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INFINITE MATRICES WITH ORTHONORMAL ROWS

ALEXANDER ABIAN, lowa

Abstract. It is shown that matrices whose rows form an orthonor-
mal set of infinite sequences have some of the significant properties of
the finite matrices. Based on this, some rather important instances of
the use of these infinite matrices are given.

In what follows every sequence is a sequence of real numbers. For conven-
iencie, we also refer to a sequence as a vector or, more specifically, as a row or
a column vector or simply, as a row or column.

We are mainly concerned with matrices each row of which is a square

« L
sumable infinite sequence, i.e., a sequence ()., such that ) a; < co. As

k=1
0

1/2
usual, we call < Y ai) the length of (a),.,. Hence, we may say that we are
k=1

mainly concerned with matrices each row of which is an infinite vector of finite
length.
Throughout this paper by infinite we always mean denumerably infinite.
Remark 1. An advantage of dealing with infinite vectors v; = (b )., and
¥; = (by)., €ach of finite length is that (as in the case of finite vectors) their inner

procuct v;- v, = Y b,b, always exists and is equal to the product of the length
k=1

of v; with the length of the orthogonal projection of v;on v, Asusual, ifv,- v; = 0
then we say that v;and v; are orthogonal to each other. We observe also that the
length of v, is equal to (v, - v)'">

It is well known that, without loss of generality, in many cases (using
Gram—Smidt porocess) a set of infinite vectors each of finite length can be
replaced (as in the case of finite vectors) by an orthonormal set {r,, r,, -, r; -,
r;, - } of infinite vectors each of length 1 (i.e., a unit vector) where distinct vectors
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are pairwise orhogonal. Accordingly, in what follows, we consider matrices such
as:

al‘l a|.2 a|'3 e a,"k

QG G Gy ... Gy
(1)

a,, 4 Q3 ... Gy

whose rows r;, = (a,, ap, ag, ..., ay, ...) fori=1, 2, 3, ... form an orthonormal
set of vectors, i.e.,

o0 a0
) roeri=>3 a,=1 and r;-rp,=Y aa;, =0 for i#j.
k=1 k=1

We call a matrix such as (1), whose rows satisfy (2), a row orthonormal
infinite matrix. Also, a matrix with an infinite number of rows and columns is
called an infinite square matrix. Also, a matrix with an infininte number of rows
and columns is called an infintee square matrix.

Remark 2. From Remark 1 it follows that if r; is an infinite vector of length
1 and if v is an infinite vector of finite length then (as in the case of finite vectors)
the inner product r, - v is the length of the orthogonal projection of v on r;,. But
then an advantage of dealing with an orthonormal set {r,, r,,r;, -} of infinite
vectors is that (as in the case of finite vectors) we have (Bessel’s inequality):
(3) the sum of the squares of the lengths of the orthogonal projections of v on

ry, ¥y, I3, ... is less than or equal to the square of the length of v.

It is not at all obvious that in a row orthonormal infinite (or for that matter

even a finite) matrix such as (1) every column must be a vector of length < 1.

In other words, it is not at all obvious why (2) must imply ) a < 1 for every

r=1
k=1,2,3,.... This is proved below.
Lemma 1. Let N be a row orthonormal infinite matrix. Then every column of
N is a vector of length < 1
Proof. Without loss of generality, we prove the conclusion of the Lemma
for the first column of V. Let NV be given as (1). Thus, based on (2) we must show
that

@) Bt Byt Byt 4 gt <l

‘Obviously, we have:

a, a, .. 1 a,

a Gy - 0 a1
3) )=

a, a, .. 0 a;,
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From (5) it follows that:

(@, a1z ...)-(1,0,0,...)=a,
(al It 02'2, ...) s (1, 0, 0, ...) = (12.,

-

(6) . " )
(ai.l’ a; ) ) (la Oa Oa ) =4a;,

Clearly, (6) shows that a;, for every i =1, 2, 3, ... is the length of the
orthogonal projection of vector (1, 0, 0, ...) on (g, , 4, ,, ...). However, since the
rows of matrix N form an orthonormal set of vectors and since the length of
vector (1, 0, 0, ...) is 1 we see that (4) follows directly from (3).

Remark 3. Let us observe that the product 4B of two matrices 4 and B is
obtained by forming the inner products of the rows of 4 with the columns of
b. Thus, the product of two infinite matrices may not even exist. Clearly, if the
rows of an infinite matrix 4 are of finite length and the columns of a matrix B
are infinite vectors also of finite length then, as mentioned earlier; the product
AB always exists.

Let N be a row orthonormal infinite square matrix and N’ = I where I is the
infinite unit matrix. On the other hand, from Lemma | and Remark 3 it follows
that N'N exists, however, NNV # I'in general. This can be seen from the following
example. '

0O 10 00O 0 00 00

1 00 0O

N 0 10 00O
A=1 0 00 10 and A =

0 00 0 1 0 10 00O

0 01 00O

Clearly, 44" = I whereas A’A # 1since the first row of 4’4 is a zero infinite row
vector.
Thus, if N is a row otrhonormal infinite square matrix, we have:

@) NN’'=1 whereas in general, NN # I.

Let us observe that if 4, B, C are infinite matrices and if (4 B)C exists it need
not be (associative) equal to A(BC). However, if N is a row orthonormal infinite
square matrix and C an infinite column vector of finite length then
(NN)C = C = N(NC). The first equality is not surprizing since it follows readily
from (7). However, the second equality must be proved as done below. Also,
from (3) it follows readily that (NC) - (NC) < C- C. On the other hand, as
shown in Lemma 2, surprizingly enough (NC) - (NC)=C - C.

Remark 4. The infinite distributivity of the inner product with respect to
addition does not hold in general. Thus, if 4 is a vector and (B),., a set of
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vectors such that 4 - ) B;as well as Z A - B;is meaningful then A4 - Z B; need

=1 i=1 i=1

not be equal to Z A- B, (unless Z B, converges in norm>. However, if {N,, N,,
i=1 i=1

N,, ...} is an orthonormal set of vectors and (a;),.,, and (b,),., are vectors of finite
length, then obviously the following infinite distributivity of the inner product
with respect to addition holds:

® (5 ~a)- (5 Nb)= 5 ab,
i=1 i=1 i=1

Naturally, prior to stating Lemma 2, we must observe that, in view of
Remark 3 and Lemma 1, the product N'C of the infinite square matrix N’and
the infinite column vector C of finite length exist.

As ussual, 4" always denotes the transpose of A.

Now, we prove:

Lemma 2. Let N be a row orthonormal infinite square matrix and C be an
infinte column vector of finite length. Then

©)] (NC)- (NO)=C-C.

Proof. Let N,, N,, N;, ... be the rows of N and let ¢,, ¢,, c;, ... be the
coordinates of C. Clearly (and this is a subtle point), '

(10) N/C=N;C|+N£C2+N3C3+...

Since {N,, N,, N,, ...} is an orthonormal set of (row) vectors it follows that
{Ni, N3, Nj, ...} is also an orthonormal set of (column) vectors. Therefore, from
(8) it follows that:

(ADVie, + Nies + Niey+ ..) - (Nie, + Noe, + Njes + )=+ 3+ & + ...

But then (9) follows from (10) and (11) since c,, ¢, ¢, ... are the coordinates of
vector C.

Obiously, from (9) it follows that N'C is a vector of finite length. Thus, the
product N(N'C) exists, and, as mentioned above, we prove:

Lemma 3. Let N be a row orthonormal infinite square matrix and C be an
infinite column vector of finite length. Then

(12) N(NC) = C.

Proof. Again, let N,, V,, V,, ... be the rows of N and let c,, c,, c3, ... be the
coordinates of C. From (10) it follows readily that the i-th coordinate of N(N'C)
is equal to ;- (NVic, + Njc, + Nicy + ...). However, again since {NV,, N;, N;, ...} is
an orthonormal set of vectors,-by (8) we have

30



N;- (Nic, + Nic, + Nses + ..)=¢, for i=1,2,3,..,

which implies the validity of (12).
From (7) and (12) it follows that if /Vis a row orthonormal infinite square
matrix and C an infinite column vector (or, for that matter, an infinite square

matrix whose columns are) of finite length, then the following distributivity
holds:

(13) (NNYC=NINTC)=C.

From (13) we see that if NV is a row orthonormal infinite square matrix then
its transpore N’ acts almost like a right inverse of N. However, because of the
second inequality in (7) we see that N'cannot be called a right inverse of N.

Remark 5. Examining our proofs of Lemmas 2 and 3 we can readily see that
in them N need not be necessarily an infinite square matrix. Indeed the same
proofs show that the conclusions of Lemmas 2 and 3 hold if N is any (finite or
infinite) row orthonormal matrix and C is any (finite or infinite column vector
of finite length such that N and C have the same number of rows. Thus we have:

Corollary 1. Let N be a row orthonormal (finite or infinite) matrix and C be
a (finite or infinite column vector of finite length such that N and C have the same
number of rows, then ‘

(14) (NN)C = N(NC) =C and (NC)-(NC)=C-C.

Corollary 1 has numerous applications in solving finite or infinite systems
of finite or infinite linear equations.

An example of the application of Corollary 1 is given below.

Theorem 1. Let

a Xt atasst .=

A X+ Gt @+ =6
(15)

a3 X+ X+ a3 3G+ .. =6

be a (finite or infinite) system of finite or infinite linear equations where matrix N
of coefficients a;; is row orthonormal and constants c,, c,, ¢;, ... form a column
vector C of finite length such that N and C have the same number of rows. Then

X) =046+ a6+ a5+ . =m,

.rz = al 2C| + az.g_C‘z + a1 2C3 + ses = m:
(16) - .

X3 =@, 30, + 36+ a3 36+ ... = my

is a solution of system (15). Moreover, this solution (x; = m),., is such that:
17) m+m+mi+..=cd+a+c+ ...
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Proof. Obviously, in matrix notation (15) is written as NX = C and (16) as
X = N'C. But then from (14) it follows that N(N'C) = C implying that X = N'C
is a solution of NX = C. Thus, indeed (16) is a solution of system (15). On the
other hand, (17) follows directly from the second equality in (14).

Remark 6. Let us observe that the hypotheses of Theorem 1 ensure the
existence of a solution of system (15). In fact, (16) provides an explicit solution
of system (15). Obviously, in general, nothing prevents system (15) from having
infinitely many solutions (as shown in the sequel). However, we prove below

- that remarkable fact, that, under the hypotheses of Theorem 1, system (15) has
a unique solutieon (x; = m,),.,, which satisfies (17).

Theorem 2. Let (15) by the system of linear equations described in Theorem

1. Let (x; = s,);c,, be any solution of (15). Then

(18) ' ya<y s
i=1 i=1
On the other hand, solution (x; = m)),., given by (16) is the unique solution
of system (15) such that:

(19) Sm=3 .
i=1 i=1

Proof. Let {N,, N,, N;, ...} be the orthonormal set of the rows of matrix N
of coefficients a; of (15) and let (x; = s,),.,, be any solution of (15). Clearly, (15)
shows that the length of the orthogonal projection of (s, s,, 55, ...) on NV, is equal
to ¢, for every i = 1, 2, 3, ... But then, (18) follows readily from (3).

Now, in addition to solution (x; = m,),. ,(Which satisfies (19)) of system (15),
let (x; = p))ic, b€ @ solution of (15) such that

(20) Sp=3d

i=1 i=
To prove that system (15) has a unique solution satisfying (19), we show that
m; = p; for every i =1, 2, 3, .... Since (x; = m,);.,, as well as (x; = p);c,, 1S @

1
solution of system (15) so is (x,. = E(m, + p,—)) . Thus (18) we have

IE®

b E 4 2
1) Z&SZGWAM)

On the other hand, by the well known triangle inequality and (19) and (20)

we have: |

@ £ Geen) (5 Gm)) + (36))) - £
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which, in view of (21) implies that in the triangle inequality (22), the inequality
sign can be replaced by the equality sign. But (it is well known) that the latter
is possible if and only if vectors (m),.,, and (p,),,, are coordinatewise equally
proportional, i.e., there exists a real number k such that m; = kp, forevery i = 1,
2, 3, .... But this, by (19) and (20) implies that m, = p, forevery i =1, 2, 3, ...,
as desired.

Remark 7. Theorem 2 shows that if condition (19) is imposed on a solution
(x; = m);c,, of system (15) of linear equations described in Theorem 1, then
system (15) has a unique such solution. We give below another condition on the
matrix of coefficients a; of system (15) which also implies the (existence and)
uniqueness of solution of (15).

Let us recall that an orthonormal set {K|, K,, K, ...} of infinite (or for that
matter finite) vectors is called complete if and only if the zero infinite vector (0)
is the only vector of finite length which is ortogonal to every K, i.e., for every
i=1,2 3, s

(23) K- V=0 ifandonly if V =(0).

It is well known that any complete orthonormal set of (infinite) vectors is
denumerable and that every orthonormal set of vectors can be enlarged (say, by
virtue of Zorn’s lemma) to a complete orthonormal set.

Remark 8. Let us observe that if {K|, K;, K, ...} is a complete orthonormal
set of vectors then with respect to this set the inequality mentioned in (3)
becomes an equality. Thus, if v is any vector of finite length, we first of all have:

(24) v is equal to the sum of its orthogonal projections on K,, K,, K, ...
Moreover we have (Bessel’s, equality):
(25) the sum of the squares of the lengths of the orthogonal projections
of von K, K,, K, ... is equal to the square of the length of v.

To prove (24), we proceed as follows. Since (K)),., is an orthonormal set of

vectors, the sum ) (K; - v)K; of the projections of v on (K)),.,, (3) is less than or

i=1

equal to the length of v. Thus, Y, (K;- v)K; is a vector of finite length. Clearly,
i=1

v — Y (K;- v)K,is a vector orthogonal to every K; and since (K)),., is complete,
i=1

by (23) we must have:

(26) v=3 (K- WK,
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which establishes (24). But then (25) follows from (26) by forming the inner
product of each side of the equality sign in (26) with itself.

As expected, we call a matrix whose rows form a complete orthonormal set
a row complete orthonormal matrix. All such (finite or infinite) matrices are
square matrices.

Theorem 3. Let K be a row complete orthonormal (finite or infinite) matrix.
Then the transpose K’ of K is also a row complete orthonormal matrix.

Proof. Let K|, K,, K, ... represent the rows of Kand T, T, T,, ... those of
K’. First we show that {T;, T, T,, ...} forms an orthonormal set. To this end,
without loss of generality, it is enough to show that

(27) IL.TT=1 and T,-T,=0.
Let
(28) E =(1,0,0,0,..) and E, =(0,1,0,0,..).
As in the case of (6), the first row T of K’ is given by:
(29) L=(K -E.K,-E,K, - E, ..)

However, since {K|, K,, K;, ...} is a complete orthonormal set of vectors, by
(25) we have that the square of the length of 7 is equal to the square of the
length of E, which establishes the first equality in (27). Again since {K,, K,, K,
...} is a complete orthonormal set, by (24) we have:

(30) E =(K -E)K + (K, E)K,+ (K, - EDK, + ...
As in the case of (29), the second row T, of K’ is given by:
IL=(K -E.K,-E,K, E, ..)
Thus, by (29) we have:
G T-L=K -E)K  E)+ (K, -E)K, E)+ (K, E)K,-E)+ ..
On the other hand, from (30) and (28) it follows that
E -E,=0=(K,-E)K, E)+ (K, -E)K,-E)+ (K,-E)K;-E)+ ...

which, in view of (31) establishes the second equality in (27).
It remains to show that K’ is a row complete matrix. To this end, we show
that for every vector V ov finite length we have:

' (32) K'V=0 implies V=(0)

which in turn would imply that (0) is the only vector of finite length which is
perpendicular to every row of K’, which by (23) would assert that K’ is row
complete.
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Now, let K’(¥) = (0). But then
(33) KK'V)=K®0)=0

which by (12) establishes (32).

Theorem 3 can be rephrased as follows:

Corollary 2. The rows of a (finite or infinite) matrix form a complete orthonor-
mal set of vectors if and only if its columns form a complete orthonormal set of
vectors. A

We observe that (32) was established due to the fact that K’ turned out to
be row orthonormal. Hence, we also have:

Theorem 4. A (finite or infinite) matrix is both row and column complete
orthonormal if and only if it is both row and column orthonormal.

Remark 9. As indicated in (7), if NV is a rov orthonormal square matrix, then
N’N # I, in general. However, if K is a row complete orthonormal matrix,then
since K’ is also row othonormal, from the equality in (7) if follows that K'K = 1
since K” = K. Consequently, the transpose K’ of a row complete orthonormal
matrix K is the inverse of K in the usual sense. Moreover, by virtue of (14), we
have:

Theorem 5. Let K be a row complete orthonormal (finite or infinite) matrix.
Then the transpose K’ of K is the inverse of K in the usual sense, i.e.,

(34) KK'=K'K=1 and K(K'M)=K(KM)=M

for any matrix M whose columns are vectors of finite length and such that K and
M have the same number of columns.

Remark 10. As mentioned in Remark 7, system (15) of linear equations
described in Theorem 1, has infinitely many solutions, in general. For instance,

01 0 0O X, Cly
001 00 X, Cy
0 00 10 x;3 |I=1 ¢
0 00 01

has infinitely many solutions given by x, = a, x, = ¢, Xx; = ¢,, X; = ¢3, ..., Where
a is an arbitrary real number.

In contrast to the above, and in view of (34), we have:

Theorem 6. System (15) of linear equations described in Theorem 1 has a
unique solution if and only if the matrix of coefficients a; is a row complete
orthonormal matrix. Otherwise, it has infinitely many solutions.

Proof. Let the matrix of coefficients a; be a row complete orthonormal
matrix K. In matrix notation (15) is rewritten as KX = C. Since K is row
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complete orthonormal, by (34) we have K'(KX) = X = K'C, implying the uni-
queness of the solution.

To complete the proof of the Theorem, we must show that under the
hypothesis that the matrix (a;) of the coefficients of system (15) is orthonormal
but not complete the system (15) has infinitely many solutions. Indeed, in view
of the hypothesis, we can always precede system (15) with one extra equation
so that the coefficient matrix of the resulting system

byaxi + by yxy + by 3x3 4+ by x4+ ... =k,
(35) a X, + a5+ a3x3+ a4 Xg + - =0
@ X+ @ Xy + Ay 3X3 + Ay 4 X4+ ... =0

S
be stil orthonormal and k{ + ) ¢/ < oo. But then since k, can be chosen
S i=1
arbitrarily, from Theorem 1 it follows that system (35) has infinitely many
solutions.

Remark 11. We may sumarize the results of this paper as follows. Let
NX = C be a (finite or infinite) system of (finite or infinite) linear equations
written in matrix notation. We always assume that N is row orthonormal and
that Cis a column vector of finite length. Then, the system has a unique solution
if and only if N is row complete orthonormal. Otherwise, the system has
infinitely many solutions, however, it has a unique solution whose length is
equal to the length of C.

Although we always considered systems NX = C where N is a row or-
thonormal matrix, our results apply to any system MX = C the rows of whose
coeficient matrix M can be orthonormalized by the well known Gram—Schmidt
process.

For general reference see below.
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SUHRN
NEKONECNE MATICE S ORTONORMALNYMI RIADKAMI

Alexander Abian, lowa
V praci je ukazané, Ze matice, ktorych riadky tvoria ortogormalny systém nekoneénych

postupnosti, maju niektoré vyznamné vlastnosti kone¢nych matic. Na ziklade toho su dokazané
niektoré zaujimavé vlastnosti nekone¢nych matic.

PE3FOME
BECKOHEYHBIE MATPULbI C OPTOHOPMAJIBHBIMU CTPOKAMHU
Anexcaunep A6uan, Hosa
IMoka3aHo, YTO MaTpHILbI, CTPOKH KOTOPBIX 06pa3yloT OPTOHOPMalIbHOE MHOXeCTBO Gec-

KOHEYHBIX TIOC/IEqHOBATENHOCTEH, 061a0ar0T HEKOTOPBIMH BaXXHbIMH CBOMCTBAMH KOHEYHBIX Ma-
TpHL. OCHOBBIBAACh Ha 3TOM, I0Ka3aHbI HEKOTOPbIC HHTEPECHDBIE CBOMCTBA GECKOHEYHbIX MarTpui.
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