#3D
VAL 7

—/

Werk

Label: Article
Jahr: 1987
PURL: https://resolver.sub.uni-goettingen.de/purl?312901348_50-51|log7

Kontakt/Contact

Digizeitschriften e.V.
SUB Géttingen

Platz der Gottinger Sieben 1
37073 Gottingen

& info@digizeitschriften.de

http://www.digizeitschriften.de
mailto:info@digizeitschriften.de

UNIVERSITAS COMENIANA
ACTA MATHEMATICA UNIVERSITATIS COMENIANAE

L—LI—1987

THE p-CENTER PROBLEM IN A UNICYCLIC GRAPH
MOHAMED HASSAN, Bratislava

1. Introduction

Let G = G(V, E) be a finite connected graph, n be the number of its vertices,
and |E| be the number of its edges. We assume that a distance matrix on G is
given. We construct efficiently a minimal spanning tree T of the graph G such
that a 1-center of Tcoincide with a 1-center of G. We also dexcribe an algorithm
of complexity O(n) finding a dominating set of radius r, and algorithm of
complexity O(n’.lIgn) (O(n*lgn), respectively) finding an absolute (a vertex,
respectively) p-center in a vertex-weighted unicyclic graph for 1 < p < n.

Let G be a connected undirected graph with a nonnegative number w(v)
(called the weight of vertex v) associated with each of its | V| = n vertices, and
a postivive number /(e) (called the length of edge e) associated with-each of its
|E| edges.

Let X, = {x;, x,, ..., x,} be a set of p points on G, where by a point on G
we mean a point along any edge of G which may or may not be a vertex of G.
We define the distance d(v, X,) between a vertex v of G and a set X, in G by

d(v, X,) = min {d(v, X))}, (1.1)
I <i<p

where d(v, x,) is the length of a shortest path in G between the vertex v and the
point x,. Let

F(X,) = malg({w(v).d(v, X))} (1.2)
Let X be such that
F(X) = Ar'ninG{F(X,,)}. (1.3)

Then Xy is called an absolute p-center of G and F(X}) is called the absolute
p-radius of G and is usually denoted by r,.

If X, and X} in (1.3) are restricted to be sets of p vertices of G, then X¥is
called a vertex p-center and F(X}) is called thevertex p-radious of G.

15

If all the vertices of the graph G(V, E) have the same wight ¢, then without
loss of generality we shall assume that ¢ = 1 and we refer to this case as the
vertex-unweighted case. Otherwise, we say that G(V, E) is a vertex-weighted
graph. We shall assume that p < n, since if p = n, then X*= V, r,(G) = 0, while
p > n has no mathematical meaning. Further assume that the graph G contains
neither loops normultiple edges. Finally, we assume that for each edge e =
= (v,, v,) the length of e is equal to the distance between v, and v, (i.e. /(¢e) =
= d(v,, v,)), because otherwise, the edge e could be eliminated without affecting
the p-radius of G. The inverse of the p-center problem is defined as follows:
Given a graph G(V, E) and a positive integer r, find the smallest positive integer
p such that the p-radius of G is not greater than r. This number p is called the
(absolute) domination number of radius r of G while a corresponding p-center
is called an (absolute) dominating set of radius r. The vertex domination number
of radius r and the vertex dominating set of radius r are similarly defined.

The problem of finding a p-center of G was originated by Hakimi [5], [6] and
is discussed in a number of papers [3], [4], [10], [8], [9], [12]. In [7], Hakimi,
Schmeichel and Pierce discussed improvements and generalizations of
various existing algorithms for finding p-centers of graphs and gave the corres-
ponding orders of complexity. We assume that the distance-matrix, which gives
the distance d(v;, v;) between every pair of vertices v, and v,, is known.

In paper [11] Kariv and Hakimi described an O(|E|.nlgn) algorithm
for finding an absolute 1-center in a vertex-weighted graph, and an O(|E|.n +
+ n*.1gn) algorithm for finding an absolute l-center ina vertex-unweighted
graph. Kariv and Hakimi also, in [11] described an O[EF.n* "/
/(p — 1)!lgn] algorithm (respectively an O[|EF.n¥ ~'/(p — 1)!] algorithm) for
finding an absolute p-center (1 < p <n) in a vertex-weighted (respectively,
vertex-unweighted) graph. In the case, when the graph G is a tree, Kariv
and Hakimi in [11] describe the following algorithms:

(1) An O(n.lgn) algorithm for finding the (vertex or absolute) 1-center of
a vertex-weighted tree.

(ii) An O(n) algorithm for finding a (vertex or absolute) domination set o
radius r. And ‘

(iii) an O(n*1gn) algorithm for finding a (vertex or absoute) p-ceter for any
1 < p < n of a vertex-weighted tre.

Kariv and Hakimi showd in [11] that the problem of finding a (vertex
or absolute) p-center (for 1 < p <n) of a vertex-weighted graph, and the
problem of finding a dominating set of radius » are NP-hard even in the case
where the graph has a simple structure (e.g., a planar graph of maximum degree
3). Moreover, the problem to find a near optimal vertex (or absolute) p-center
is also NP-hard [13].

16

2. The minimal vertex-weighted spanning tree of graph G
Algorithm 2.1 for the absolute center of graph G (The method of Haki-
mi [2])

1. For each edge g, of the graph find that point (or points) Y¥on g, which
has the minimum radius.

2. Choose the smallest of all the y¥(k = 1, 2, ..., m) as the absolute center
of G.

Note 2.1

The first step in Algorithm 2.1 is done as follows:
Consider the edge a, of the graph G as shown in Fig. /.

v

ol
c— edge Gk
Rest of G
V. Iy“
|
x i
Fig. 1
From eqn. (1.2), we have:
F(y,) = max [w(v) . d(y,, v)] = (2.1

= max [w(v) . min {L(yy, vg) + d(vg, v),
L(yk’ va) + d(vtv vi)}] s

Now let L(y,, vg) = &. Since L(yy, v,) = cop — Ly, 0p) = Cpp — &;
from eqn. (2.1) we get

F(3,) = maxmin [w(o){& + d(vp v)}

w(v){cep + d(vp v) — &} 2.2)

For a given v,, we can find the smallest of the two terms in the square
parentheses of eqn. (2.2) for every value of &, (0 < & < ¢,p), by plotting the two

17

terms
T, = w(v){& + d(vy, v)}, (2.3)

T = w(vlcoy + d(v,,0) — &}

separately against £ and taking the lower envelope of the two resulting strainght
lines.

We repeat this process for all the other v;e V' and obtain all other lower
envelopes on the same plot. We now draw the overall upper envelope to all the
previously obtained lower envelopes and this final envelope according to eqn.
(2.2) gives the radius F(),) for all values of &. The position of the point y, which
produces the lowest minimum is, according to eqn. (1.3), the absolute center y
subject to the initial restriction that y, must lie on edge a;.

Note 2.2 [2]

The method of Hakimi requires a search for a local center along every
existing edge in the graph G. The modification to the method determines upper
and lower bounds on the absolute local radii associated with the local centers
on each edge, and these bounds may therefore enable one to reduce the number
of edges that may have to be searched. Any local center located on edge (v, v)
will (as can be seen from eqn. (2.1) with the L terms set to zero) have associated
with it an absolute local radius (r;), whic must be at least as large as p;; where

p;= max [w(v)min{d(v, v).d(v, v)}]. 2.4)
v el — lrl.rI:

This p;, is a lower bound on the absolute radius of the graph, provided that

the absolute center lies on edge (v;,v;). Hence the quantity
P = min [p,] €2.39)
) (rir)ekE

is a valid lower bound on the absolute radius.

Suppose the absolute center is in the center of edge (v, v;); then, according
to eqn. (2.1), the absolute radius is p; + w(v}) . ¢;/2 where w(v}) is the value of
that v, which produces the maximum p; according to eqn. (2.4). Hence the
quantity

H= lim [p,+ w(}.c;)2] (2.6)

(vir,)e E

is a valid upper bound on the absolute radius. Thus any edge (v, , v;) for which

Piy, = H may by exclude from the search for the absolute center. We denote by
E’ the set of all edges (v;, v;) of G for which p, < H.

18

Definition 2.1

Let G be a connected vertex-weighted graph. Then a vetex-weighted span-
ning tree T of the graph G is called minimal central spanning tree, when a
1-center of G and a l-center of T coincide and their radii are equal.

The following algorithm finds a minimal central spanning tree T of a given
connected vertex-weighted graph G. Thus such a tree always exists.

Algorithm 2.2

Step 1:

Step 2;
Step 3:

(a)

(b)

()

Step 4:

Step §:

If G has only one vertex, then it is sufficiento to put 7= G. Assume that
G has at least two vertices and at least one edge (G is connected). Then
for each edge (v, v,) of G we compute the lower bound p, on the
absolute radius according to (2.4), and the upper bound H on the
absolute radius according to (2.5).
We denote the edges of G, which have p;, < H, e, e,, ..., €.
For every edge ¢,(1 < k < |E’|) we form a spanning tree of G as
follows:
Let ¢, = (v, vp), and let s, be the middle point of the edge ¢,. We put
T,: = {5}, 4,: = 0; and assign to vertex v, a pair [a,, q,] and to vy a pair
[aﬂ’ qﬂ]’
where a,: = §;, q,: = w(v,) . (v, Vp)/2,

ag: = 8, 45 = w(vp) . c(vy Vp)/2.
To the remaining vertices [0, o] is asigned.

Let v?be a vertex of G, such that g*= min[g], and let ae T, be such that
L'j¢ s
c(a¥ v)=min{c(a, v)}. We put T:=T ufvy, A4,;:=4,u
a;€ T.c
v {(a} v)}-
If ITI=V+1], assign: T:=T —{s} 4,:=4,9{, vg}—

—{(ve S1), (55, vp)}, Where c(v,, v) = c(v,, 5;) + c(s;, vp) and halt [the
resultant tree is minimal central spanning tree with minimal radius of
G, starting from the middle point of the edge ¢,].

If|7.} <|V + 1|, then for every vertex v;¢ T, which is adjacent to v} if

fi = w)ld(v,, v) + c(vv)] < g,

then assign g;: = f,, a;: = v*and go to (b).

On every vertex-weighted spanning tree T, (1 < k < |E’[), we use
Note 2.1 and find the local absolute 1-center ¢, and radius r, of the
spanning tree, which must lay according to Note 2.1 on the edge e,.
We denote the spanning tree, with radius #* = min {r}, by T*. And

I <k<|E|

let x* be its 1-absolute center, then T* will be desired spanning tree.

19

For each k (1 < k < |E’|), we will proceed as follows:

In the step 1 we compute the lower bound and the upper bound of the upper
bound of the absolute radius for each edge e, of the graph G

In step 3 we find the minimal central spanning tree 7, with minimal radius
of G, starting from the middle point of the edge ¢,.

In step 4 we find the local absolute 1-center ¢, and radius r, of the spanning
tree T;k.

In step 5 we find the spanning tree with minimal radius and its 1-absolute
center.

This absolute 1-center according to notes 2.1, 2.2 and the algorithm 2.1 is
an absolute 1-center of the graph G. This proves that the algorithm works
correctly as desired.

Provided that the distance matrix is given, it is easy to see that Step 1 of the
algorithm needs O(|E| + n) operations, Step 3 needs O(|E’| . n’) operations, Step
4 needs O(|E’| . n.1gn) operations and Step 5 needs O(n) operations. Thus the
total complexity of the algorithm is O(|E’|.n?), which can be better than
O(|E| . n .1gn) [11] whenever |E’| is relatively small.

3. A dominating set of radius r and a p-center in
a vertex-weighted unicyclic graph

3.1. A dominating set of radius r in a vertex-weighted
unicyclic graph

In this section we describe an O(n) algorithm to find an (absolute or vertex)
dominating set of radius r in a vertex-weighted unicyclic graph. Namely: Given
a positive number r and a vertex-weighted unicyclic graph G = G(V, E), find the
smallest positive integer p such that the absolute or vertex p-radius of G is not
greater than r. -

The following algorithm finds both an absolute and vertex dominating set
of radius r. The algorithm is carried out a search on the edges of G, starting from
the leaves and moving toward the “middle”. During this search, we locate the
points of the desired dominating set of radius r in an “optimal fashion’ until the
whole graph is covered by some points within (weighted) radius r.

To do this, we use a copy G’ of the original graph as an auxiliary graph on
which the algorithm is carried out, and we attach a variable R(v) = — r/w(v) to
each vertex v of G'. »

1. If v, is a leaf of G’ and e = (v,, v,) is the edge incident to it, then we traverse
(search) the edge e from v, to v, or update the variable R(v,), and remove the

20

vertex v, and then edge e from the graph G’. As a result, a new vertex may become
a leaf of G’, and the process is repated until all the leaves of G’ are deleted.

2. G’ does not contain any leaf

(a) G’ is a cycle with H vertices (H < n). The algorithm consecutively
searches all the vertices v, , v, ..., U, of the cycle, deletes one and then the other
edge incident to the vertex, and transforms the cycle into a path in this way.
Then to this resulting path the same process as described in 1 is applied.

The graph G’ will serve as an axiliary graph, therefore we have to store the
original copy of this cycle which will be denoted C,,,,, to be able to reconstruct
the graph G’ whenever needed. Further we will store the number of points of the
dominating set already placed in the course of the algorithm in the variable
denoted p,,.,- The cycle C,,,, consists of H vertices, each of them being incident
to two edges. Hence, the process of deleting one edge from the cycle will be
repeated 2 H-times. The variable I, 1 < I < 2H, serves as indicator of the order
of repetition of the deleting process. Without loss of generality we can assume
that Iis odd. Then both the processes (number 7 and number 7 + 1) start at the
same vertex v,.

If R(v,) = 0, then v, is already covered.

If R(v,) < 0, we arrive into the situation denoted by the variable SPECIAL
in the algorithm ; its value equals '+’ in such a case. We will store the vertex
v, in the variable denoted by v, ; its adjacent vertice will be denoted v, v,, (in
any order). Our aim is to find a point of the dominating set whic corves v, .

By this procedure the orientation of searching the vertices of G’ has to be saved
as long as SPECIAL = ’"+’. For odd I this orientation is determined by the
vertex v, = v, — after the starting deletion of the edge (v,, v,) = (v, ,v,) we put
v,=v, and as the next edge (v,, v,) the edge incident with this new vertex v, is
taken, etc. For 7+ 1, i.e. for even /, for the starting vertex v, = v, has to be
taken. There are two possibilities how to find the point of the dominating set
covering the vertex v, - either such a point already exists (i.e. has been construc-
ted — see the algorithm 7c), or it still has to be placed. Any way, in both cases
we have to consider the distance of this point of the doinating set from the
starting vertex v, which will be stored in the variable denoted by d. This d wil
be then substituted for the value of R(v,) into parts 8, 9 of the algorithm. At
this moment the situation denoted as ’APECIAL = '+ " is finished; the value
of the variable has to be changed to SPECIAL ="—".

We continue in the usual way as in 1 of this section. We have achieved a
partial solution, in the first p points we have the number of the dominating set,
which we compare with the value of the variable p,,,, storing this so far best
solution. If p < p,,;, then assign p,,;,: = p and in the graph C,,;,, which is a copy
of C,.n, we will store the points of the dominating set, which have been placed

21

in the I-th cycle just finished. Otherwise the value of p,,;, remains unchanged.

We increase I: = I + 1 and if i < 2H, we reconstruct the copy G": = C,,,»»
as well as the values of the variables p: = p,.... d: = 0 and repeat the process. If
I > 2H, then p,,, is the optimal number of points of the dominating set of radius
r covering the original graph G.

(b) The graph G’ contains a single vertex, already. If I = — 1 (initial value),
then G does not contain any cycle, the algorithm stops; otherwise this fact
indicates the end of the /I-th searching of the cycle.

Algorithm 3.1

A dominating set of radius r in a vertex-weighted unicyclic graph

Step 1:

Step 2:

Step 3:

Step 4:

Step S:

AssignG': =G,p: = =0,1: = —1,SPECIAL: = "—’, pin: = 0. For
each vertex v of G assign R(v): = — r/w(v).
If there exists no leaf v, of the auxiliary graph G’ such that R(v,) = 0,

then go to 5.

If the graph G’ consists of a single vertex v, with R(v,) = 0 then:
If I < 0 then STOP (G is an acyclic graph).
If p < pnin then assign: pi.: = p, Coin: = Croms
In C,,, store points of the dominating set having been arised in the
I-th process. ,
If I=2H — STOP — C,,;, and p,,;, will be solutions. Else assign:
IL=1+1,:=pumGCG:=C,em g0 t0o 5.

Else let v, be a leaf of G’ such that R(v,) = 0 and let ¢ = (v,, v,) be the

edge incident to v, in G’. Remove e and v, from the graph G".

If R(v,) + l(e) < r/w(v,), then go to 4.

If R(v,) + I(e) > r/w(v,), then return to 2.

If 0 < R(v,) < R(v,) + I(e), the return to 2.

If0 < R(v,) + l(e) < R(v,), then assign R(v,): = R(v,) + /(e) and return

to 2. .

If 0 < R(v,) + l(e) < — R(v,), then asign R(v,): = R(v,) + I(e) and re-

turn to 2.

If 0 < — R(v)) < R(v,) + l(e), then return to 2.

(a) If the auxiliary graph G’ consists of a single vertex v,, then assign

p: = p + 1, locate a new point of the dominating set at the vertex v, and

If I < 0 then STOP (G is an acyclic graph).

If p < pmin» then assign p..: =p, Coin: = Croms in Cpyp store the
points of the dominating set having been arised in the /-th process.
If I=2H — STOP — C,;, and p,,;, will be solutions. Else assign
L=I+1,p:=puem G:= Cpm 80 to 5.

(b) If the vertex v, is a leaf of G’ and e = (v,, v,) is the edge incident to v,

22

in G’. Remove e and v, from the graph G’ and go to 6.

(c)

Step 6:

Step 7:
(a)

(b)

©

(d)

Step 8:

Step 9:

If I= —1, then assign I: = 1, p,,.: = p, and we wil create two copies
Cyem and Cp, of the graph G”. The cycle C,,,,, is formed by vertices Ve
Uy +-os U, Where H < n is the number of vertices of the cycle C,,., and
[€is oo Cap € {1, w5 28)

If I'is odd, then denote v, = v, Im(v‘v o i is a vertex of the cycle G’),
further v, , v,, are distinct vertices adjacent with v,. We take v, for v,
e = (v, vy

If I is even, then denote v, = v,/2, we take v, for v, e = (v, v,).

If R(v,) > 0, remove e = (v,, v,); go to 3.

If R(v,) < 0, assign d: = 0, SPECIAL:’+"; denote v, =10, remove
the edge e = (v,, v,), go to 6. .

If — R(v,) > l(e), then if SPECIAL = "+, then assign: d: = d + I(e).
Go to 7.

If — R(v,) = l(e), then SPECIAL = "+, then assign: d: = d + l(e). Go
to 8.

If — R(v,) < l(e), then if SSPECIAL ="'+, then assign: d: =d —
— R(v,). Go to 9.

If —R(v,) — I(e) < R(v,), then assign R(v,): = R(v,) + I(e).

In the case SPECIAL ="+’ the algorithm has to continue under
assignement v,: = v,, and v, asign to the adjacent vertex of the just
picked vertex v,. Go to 2.

If0 < — R(v,) < —R(v,) — I(e), then in the case SPECIAL = '+ the
algorithm has to continue under assignement v,: = v, and v, assign to
the adjacent vertex of the just picked vertex v,. Go to 2.

If 0 < R(v)) < R(v,) — I(e), then in the case SPECIAL = '+’ assign:
R((v,):=d+ R(v,), SPECIAL: = "—, (v, 18 covered by already
constructed points of the dominating set). Go to 2.

If — R(v,) — l(e) < R(v,), then assign R(v,): = R(v,) + I(e).

In the case SPECIAL =’ + ’ the algorithm has to continue under
assignement v,: = v,, and v, assign to the adjacent vertex of the jsut
picked vertex v,. Go to 2.

If R(v,) # 0, then assiqn p: = p + 1, locate a new point of the dominat-
ing set at v, and assign R(v,): = 0.

If SPECIAL = ’'+’, then assign R(v,):=d, SPECIAL: ="'—". Go
to 2.

[For absolute dominating set radius r].

Assign p: = p + 1, locate a new point of the dominating set on e at a
distance — R(v,) from v,;

If SPECIAL ="+, then assign R(v,):=d, SPECIAL:="—". Go to 3.

23

[For vertex dominating set of radus r].

Assign p: = p + 1, locate a new point of the dominating set at v,.
If SPECIAL = "+, then asign R(v,):=d+ R(v,).

Assign R(v,): =0 and go to 3.

The number p which is obtained when the algorithm terminates is the
(absolute or vertex) dominating number of radius r, and the set of p points which
was constructed during the algorithm is a dominating set of radius r. The
validity of Algorithm 3.1 can be established by observing that, at each stage, the
present number p is the minimum number of points which are needed to cover
those vertices of the graph which are presently covered (that is, a point is added
to the dominating set whenever it is necessary).

The deletion all vertices of the graph G’ is carried out in the time O(n).
Therefore, the complexity algorithm 3.1 is O(n).

3.2 A p-center (p>1) of a vertex-weighted unicyclic graph

In this section, we use Algorithm 3.1, which was designed for finding the
(absolute or vertex) dominating number of radius r and a corresponding domi-
nating set, in order to find the (absolute or vertex) p-radius of a vertex-weighted
unicyclic graph G and a corresponding p-center.

Kariv and Hakimi showed in [24] that here exist o(r’) (O(n?), respec-
tively) possible values of the absolute (vertex, respectively) p-radius for the
absolute (the vertex, respectively) p-center. Denote the set of all the possible
valius of p-radius by Q. We can find Q in time O(n*) (O(n?), respectively) [11].

Let the desired (absolute or vertex) p-radius is dentoted by r,. Given r’ € Q,
the (absolute or vertex) domination number p’ of radius r’ can be found by
Algorithm 3.1. If p” < p, then r, < r’. Therefore, we obtain:

r, =min{r’'/p’ < p}.
reQ

Thus, by using Algorithm 3.1, one can search the O(n*) or O(n?) possible
values r’ and find the p-radius of the given graph.

Algorithm 3.1, which gives the domination number p’, also constructs a
dominating set of radius p’. Thus, once the p-radius r, is known, one can
construct a dominating set of radius r,. Let p, be the number of points in this
set. If we add to the dominating set p — p, points (arbitrary p — p, points in the
case of absolute p-center, or p — p, arbitrary vertices in the case of vertex
p-center), then we obtain a desired (absolute or vertex) p-center. In this way the
following algorithm for finding the (absolute or vertex) p-center is verified.

Algorithm 3.2 ,

A p-center (p > 1) of a vertex-weighted unicyclic graph

24

Step 1: Calculate the O(n®) (O(n?), respectively) values r’ for the absolute

(vertex, respectively) p-center (by Kariv and Hakimi [11]].

Step 2: Arrange on O(n’) (O(n?), respectively) values r’ in a list L according to

a nondecreasing order.

Step 3: By performing a binary search on the list L of the values r’, and by

using Algorithm 3.1, find the smallest r’ for which p” < p (where p’ is
the domination number of radius r’) Denote this value of r* by r,, and
dentote the domination number of radius r, by p,.

Step 4: Let X7, be the dominating set of radius r, as constructed by Algorithm

2.1. Add any arbitrary p — p, points to X} (in the case of the vertex
p-center, these points must be vertices).
The resulting X% is a p-center of the unicyclic graph.

Step 1 of Algorithm 3.2 is carried out in O(n’) (O(n?), respectively) opera-

tions Step 2 requires O(n’ . 1g n) (O(n*. 1g n). respectively) operations. The com-
plexity of the binary search which is performed in step 3 is O(Ign) oerations,
while Algorithm 3.1, which is carried out in each search case costs O(n) opera-
tions, — and thus the complexity of step 3 is O(n. lgn).

Therefore, the complexity of Algorithm 3.2 is O(r* . 1g n) (O(n* . 1g n), respective-
ly).

10.

REFERENCES

. Behzad, M.—Chartrand, G—Lesniak—Foster, L.. Graphs and digraphs, Prindle,

Boston 1976.

. Christofides, N.: Graph theory, An algorithmic approach, Academic press, London 1975.
. Dearing, P. M.—Francis, R. L.: A minimax location problem on a network, Transp.

Sci. 8 (1974), 333—343.

. Goldman, A. J.: Minmax location of a facility on a network, Transp. Sci. 6 (1972), 407—

418.

. Hakimi, S. L.: Optimum locations of swiching centers and the absolute centers and

medians of a graph, Operation Res. 12 (1964), 450—459.

. Hakime, S.L.: Optimal distribution of switching centers in a communications network and

some related graph theoretic problems, Operations Res. 13 (1965), 462—475.

. Hakimi, S. L—Schmeichel, E. F—Pierce, J. G.: On p-centers in networks, Transp.

Sci. 12 (1978), 1—15.

. Halfin, S.: On finding the absolute and vertex centers of a tree with distances, Transp. Sci.

8 (1974), 75—77.

. Handler, G. Y.: Minimax location of a facility in an indirected tree graph, Transp. Sci. 7

(1973), 287—293.
Handler, G. Y.: Minimax network location: theory and algorithms, Technical Rep. no.
107, Oper. Res. Center, Mass. Inst. of Tech., Combridge, Mass., Nov. 1974.

25

11. Kariv, O.—Hakimi, S. L.: An algorithmic approach to network location problems, I: the
p-cneters, SIAM J. Appl. Math. 37 (1979)m 513—538,

12. Minieka, E.: the m-center problem, SIAM Review 12 (1970), 138—139.

13. Plesnik, J.: On the computional complexity of centers locating in a graph, Aplikace Mat.
25 (1980), 445—452.

Author’s adress:

Mohamad Hassan

Lattakia — Ain al Tine 62

Syria

Received: 12. 7. 1985

SUHRN
PROBLEM p-CENTRA GRAFU OBSAHUJUCEHO JEDINY CYKLUS
Méhamad Hassan, Bratislava

Nech G = G(V, E) je kone¢ny suvisly graf s po¢tom vrcholov n.

V praci sa konStruuje minimélna vazena kostra T grafu G, tak, Ze 1-centrum T je zhodné s
1-centrom grafu G. TieZ sa popisuje algoritmus zloZitosti O(n) pre najdenie dominujicej mnoziny
:polomeru r a algoritmus zloZitosti O(n’ . Ig n), (resp., O(n*. g n) pre najdenie absolutneho (resp.,
vrcholového) p-centra vo vrcholovo-ohodnotenom grafe, obsahujicom jediny cyklus (I < p < n).

PE3IOME
MMPOBJIEMA p-LIEHTPA OJHOLUHMKJIIMYECKOI'O I'PADA
Moxamen I'accan, Bpatucnasa

Myctk G = G(V, E)cBa3Hblil rpag, ¢ YHCIOM BEPLIHH .

Pa6oTa nocesiIeHa KOHCTPYKLIMH MHHEMAJIBHOTO B3BeleHHOro kapkaca T rpada G, 1-ueHtp
KOTOporo coBnazaer ¢ l-uenTpoM rpada G. JlaeTcs ToXe aJIrOPUTM CIOXHOCTH O(n) HaXOAALMHA
IOMHpYIOLllee MHOXECTBO pafiHyca r M TaKXe aJrOPHTM CIOXHOCTH o’ .lgn) O(n*.logn)
HaxXOASIMH (a6COMIOTHBIA WM BEPIUMHHDIH) p-IIEHTP B BEPUIMHHO-B3BELIEHHOM OHOLLIKIMYEC-

koM rpade (1 < p <n).

26

	
	Article

