

Werk

Label: Article **Jahr:** 1987

PURL: https://resolver.sub.uni-goettingen.de/purl?312901348_50-51 | log9

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

UNIVERSITAS COMENIANA ACTA MATHEMATICA UNIVERSITATIS COMENIANAE L—LI—1987

ON LORENTZ—ORLICZ SPACES

JANINA EWERT, SLUPSK — TIBOR ŠALÁT, BRATISLAVA

Introduction

Let X be a linear space. A functional $\varrho: X \to \langle 0, +\infty \rangle$ is said to be convex modular on X if

- 1. $\varrho(x) = 0$ if and only if x = 0;
- 2. $\varrho(-x) = \varrho(x)$ for $x \in X$;
- 3. $\varrho(\alpha x + \beta y) \le \alpha \varrho(x) + \beta \varrho(y)$ for each $x, y \in X$ and $\alpha \ge 0, \beta \ge 0, \alpha + \beta = 1$ (cf. [5], p. 5)

The set $X_{\varrho} = \{x \in X: \exists_{t>0} \varrho(tx) < +\infty\}$ is a linear subspace of X. We can define on X_{ϱ} the norm

$$||x|| = \inf \left\{ t > 0 \colon \varrho\left(\frac{x}{t}\right) \le 1 \right\}$$

The space $(X_{\varrho}, \| \|)$ is called the modular space determined by the modular ϱ (cf. [5], p.6).

An Orlicz function is a continuous non-decreasing and convex function $f: \langle 0, +\infty \rangle \rightarrow \langle 0, +\infty \rangle$ with f(0) = 0, $f(+\infty) = +\infty$ and $\lim_{t \to \infty} f(t) = +\infty$.

If f(t) = 0 for some t > 0, then f is called a degenerate Orlicz function (cf. [4], p. 137).

An Orlicz function f satisfies the Δ_2 -condition for small t if there exist K > 0, $t_0 > 0$ such that $f(2t) \leq Kf(t)$ for each $t \in \langle 0, t_0 \rangle$ (cf. [4]).

Let f be a non-degenerate Orlicz function whose right derivative P satisfies

P(0) = 0 and $\lim_{t \to \infty} P(t) = +\infty$. Put $Q(u) = \sup\{t: P(t) \le u\}$ $(u \ge 0)$ and

 $f^*(t) = \int_0^t Q(u) du$ $(t \ge 0)$. Then f^* is also a non-degenerate Orlicz function and it is called the function complementary to f.

For any $u \ge 0$, $v \ge 0$ the following Young's inequality holds:

$$u \cdot v \le f(u) + f^*(v)$$

(cf. [4], p. 147).

In what follows s stands for the linear space of all real sequences. Further we put

$$e_n = \underbrace{0, 0, ..., 0}_{n-1}, 1, 0, ... \qquad (n \ge 1)$$

Let π be a permutation of the set N of all positive integers and let $x = \{\xi_n\}_{n=1}^{\infty} \in s$. Then we shall denote by x_{π} the sequence $\{\xi_{\pi(n)}\}_{n=1}^{\infty}$.

Let $a = \{a_n\}_{n=1}^{\infty}$ be a sequence of real numbers with $1 = a_1 \ge a_2 \ge ... \ge 2$ $\ge a_n \ge a_{n+1} \ge ... a_n \to 0$, $\sum_{n=1}^{\infty} a_n = +\infty$. Let f be a non-degenerate Orlicz function. For $x = \{\xi_n\}_{n=1}^{\infty} \in S$ we put

$$\varrho(x) = \sup_{\pi} \sum_{n=1}^{\infty} f(|\xi_n|) a_{\pi(n)} = \sup_{\pi} \sum_{n=1}^{\infty} f(|\xi_{\pi(n)}|) a_n$$

where the supremum is taken over all permutations π of the set N. Then ϱ is a convex modular on s (cf. [2]) and

$$d(a, f) = \{x \in s: \exists_{t>0} \varrho(tx) < +\infty\}$$

is a modular space called a Lorentz-Orlicz space (cf. [2]).

In what follows l_{∞} stands for the linear space of all bounded real sequences, c_0 denotes the linear space of all real sequences converging to 0.

1. Applications of the category method in the theory of Lorentz-Orlicz spaces

In what follows we shall use the following result from [2]:

Theorem A.

- (i) The space d(a, f) is a Banach space;
- (ii) We have $d(a, f) \subset c_0$;
- (iii) If $x \in d(a, f)$, then $x_{\pi} \in d(a, f)$ for each permutation π of the set N and $\varrho(x) = \varrho(x_{\pi})$;
 - (iv) We have

$$\{x \in d(a, f): \varrho(x) \le 1\} = \{x \in d(a, f): ||x|| \le 1\}$$

(v) If the function f satisfies the Δ_2 -condition for small t, then each $x = \{\xi_n\}_{n=1}^{\infty} \in d(a, f)$ has the form $x = \sum_{n=1}^{\infty} \xi_n e_n$ and $d(a, f) = \{x \in s: \forall \varrho(tx) < t\}$

 $<+\infty$. If $y=\{\eta_n\}_{n=1}^\infty\in d(a,f^*)$ (f^* being the complementary function to f), then we get from the Young's inequality:

(1)
$$\sup_{\pi} \sum_{n=1}^{\infty} |\xi_n \eta_{\pi(n)}| a_n < + \infty$$

for each $x = \{\xi_n\}_{n=1}^{\infty} \in d(a, f)$.

Theorem 1.1. Let a non-degenerate Orlicz function f satisfy the Δ_2 -condition for small t. Let $y = {\eta_n}_{n=1}^{\infty}$ be a bounded sequence of real numbers such that there exists a $c = \{\gamma_n\}_{n=1}^{\infty} \in d(a, f)$ with

(2)
$$\sup_{\pi} \sum_{j=1}^{\infty} |\gamma_j \eta_{\pi(j)}| a_j = + \infty.$$

Then the set

$$M = \left\{ x = \{ \xi_j \}_{j=1}^{\infty} \in d(a, f) : \sup_{\pi} \sum_{n=1}^{\infty} |\xi_n \eta_{\pi(n)}| a_n < + \infty \right\}$$

is an F_{σ} — set of the first Baire category in d(a, f). Remark 1.1. It follows from (1) and (2) that $y = {\eta}_{j=1}^{\infty} \notin d(a, f^*)$ and $\eta_n \neq 0$ for an infinite number of n's.

Proof. Put

$$C_k = \bigcup_{n=1}^{\infty} \left\{ x = \{ \xi_j \}_{j=1}^{\infty} \in d(a, f) : \sup_{\pi} \sum_{j=1}^{n} |\xi_j \eta_{\pi(j)}| a_j > k \right\}.$$

We shall show that $C_k \neq \emptyset$ (k = 1, 2, ...).

Since $\sum_{j=1}^{\infty} a_j = +\infty$, there exists an n_0 such that for each $n \ge n_0$ we have

$$(3) \qquad \sum_{j=1}^{n} a_j > k.$$

Since $\eta_n \neq 0$ for infinitely many n' s we can choose $j_1 < j_2 < ... < j_n$ such that $\eta_{j_i} \neq 0 \ (i = 1, 2, ..., n)$. Let us put

$$\xi_{j_i} = \eta_{j_i}^{-1}$$
 $(i = 1, 2, ..., n)$
 $\xi_m = 0$ for $m \neq j_i (i = 1, 2, ...)$

and $x = \{\xi_i\}_{i=1}^{\infty}$. Then on account of (3) the sequence x belongs to C_k . Hence

We shal show that $C_k(k = 1, 2, ...)$ is an open set in d(a, f). Let $x^0 = \{\xi_i^0\}_{i=1}^{\infty} \in C_k$. Then there is an *n* such that

$$\sup_{\pi} \sum_{j=1}^{n} |\xi_{j}^{0} \eta_{\pi(j)}| a_{j} > k.$$

Choose $\varepsilon > 0$ and $\delta > 0$ in such a way that

(4)
$$\sup_{\pi} \sum_{j=1}^{n} |\xi_{j}^{0} \eta_{\pi(j)}| a_{j} - \varepsilon > k,$$

$$\delta \sup_{\pi} \sum_{j=1}^{n} |\eta_{\pi(j)}| a_{j} < \varepsilon$$

and $0 < \delta_1 = f(\delta) < 1$.

Let $x = \{\xi_j\}_{j=1}^{\infty} \in d(a, f)$ satisfy the condition $||x - x^0|| < \delta_1 < 1$. According to Theorem A (iv) we have $\varrho\left(\frac{x - x^0}{\delta_1}\right) \le 1$. From this we get

$$\sup_{\pi} \sum_{j=1}^{\infty} f(|\xi_j - \xi_j^0|) a_{\pi(j)} \leq \delta_1 = f(\delta).$$

Hence for each j we have $f(|\xi_j - \xi_j^0|) < f(\delta)$ and so $|\xi_j - \xi_j^0| < \delta (j = 1, 2, ...)$. So for every permutation π of the set N the following inequalities hold:

$$\sum_{j=1}^{n} |\xi_{j} \eta_{\pi(j)}| a_{j} \geq \sum_{j=1}^{n} |\xi_{j}^{0} \eta_{\pi(j)}| a_{j} - \sum_{j=1}^{n} |\xi_{j} - \xi_{j}^{0}| |\eta_{\pi(j)}| a_{j} > \sum_{j=1}^{n} |\xi_{j}^{0} \eta_{\pi(j)}| a_{j} - \varepsilon.$$

According to (4) this gives

$$\sup_{\pi} \sum_{j=1}^{n} |\xi_j \eta_{\pi(j)}| a_j > k,$$

i.e. $\{x \in d(a, f): \|x - x^0\| < \delta_1\} < C_k$. Hence C_k (k = 1, 2, ...) is an open set. According to our assumption the sequence $c = \{\gamma_n\}_{n=1}^{\infty}$ belongs to the set $C = \bigcap_{k=1}^{\infty} C_k$.

Let $\varepsilon > 0$. According to Theorem A (v) there exists a $p \in N$ such that

(5)
$$\left\|\sum_{j=p+1}^{\infty} \xi_{j} e_{j}\right\| < \frac{\varepsilon}{2}, \left\|\sum_{j=p+1}^{\infty} \gamma_{j} e_{j}\right\| < \frac{\varepsilon}{2}.$$

Put $\beta_j = \xi_j$ for $j \le p$ and $\beta_j = \gamma_j$ for j > p. Then it can be easily checked that $w = \{\beta_j\}_{j=1}^{\infty} \in C$ and using (5) we see that

$$||x-w|| = \left|\left|\sum_{j=p+1}^{\infty} (\xi_j - \beta_j)e_j\right|\right| < \varepsilon.$$

Thus C is a dense G_{δ} set in d(a, f). Hence C is a residual set in d(a, f) (see Theorem A (i)). Since $M = d(a, f) \setminus C$, the assertion follows.

Let f be a non-degenerate Orlicz function, let f^* be the complementary function to f. Denote by ϱ and ϱ^* the modulars determined by f and f^* , respectively. Similarly denote by $\|$ $\|$ and $\|$ $\|$ * the norms in d(a, f) and $d(a, f^*)$, respectively.

Theorem 1.2. Let both of f and f^* satisfy the Δ_2 -condition for small t. Then

- a) $|||x||| = \sup \left\{ \sum_{j=1}^{\infty} |\xi_j \eta_j| a_j \colon \varrho^*(y) \le 1 \right\}$ is a norm on d(a, f); b) For each $x = \{\xi_j \}_{j=1}^{\infty} \in d(a, f)$ and $y = \{\eta_j\}_{j=1}^{\infty} \in d(a, f^*)$ the following inequ-
- alities are satisfied:

$$\sum_{n=1}^{\infty} |\xi_n \eta_n| a_n \leq |||x||| \cdot ||y||^*,$$

$$\sum_{n=1}^{\infty} |\xi_n \eta_n| a_n \le ||x|| \cdot |||y|||^*,$$

where $\| \| \|^*$ is a norm on $d(a, f^*)$ defined by the same manner as $\| \| \| \|$. Proof. a) If

$$x = \{\xi_i\}_{i=1}^{\infty} \in d(a, f), y = \{\eta_i\}_{i=1}^{\infty} \in d(a, f^*)$$

and $\varrho^*(y) \leq 1$, then

$$\sum_{j=1}^{\infty} |\xi_j \eta_j| a_j \le \varrho(x) + 1$$

Hence $|||x||| < + \infty$ for each $x \in d(a, f)$ and obviously ||| ||| is a norm on d(a, f). b) Let

$$x = \{\xi_n\}_{n=1}^{\infty} \in d(a, f), y = \{\eta_n\}_{n=1}^{\infty} \in d(a, f^*)$$

and $\varepsilon > 0$. Then

$$\varrho^*\left(\frac{y}{\|y\|^* + \varepsilon}\right) \le 1$$

and

$$\sum_{n=1}^{\infty} \frac{|\xi_n \eta_n|}{\|y\|^* + \varepsilon} a_n \le \|\|x\|\|$$

by the definition of the norm || || ||. It implies

$$\sum_{n=1}^{\infty} |\xi_n \eta_n| a_n \le |||x||| \cdot ||y||^*$$

The proof of the second inequality is analogous. The proof is finished.

2. Some bitopological properties of Lorentz—Orlicz spaces

A set X with two topologies T_1 and T_2 , i.e. the triplet (X, T_1, T_2) is called a bitopological space (cf. [3]). A bitopological space (X, T_1, T_2) is pairwise Hausdorff ([3], [6]) if for each distinct points $x, y \in X$ there exist disjoint sets $U \in T_i$, $V \in T_i$, $i \neq j$, i, j = 1, 2, such that $x \in U$, $y \in V$.

In (X, T_1, T_2) the topology T_1 is said to be — regular with respect to T_2 (cf. [3], [6], [7]) if for every $U \in T_1$ and $x \in U$ there exists a set $V \in T_1$ such that $x \in V \subset \overline{V}^{(2)} \subset U$, where $\overline{V}^{(2)}$ denotes the T_2 — closure of V;

— perfect with respect to T_2 (cf. [1], [6]) if every T_1 — open set $U \subset X$ is an F_{σ} — set in (X, T_2) .

A bitopological space is said to be:

- pairwise regular (pairwise perfect) if T_i is regular (perfect) with respect to T_j for $i \neq j$, i, j = 1, 2 (cf. [3], [6], [7]);
- pairwise normal (cf. [1], [3]) if for every T_i closed set A and T_j closed set B such that $A \cap B = \emptyset$ there exist $U \in T_j$, $V \in T_i$ with $A \subset U$, $B \subset V$, $U \cap V = \emptyset$ for $i, j = 1, 2, i \neq j$;
- pairwise perfect normal if it is paiwise perfect and pairwise normal.
 The following result is known (cf. [1], Lema 2.4):

Theorem B. In (X, T_1, T_2) the following conditions are equivalent:

- (i) (X, T_1, T_2) is pairwise perfect normal;
- (ii) For each T_i —open set W there exists a sequence $\{W_n\}_{n=1}^{\infty}$ of T_i —open sets such that $W = \bigcup_{n=1}^{\infty} W_n$

and

$$\bar{W}_n^{(j)} \subset W_{n+1} (n = 1, 2, ...; i, j = 1, 2, i \neq j).$$

Let f, g be non-degenerate Orlicz functions, let $a = \{a_n\}_{n=1}^{\infty}$, $b = \{b_n\}_{n=1}^{\infty}$ be two sequences from $c_0 \setminus l^1$ such that

$$1 = a_1 \ge a_2 \ge \dots \ge a_n \ge a_{n+1} \ge \dots$$

 $1 = b_1 \ge b_2 \ge \dots b_n \ge b_{n+1} \ge \dots$

It is easy to verify that $l' \subset d(a, f) \cap d(b, g)$. So $d(a, f) \cap d(b, g)$ is a non-trivial linear space.

Let

$$\varrho_1(x) = \sup_{\pi} \sum_{j=1}^{\infty} f(|\xi_{\pi(j)}|) a_j,$$

$$\varrho_2(x) = \sup_{\pi} \sum_{j=1}^{\infty} g(|\xi_{\pi(j)}|) b_j,$$

where $x = \{\xi_j\}_{j=1}^{\infty} \in d(a, f) \cap d(b, g)$.

By $\| \|_1$ and $\| \|_2$ we denote the norms determined by modulars ϱ_1 and ϱ_2 , respectively. We shall use the symbol $K_i(x, r)$ to denote the T_i —open ball (i = 1, 2) with center x and radius r > 0 in $d(a, f) \cap d(b, g)$. Moreover, let T_1 and T_2 be

the topologies on $d(a, f) \cap d(a, g)$ induced by norms $\| \|_1$ and $\| \|_2$, respectively. Thus $(d(a, f) \cap d(b, g), T_1, T_2)$ can be cinsidered as a bitopological space.

Theorem 2.1 Let f and g be non-degenerate Orlicz functions, let f and g satisfy the Δ_2 —condition for small t. Then the following assertions hold:

- a) The bitopological space $(d(a, f) \cap d(b, g), T_1, T_2)$ is pairwise Hausdorff,
- b) For each $x \in d(a, f) \cap d(b, g)$ and r > 0 the set $K_i^{(i)}(x, r)$ is T_j —closed for i, j = 1, 2;
 - c) The space $(d(a, f) \cap d(b, g), T_1, T_2)$ is pairwise regular;
 - d) The space $(d(a, f) \cap d(b, g), T_1, T_2)$ is pairwise perfect normal.
- a) Let $x = \{\xi_j\}_{j=1}^{\infty}$ and $y = \{\beta_j\}_{j=1}^{\infty}$ be two distinct points from $d(a, f) \cap d(b, g)$. Because $x, y \in c_0$ (see Theorem A (ii)) we have

$$0 < r = \frac{1}{4} \sup_{j=1,2,...} |\xi_j - \beta_j| < + \infty.$$

Put

$$U = \{ z \in d(a, f) \cap d(b, g) : \|z - x\|_1 < r \},$$

$$V = \{ z \in d(a, f) \cap d(b, g) : \|z - y\|_2 < r \}.$$

Then U is a T_1 — neighbourhood of x and V is a T_2 — neighbourhood of y. Let us suppose that $z = \{a_j\}_{j=1}^{\infty} \in U \cap V$. Then for every $\varepsilon > 0$ the following inequalities are satisfied:

$$\sup_{\pi} \sum_{n=1}^{\infty} f\left(\frac{|\alpha_n - \xi_n|}{\|z - x\|_1 + \varepsilon}\right) a_{\pi(n)} \leq 1,$$

$$\sup_{\pi} \sum_{n=1}^{\infty} g\left(\frac{|\alpha_n - \beta_n|}{\|z - y\|_2 + \varepsilon}\right) b_{\pi(n)} \leq 1.$$

If we choose $0 < \varepsilon < \frac{r}{3}$, then we have

$$|\alpha_n - \xi_n| \le ||z - x||_1 + \varepsilon < \frac{4r}{3} = \frac{1}{3} \sup_{j=1,2,...} |\xi_j - \beta_j|,$$

 $|\alpha_n - \beta_n| \le ||z - y||_2 + \varepsilon < \frac{4r}{3} = \frac{1}{3} \sup_{j=1,2,...} |\xi_j - \beta_j|.$

These inequalities imply

$$|\xi_n - \beta_n| < \frac{2}{3} \sup_{j=1,2,...} |\xi_j - \beta_j|$$

for every n = 1, 2, ..., which is impossible. Thus we have shown that $U \cap V = \emptyset$. b) For any $\alpha > 0$, $k \ge 1$ let

$$B_k(\alpha) = \left\{ x = \{\xi_i\}_{i=1}^{\infty} \in d(a,f) \cap d(b, g) : \sup_{\pi} \sum_{i=1}^{k} f(\alpha|\xi_i|) a_{\pi(i)} \leq 1 \right\}.$$

We show that $B_k(\alpha)$ is a T_2 — closed set. Let $y = \{\eta_i\}_{i=1}^{\infty} \in \overline{B}_k^{(2)}(\alpha)$. Then $y = T_2 - \lim_{i \to \infty} y_i$, where $y_i = \{\eta_i^{(i)}\}_{j=1}^{\infty} \in B_k(\alpha) \ (i = 1, 2, ...)$.

For any $\varepsilon > 0$ there exists an i_0 such that

$$\varrho_2\left(\frac{y_i-y}{\varepsilon}\right) \leq 1,$$

i.e.

$$\sup_{\pi} \sum_{j=1}^{\infty} g_j \left(\frac{|\eta_j^{(i)} - \eta_j|}{\varepsilon} \right) b_{\pi(j)} \leq 1$$

for $i \geq i_0$.

From this it follows that

$$|\eta_i^{(i)} - \eta_i| \le \varepsilon g^{-1}(1) \ (i \ge i_0; j = 1, 2, ...).$$

So $\eta_j = \lim_{i \to \infty} \eta_j^{(i)}$ for each $j \ge 1$.

The condition $y_m \in B_k(\alpha)$ implies

$$\sum_{j=1}^{k} f(\alpha | \eta_j^{(m)}|) a_{\pi(j)} \leq 1$$

for each permutation π and $m \ge 1$. Hence using the continuity of f we get

$$\sum_{i=1}^{k} f(\alpha | \eta_i|) a_{\pi(i)} \leq 1$$

for every π and in the consequence

$$\sup_{\pi} \sum_{j=1}^{k} f(\alpha | \eta_j|) a_{\pi(j)} \leq 1.$$

Thus $y \in B_k(\alpha)$, which means that $B_k(\alpha)$ is T_2 — closed. According to Theorem A (iv) for any r > 0 we have

$$\bar{K}_1^{(1)}(0, r) = \left\{ x \in d(a, f) \cap d(b, g) \colon \varrho_1\left(\frac{x}{r}\right) \leq 1 \right\}.$$

So

$$\bar{K}_1^{(1)}(0, r) = \bigcap_{k=1}^{\infty} B_k\left(\frac{1}{r}\right).$$

Thus we have shown that $\bar{K}_1^{(1)}(0, r)$ is T_2 — closed. Moreover the equality $\bar{K}_1^{(1)}(x, r) = x + \bar{K}_1^{(1)}(0, r)$ implies that $\bar{K}_1^{(1)}(x, r)$ is T_2 — closed for every $x \in d(a, f) \cap d(b, g)$ and r > 0.

- c) Let $U \in T_1$ and $x \in U$. Then $\overline{K}_1^{(1)}(x, r) \subset U$ for some r > 0. It follows from the part b) that $\overline{K}_1^{(2)}(x, r) \subset U$. So T_1 is regular with respect to T_2 . In the same way we can show that T_2 is regular with respect to T_1 . In the same way we can show that T_2 is regular with respect to T_1 . Hence $(d(a, f) \cap d(b, g), T_1, T_2)$ is pairwise regular.
- d) Let U be any T_1 open set in $d(a, f) \cap d(b, g)$. Since $(d(a, f) \cap d(b, g), \| \|_1)$ is separable, we can write

$$U=\bigcup_{i,j=1}^{\infty}K_{1}(x_{i},\,r_{ij})\,,$$

where $\bar{K}_1^{(1)}(x_i, r_{ij}) \subset K_1(x_i, r_{i,j+1})$ for $i, j \ge 1$.

$$W_m = \bigcup_{i=1}^m K_1(x_i, r_{i,m+1-i}).$$

Evidently, $W_m \in T_1$ and $U = \bigcup_{m=1}^{\infty} W_m$. Mereover,

$$\bar{W}_{m}^{(2)} = \bigcup_{i=1}^{m} \bar{K}_{1}^{(2)}(x_{i}, r_{i,m+1-i}) \subset \bigcup_{i=1}^{m} \bar{K}_{1}^{(1)}(x_{i}, r_{i,m+1-i}) \subset \bigcup_{i=1}^{m} K_{1}(x_{i}, r_{i,m+2-i}) \subset W_{m+1}.$$

Using analogous methods we can show that every T_2 — open set U' is of the form $U' = \bigcup_{m=1}^{\infty} V_m$, where V_m are T_2 — open sets such that $\bar{V}_m^{(1)} \subset V_{m+1}$.

Thus from Theorem B it follows that the space $(d(a, f) \cap d(b, g), T_1, T_2)$ is pairwise perfect normal.

From Corollary 1.1 in [1] we have

Theorem C. Let X be a topological space and let (Y, T_1, T_2) be a bitopological space such that T_2 is second countable and T_2 is perfect with respect to T_1 . If $\varphi: X \to Y$ is a T_1 — continuous mapping, then the set $D(\varphi, T_2)$ of all points at which φ is T_2 — discontinuous is a set of the first Baire category in X.

Theorem 2.2. Let f and g be non-degenerate Orlicz functions that satisfy the Δ_2 — condition for small t.

- a) Every T_j —open set in $(d(a, f) \cap d(b, g), T_1, T_2)$ is of the form $U \cup B$, where $U \in T_i$ and B is of T_i —first Baire category (i, j = 1, 2) (hence every set $A \in T_j$ has the T_i —Baire property).
 - b) The set M of all $y \in d(a, f) \cap d(b, g)$ for which there exists a sequence

- $\{y_n\}_{n=1}^{\infty}$ of points from $d(a, f) \cap d(b, g)$ such that $\lim_{n \to \infty} ||y_n y||_i = 0$ and $\{||y_n y||_j\}_{n=1}^{\infty}$ does not converge to 0, is of the first category in $(d(a, f) \cap d(b, g), T_i)$ $(i, j = 1, 2, i \neq j)$.
- c) For each subset $A \subset d(a, f) \cap d(b, g)$ the set $\bar{A}^{(i)} \setminus \bar{A}^{(j)}$ is a set of the first Baire category in $(d(a, f) \cap d(b, g), T_i)(i, j = 1, 2)$.

Proof.

the proof.

a) Let $\varphi: (d(a, f) \cap d(b, g), T_i) \to (d(a, f) \cap d(b, g), T_1, T_2)$ be the mapping given by $\varphi(y) = y$ for $y \in d(a, f) \cap d(b, g)$. According to Theorem 2.1 the bitopological space $(d(a, f) \cap d(b, g), T_1, T_2)$ is pairwise perfect. Moreover, both of T_1 and T_2 are second countables. So it follows from Theorem C that $D(\varphi, T_j)$ is a set of the first category in $(d(a, f) \cap d(b, g), T_i)$. But $D(\varphi, T_i) = \bigcup \{\varphi^{-1}(V) \setminus \operatorname{Int}_{(i)} \varphi^{-1}(V) \colon V \in T_j\} = \bigcup \{V \setminus \operatorname{Int}_{(i)} V \colon V \in T_j\}$, where $\operatorname{Int}_{(i)}$ denotes the T_i —interior. Hence for each $V \in T_j$ the set $V \setminus \operatorname{Int}_{(i)} V$ is of the T_i —first category and $V = \operatorname{Int}_{(i)} V \cup (V \setminus \operatorname{Int}_{(i)} V)$ which completes the a). Parts b) and c) follow from a), since $M = D(\varphi, T_j)$ and $\overline{A}^{(i)} \setminus \overline{A}^j \subset M$. This ends

REFERENCES

- 1. Ewert, J.: Przekasztalcenia wielowartościowe i przestrzenie bitopologiczne. Slupsk 1985.
- Gdański, J.— Heuer, W.: On the Lorentz—Orlicz sequence spaces. Slupskie Prace Mat.-Przyr. 1 (1981), 13—25.
- 3. Kelly, J. C.: Bitopological spaces. Proc. London Math. Soc. 13 (1963), 71-89.
- Lindenstrauss, J.—Tzafriri, L.: Classical Banach Spaces. Sequence Spaces. Springer— Verlag, Berlin—Heidelberg—New York, 1977.
- 5. Musielak, J.: Przestrzenie modularne. Uniwersytet Im. A. Mickiewicza, Poznań, 1978.
- 6. Patty, C. W.: Bitopological spaces. Duke Math. J. 34 (1967), 387-392.
- 7. Reilly, I. L.: On bitopological separation properties. Nanta Mathematica 5(1972), 14-25.

Received: 9.12. 1985

Authors' adresses:
Janina Ewert
Zaklad matematyki WSP
Arciszewskiego 22
70-200 Slupsk, Poland
Tibor Šalát
Katedra algebry a teórie čísel MFF UK
Mlynská dolina
842 15 Bratislava
Czechoslovakia

SÚHRN

O LORENTZOVÝCH - ORLICZOVÝCH PRIESTOROCH

Janina Ewert, Slupsk — Tibor Šalát, Bratislava

Práca pozostáva z dvoch častí. V prvej sú dokázané isté výsledky o štruktúre Lorentzových —Orliczových priestorov z hľadiska Baireových kategorií množín. Druhá časť práce je venovaná štúdiu niektorých bitopologických vlastností Lorentzových—Orliczových priestorov.

РЕЗЮМЕ

О ПРОСТРАНСТВАХ ЛОРЕНЦА И ОРЛИЧА

Янина Эверт, Слупск — Тибор Шалат, Братислава

Работ состоит из двух частей. В первой части доказаны некоторые результаты относительно структуры пространств Лоренца и Орлича с точки зрения бэровских категорий множеств. Вторая часть работы посвящена исследованию некоторых свойств битопологических пространств Лоренца и Орлича.

