 8 2 E8 2
&5 £% | £5 | E55 | Ess |FE28
; . + + + + + +
continuous functions @.38) 2.38) 2.38)
quasi-continuous + - — + + -
functions (2.40) (2.39) [2.39) (2.46) (2.48) (2.50)
somewhat continuous + - - + + —
functions (2.40) 239 | (2.39) (2.44) (2.48) (2.50)
nearly continuous - = = — — -
functions (2.41) (2.39) (2.39) (2.47) (2.49) (2.50)
somewhat nearly - — s — = —
continuous functions (2.41) (2.39) (2.39) (2.47) (2.49) (2.50)

§ 3 Symmetric quasi-contunity

At the beginning we recall the definitions of notion used in this paragraph.

A space will be called a Baire space [4], if its non-empty open sets are of
second category.

A function f: X x Y —» Z (X, Y, Z — arbitrary topological spaces) is said to
be quasi-continouous at (p, q) € X x Y with respect to the variable y, (compare
[16], p. 41 also [12], p. 188), if 'for every neighborhood N of (f(p, ¢) and for every
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neighborhood U x V of (p, q), there exists a neighborhood V'’ of g,with V' < V,
and a non-empty open U’ < U, such that for all ((x, y)e U" x V' we have f (x,
») € N. If fis quasi continuous with respect to the variable y at each point of its
domain, it will be called quasi-continuous with respect to y. The definition of a
function f that is quasi-continuous with respect to x is quite similar. If f is
quasi-continuous with respect to x and y, we will say that f is symmetrically
quasi-continuous.

Let X, Y and Z be spaces and let a function f: X x Y — Z be given. For every
fixed x € X, the function f: X x Y — Z defined by f.(y) = f(x, y), where ye Y,
is called an x-section of f. A y-section of f is defined similarly.

Let A be a class of functions. We say that a function f: X x Y > Z is
separately of class A (e. g., separately continuous), if f is of class A4 (resp.
continuous) with respect to each variable while the other variable is fixed. So,
[ is separately of class 4, if its all x-sections f, and y-sections f, are of class A.

To express_ that a function f: X x Y — Z is of class 4 as the function of two
variables, we will say that f'is jointly of class 4 (e.g. jointly continuous).

One can easily show from the definitions that if f is symmetrically quasi-
continuous, then f, and f, are quasi-continuous for all xe X and ye Y. The
converse does not hold.

(3.1) ([25], Ex. 1 p. 349). Indeed, define f: J x J— J as follows: f(x, y) =

=ifxe <% , l> andye <0, %> and f(x, y) = 1 on the rest. It is easy to verify that

all x-sections f, and all y-sections f, of f are quasi-continuous and f is not
symmetrically quasi-continuous. However, we have the following:

(3.2) ([26], Thm 1 p. 350). Let X be a Baire space, Y be first countable and
Z be regular. If fis a function on X x Y to Z such that all its x-sections f, are
continuous and all its y-sections f, are quasi-continuous, then f is quasi-
continuous with respect to y.

As an immediate consequence we obtain (3.3) ([26], Cor. 1 p. 350). Let X and
Y be first countable, Bairé spaces and Z be a regular one. If /> X x Y5> Z is
separately continuous, then fis symmetrically quasi-continuous.

(3.4) ([26], Remark 1 p. 351). The assumption of quasi-continuity of f, cannot
be weakened. There is a counterexample that using somewhat continuity instead
of quasi-continuity, Theorem 3.2. becomes false. Indeed, define f: J x J — J by:

. 1 1 . o 11
fx, y)=0 if xe<0, Z> or x€<§, 1>nQ, fx, p)=1if xe<4, 2> or
xe(%, l>m(R\Q).

Such a function has all its x-sections continuous and has all its y-sections
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somewhat continuous and Theorem 3.2. does not hold for f. Also the assump-
tion of continuity of all x-section f, of fis essential — see example 3.1.

Now let us turn to symmetrically quasi-continuous functions and their
connections with separately continuous functions.

A theorem of Sierpinski [29] asserts that a real-valued function on R", if it is
separately continuous, is determined by its values on any dense subset of R".
Some abstract versions of this statement were given by Comfort [6] and Goff-
man and Neugebauer [9]. Symmetric quasi-continuity is closely related to the
notion of separate continuity — see Corollary 3.3. One may conjecture that
Sierpinski’s theorem holds-for symmetrically quasi-continuous functions. It is
not so, even in the case when these two spaces are Euclidean ones.

Example 3.12. (Compare [16], example 2, p. 42). Let f and g be defined as
follows

1

sin , if X+)y"#0
fx, y) = x* 4+ y?
0, if X>+)’=0
sin—L . if x4 £0
X+
g(x, y) = :
5, lf x2+y2=0.

Both of the functions fand g are symmetrically quasi-continuous, they agree

on the dense subset of R? (in fact, the whole plane, except (0, 0)); however, they
are not identical.

§ 4. Comparing some a.c. functions defined on product spaces

We start from some examples. Throughout this paragraph, the square in the
plane {(x, y)| -1 < x <1, —1 < y < 1} is denoted by S.
Example 4.1. Let f/: S — R be defined as follows

_J0,if0<x<1A0<y<Dv(—-1<x<0A-1<y<0)
S y) = { 1, on the rest.
This function is separately quasi-continuous (thus jointly quasi-continuous, by
Theorem 1 of [16], p. 39). However it is neither quasi-continuous with respect
to y nor jointly (nor separately) nearly continuous.
Example 4.2. Define the function f; and f2 on {—1, 0) x {(—1, 0> and
O, 1) x {—1, 0), respectively.
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( 1
filx, y) =4 'V<XEQ0<_1,_%;AyeQm<;%,o>)v
( 1

L1, on the rest.

fl, if <0<xs%/\ —15ys—%>v<%3xsl/\ —%Sy<0)

. 1 1
\% (xe(R\Q)n(O, E) A ye(R\Q)m(— 5, 0)) Y

v (xe(R\Q)f\G’ 1> A YE(R\Q)”<"]’ _%»

\O, on the rest.

Slx, y) = {

These functions define f; and f, from <0, 1> x <0, 1> and {(—1, 0) x (0, 1),
respectively, as follows ’

L) =fil=x,y+1)  filx, ) =fi(-x,y+1).

Put f(x, y) = fi(x, y), where .l < i < 4. The function fis defined on S. It is
easy to check that f is jointly somewhat continuous (thus jointly somewhat
nearly continuous), also f is separately somewhat continuous (thus separately
somewhat nearly continuous). However, f is neither jointly quasi-continuous
(thus not separately quasi-continuous) nor quasi-continuous with respect to y,
nor jointly (nor separately) nearly continuous.

Example 4.3. Let f: S — R be defined as follows

_JLIfO0<x<1lA-1l<ysDvx=0aAy=1)
S, ) {0, on the rest.

This function is quasi-continuous with respect to y, however,it is not separately

somewhat nearly continuous (thus not separately somewhat continuous, not

separately nearly continuous). Also it is not jointly nearly continuous.
Example 4.4. Let f: S — R be defined as follows
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0, if (—Ist—%A —ISysl)v(x=0Ay;é0)

f(x,y) = V(xe<_%,_;.>mQ\{0}/\ye(—l, 1'>nQ>

1, on the rest.

The function f is jointly somewhat continuous. However it is neither
separately somewhat nearly continuous (thus not separately somewhat con-
tinuous and not separately nearly continuous) nor jointly nearly continuous.

Example 4.5. Let /> S — R be defined as follows

0,if (-1<x<0A A—-1<y<l)vExe® 1>)NnQ A ye
fx, y) = e(-1L,1>n Q)
1, on the rest.

This function is jointly (also separately) somewhat nearly continuous. How-
ever, f is neither jointly somewhat continuous nor separately somewhat con-
tinuous. Moreover, it is not jointly (nor separately) nearly continuous.

Now, we recall some results of other authors. From now up to the end of this
paragraph, we assume that the considered space X is Baire, Y is'second count-
able and Z is metric and /> X x Y — Z is a function.

It is well known that

(4.6) Separate continuity does not imply joint continuity (even does not imply
joint near continuity).

Martin [16], Theorem 1, p. 39, proved the following (see also [17], Theo-
rem 1).

(4.7) If fis separately quasi-continuous, then f is jointly quasi-continuous.

He also showed that

(4.8) Joint quasi-continuity does not imply separate qasi-continuity.

In [16], Theorem 3, p. 41, (see also [26], Theorem 1) it is proved that
(4.9) If f is separately continuous, then f is quasi-continuous with respect
to y. ' :

Also in [16], Example 2, p. 42, it is shown that

(4.10) If f is symmetrically quasi-continuous (thus quasi-continuous with
respect to y), then f need not be separately continuous.

Neubrunn showed in [19], Example 1, that

(4.11) Joint near continuity does not imply separate near continuity.

He also showed in [19], Example 2, that

(4.12) Separate near continuity does not imply joint near continuity.

In [17], Example, p. 99, it is shown that

(4.13) Separate somewhat continuity does not imply joint somewhat continu-
ity.
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Table 3

) g %) 2
glg |2 3
=N 3 = g
> - 2l-=s = ol = v ) 2|8 2lcq
Bl 5| 2|5 |5 |_B|Z5| B| B||z
gl 8| g8|f |e>»EG8|88| ©|=28|ES|E3
@ @ 8= o 2| ? a ] ] 2|2 4
4] .. 8 21 > - §‘ o 2| >3 3 2|l=>22|le B|>2
o|l= 2 = » » Ol ol & © Q|l@ Q|© ©
EE|SE|ES|S2|2E|EE|SE|EE|8E|EE|8¢E
58|§§|83|85|85|c8|55|c8|88|58|%8
jointly % + + + i 4 + + 4
continuous
functions Def | Def | Def | Def | Def | Def | Def | Def | Def | Def
separately _ -
continuous * N kS S N § N M :
continuous (4.6 4.7)| Def | 4.9)| (4.7)| Def | (4.6)| Def | (4.7)| Def
jointly _ _ + _ _ + _ - - 4+ —
quasi-continuous
finctions (4.8)| (4.8) (4.8)| (4.1)] Def | (4.8)| (4.8)| (4.2)| Def | (4.3)
separately _ _ _ — —
quasi-continuous -+ * . § . 4
N @6)| @.n| @7 @1)| @.7| Def | @.1)| @.1)| [4.7)| Def
functions quasi-
-continuous with B B N "y * N " " " . "
besriect o)y (4.10)| (4.10)| Def | (4.8) Def | (4.3)| (4.3)| (4.3)| Def | (4.3)
jointly somewhat _ _ _ _ _ + _ _ - 4 —
continuous
fisistions (4.8)| (4.8)| 4.2)| 4.2)| 4.2 (44)| (44)| 4.4)| Def | (4.9
separately some- _ _ _ _ _ _ i _ _ 9 —
what continuous ’
funcﬁons’ (4.6)|(4.13)[(4.13)| (4.13)| (4.2)|(4.13) 4.2)| 42 Def
jointly nearly * _ _ _ _ _ _ _ 4 — i =
‘f’::;:‘::s“s @.11)|@.11)|@11)|@.11)|@.11)|@.11)|(@4.11) (@.11)| Def |(4.11)
separately nearly _ _ _ _ = _ _ _ 4+ ? 4
;::;:’::s“s (4.6)|(4.12){(3.12)| (4.12) | (4.12) | (4.12) | (4.12) | (4.12) Def
jointly somewhat _ _ _ _ _ _ _ _ — + —
nearly continuous
functiyons (4.8)| (48)] 42)] 4.2)| 42)] 45| 45| @4.5] 4.5 4.11)
separately some- _ _ _ _ _ _ — = = ? +
what nearly con-
{intous fu:ctions (4.6)| (4.8)] (4.2)] 4.2)| (4.2)|(4.13)] (4.5) | (4.5)| 4.5
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We organize the results of § 4 in Table 3. The word “Def.” means that the

result easily follows from the definitions of the suitable functions. We put “?”
if an answer is not known. Recall that the considered space X is Baire, Y is
second countable and Z is metric, and f: X x Y — Z is a function.
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19.
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SUHRN

PREHLAD VYSLEDKOV TYKAJUCICH SA ZOVSEOBECNENEJ SPOJITOSTI
NA TOPOLOGICKYCH PRIESTOROCH

Z. Piotrowski, Youngstown

V préci je uvedeny prehlad medzi nasledujucimi typmi spojitosti: Kvazispojitost, trochu-

spojitost, takmer-spojitost, trochu-takmer-spojitost.

PE3FOME

OB30P PE3VJIbTATOB, KACAIOIIUXCS OBOBIIEHHOW HEMPEPLIBHOCTH
HA TOITOJIOT'MYECKUX IMMPOCTPAHCTBAX

3. IMitoTposcku, MoHrcToBH

B pa6oTe npuBeneH 0630p cBA3eit MexXAy pa3TMYHBIMH BHAAMH HENPEPUBHOCTEN, HANpUMeEp:

KBa3HHenpepbIBHOCTBIO, IOYTH HETIPEPBIBHOCTIO, 0000ILEHHOH HENPEPbIBHOCTBIO U T.A.
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