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WORST-CASE ANALYSIS OF A GREEDY HEURISTIC FOR OPTIMUM
MATCHINGS IN GRAPHS

JAN PLESNIK, Bratislava

Our graph terminology is based on [1]. Given a graph G, its vertex and edge
sets and their cardinalities are denoted V(G), E(G), n and m, respectively. It is
supposed that every edge ij of G has been assigned a cost or weight or length c;,
which is a real number. A matching of G is a subset M of the edges of G such
that any two edges of M have no vertex in common. Clearly, |M| < n/2. If
|M| = n/2, then the matching M is said to be perfect. The cost of a matching M
is the sum of the costs of the edges in M. The maximum matching problem is to
find a matching M of G with the maximum cost. Edmonds [3] has dis-
covered a polynomial time algorithm for this problem. The most efficient
implementations require Q(n’) operations [4], [5]. Related problems are to find
a maximum perfect matching, a minimum matching and a minimum perfect
matching. All these problems are easily reducible each to other and thus
algorithms of complexity O(n’) are available. Since the Edmonds algorithm
is rather complicated, simpler heuristic methods are often suggested providing
at least an approximation. In [6] two such heuristics are analyzed for the
minimum perfect matching problem on graphs with positive costs satisfying the
triangle inequality (c; < ¢; + ¢;).

In this paper, we study the known greedy method for some matching
problems. As reductions among those problems do not conserve a degree of
approximation, we consider each matching problem separately. In fact, different
results are achieved. If ¢* and ¢” denote the optimum cost and the cost of an
output of a heuristic H, respectively, then the ratio c”/c* is taken as a measure
of approximation for a given example (c¢* # 0). Thus a heuristic H can be
evaluated according to the worst-case ratio. We show that a natural greedy
heuristic provides a matching with cost at least 1/2 of the maximum cost. On the
other hand, no small constant exists for the minimum perfect matching problem
with positive costs fulfilling the triangle inequality.

The symbols c¢* or ¢, will denote the cost of an optimal solution in a
maximization or minimization matching problem, respectively.



1. The maximum matching problem

At first no restrictions on G or c; are given. The problem is to find a
matching M of G with the maximum cost. We suggest the following greedy
heuristic.

GREEDY-1

Step 1: Delete all edges of G with negative or zero costs.
Order the remaining edges into a non-increasing sequence S: = (¢',
¢’ ..., ') according to their costs, , i. €. c(e') = c(e) = ... = c(e).
Putk: =1, M: =0, t: = 0. No vertex of G is labelled (covered by an
edge of M)

Step 2: If k > qort > n— 1, then go to Step 3.
If neither endvertex of the edge ¢* is labelled, then M: = M U {¢*} and
t:=1t+2.
Put k: =k + 1 and go to Step 1.

Step 3: Output M and stop.

The complexity of Step 1| is detemined by the complexity of a sorting
procedure yielding the required sequence S. It is well known that this can be
done in time O(m log m). As Step 2 can be performed in time O(m), the overall
complexity of GREEDY-1 is O(m log m) operations. If it is expressed as a
function of n only, we obtain the complexity O(n’log n).

The maximum perfect matching problem is defined only for complete
graphs with an even number of vertices. The costs of edges are any real numbers.
Here GREEDY-1 is slightly modified such that in Step 1 no edges are deleted.
This heuristic will be referred to as GREEDY-2.

Theorem 1. For maximum matching problems, the following assertions
hold.

(i) The maximum matching problem in arbitrary graphs with arbitrary
costs: For any output M of GREEDY-1 we have
c¥.

c(M) >

N |-

Moreover, coefficient 5 in this estimation is best possible.

(ii) The maximum perfect matching problem with arbitrary costs: For any
small real number r > 0 there is an example where GREEDY-2 outputs a
perfect matching M with

c(M) < rc*.

(iii) The maximum perfect matching problem with nonnegative costs: For



any complete graph with an even number of vertices and with nonnegative edge
costs, GREEDY-2 provides a perfect matching M with

(M) > —c"‘

Moreover, coefficient . in this inequality is best possible.

Proof. (i) Let M* denote a maximum matching of G. We may suppose that
all edges of M* have positive costs. The proof is trivial for graphs with at most
2 vertices. We proceed by induction on n. Clearly, it suffices to deal with edges
of positive costs.

Let us consider the first edge e' of the sequence S (¢' has the maximum cost).
Let the endvertices of e' be u and v. Since the graph G: = G —u — v hasn — 2
vertices, the induction hypothesis can be applied. One can easily see that
GREEDY-1, when apphed to G, can output the matching M: = M {e'}. Thus,
denoting by M* a maximum matchmg of G, we have

(D c(M) > 5c(M*).
Trivially,
) (M) = c(M) = c(e").

To estimate ¢(M*) by c(M*), we distinguish three cases. )
Case 1: The edge e'e M*. As M* — {¢'} is a matching of G, we have

3 c(M*) 2 c(M*) — c(e)).

Thus using (2) and (3) in (1), we receive
c(M) — c(e") = %C(M*) - —;—c(e').

or

c(M) > % 2 c(M*) + %c(e') > %C(M*),

as desired. _
Case 2: The edge e' is adjacent to exactly one edge, say, ¢ of M* (clearly,
e'¢ M*). According to the choice of e', we have c(e' > c(¢) and thus

4) c(M*) = c(M*) — c(¢) = c(M*) — c(e").
Therefore using (2) and (4) in (1), we obtain

(M) — c(e) > %c(M*) - %c(e'),



or
c(M) > %c(M*) + %c(e') > %c'(M*),

as desired.
Case 3: The edge ¢' is adjacent to two edges, say, ¢' and ¢” of M* (again
e'¢ M*). By the choice of e', we have

c(e') = max{c(e"), c(e?)} > %[c(e") + c(e?)].

As M* — {¢', ¢} is a matching of G, the last inequality yields
(5) o(M*) = o(M*) = [e(¢") + c(eP)] = e(M*) — 2(e).
Using (2) and (5) in (1), we obtain

(M) — c(e') > %c(M*) — e(e)

which gives the required inequality also in Case 3.

To complete the proof of Theorem 1 we consider the complete graph G with
V(G): ={1, 2, 3, 4}; all edge costs are equal to 1 except for c;,: = 0. Here
GREEDY-1 can give M = {12}. Thus ¢(M) = 1 and ¢* = ¢(M*) = 2.

(ii) It is sufficient to consider the following example. Let V(G): = {1, 2, 3,4}
and ¢j,: =c¢j3: =c: =1, 2 = — 1, ¢)4: = ¢53: = 0. We see that GREEDY-2
can output M = {13, 24} with cost ¢c(M) =1 —1 =0, but M* = {12, 34} and
thus c¢* = 2.

(iii) It is left to the reader to verify that the proof of (i) can be used if
GREEDY-1 is replaced by GREEDY-2 and other trivial changes are done. i

2. Minimum matchings

Now, we are interested in matchings with the minimum costs. First, no
assumptions on G or c; are put and a heuristic called GREEDY-3 will be used.
It arises from GREEDY-1 by the following changes in Step 1: Delete all edges
of G with positive or zero costs and order the remaining edges into a non-
decreasing sequence S: = (€', €% ..., &) (i.e. c(e' < c(é?) < ... < c((¢)).

For perfect matchings a further heuristic GREEDY-4 will be used. It differs
from GREEDY-3 only in Step 1, where GREEDY-4 deletes no edges.

The minimum perfect matching problem is defined for complete graphs
with an even number of vertices. This problem has the most applications if all
the costs of edges are positive and fulfil the triangle inequality (c; < ¢; + c;).
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(E. g. the Chinese postman problem and others [2, 4, 5].) It was also studied in
[6] where two heuristics are given; they provide the worst-case ratio at most
O(logn). We show that GREEDY-4 is much worse.

Theorem 2. For minimum matching problems, the following assertions
hold.

(1)The minimum matching problem in arbitrary graphs with arbitrary costs:
For ony output M of GREEDY-3 we have

1
C(M) S EC*.

Moreover, coefficient E in this inequality is best possible.

(i1) The minimum perfect matching problem with positive costs: For any
real number r > 1, there exists an example such that GREEDY-4 outputs a
perfect matching M with

c(M) = rey .

(iii) The minimum perfect matching problem with positive costs fulfilling
the triangle inequality: For any real number r > 1, there exists an example such
that GREEDY-4 outputs M with '

c(M) = rey.

In particular, for any natural number k, there is an example with n = 2¢*! such
that GREEDY-4 yields a perfect matching M with

4 03—
(M) = [5"' sl 1]0* = Enm — l]c*.

Proof. (i) If we change the sings of all costs to the opposite ones, then
GREEDY-3 becomes GREEDY-1 and thus Theorem 2 (i) is an immediate
corollary of Theorem 1 (i).

(i) Put V(G): = {1, 2, 3,4}, ¢;;: = 1 and the other edges have c;: = ¢, where
€ is a small real number with 0 < ¢ < 1/(2r — 1). One sees that GREEDY-4
gives M = {12, 34} with ¢(M) = 1 + ¢ while ¢, = 2&. The proof follows.

(iii) It is suficient to prove the second part of (iii). To be brief, we put all
edges of constructed graphs into three classes and call them heavy, thin and
dotted edges, respectively. First let us define graphs H,(k = 1, 2,...) as follows
(cf. Fig. I). Each H, is an alternating path consisting of heavy edges and thin
edges, which alternate; the first and the last edges are heavy. H, has n: = 2¢+!
vertices. Each heavy edge has cost 1. The middle (thin) edge of H, has cost 1 and
hence the path H, has cost a,: = 3. In general, for every k > 2, the path H; can
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be constructed by taking two copies of H, _, and joining them by a new thin
edge of cost 3*~'. Therefore H, has cost a, = 2a, _, + 3~ ' = 3*. Further, a
cycle F, is constructed from H, by joining the two ends of the path H, by a new
thin edge of cost 3* (see Fig. 1). Finally, a complete graph G, is produced from

3 1

1 3 1 9 1
OO O——Omrem(O)—— O O——— O
(1) (5) (2) (7) (3) (6) (4)
27

(8)

Fig. 1. The cycle F; consisting of the path H, and the thin edge of cost 27. The numbers in brackets
show the order in which GREEDY-4 can choose the edges to M.

F, by adding new dotted edges between any nonadjacent vertices of F,. If the
cost of each edge of F, is considered as a length, then the distance d(i, j) of two
vertices i and j in F, is assigned to the dotted edge ij. Thus all the costs in G, are
positive and fulfil the triangle inequality.

Since the least cost of an edge is 1, all the heavy edges realize a unique
minimum perfect matching M, of G, and hence c,: = c(M,) = 2*. Further, one
sees that GREEDY-4 can choose a perfect matching M of G, consisting of all
the thin edges. Indeed, this is true if k = 1. If kK > 2, then at first we choose (in
any order) all thin edges of cost 1, then all thin edges of cost 3, then those of
cost 3% etc.; the edge of cost 3* is chosen as the last edge of M. One can easily
verify that at that moment of taking a thin edge uv to M, every cheaper edge at
u or v has the other end covered by an edge chosen before. A simple calculation
gives c(M) =23 -2 Thus c(M)/c, =2(3/2) — 1 = (4/3)(3/2)*®" — 1 =
= (4/3)n°’ "' — 1, as desired. W

Note that we have not found the worst-case ratio in (iii). Nevertheless, we
conjecture that the above ratio is asymptotically the worst one.
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SUHRN

ANALYZA NAJHORSIEHO PRiIPADU JEDNEJ PAZRAVEJ
HEURISTIKY PRE OPTIMOVE PARENIA V GRAFOCH

Jan Plesnik, Bratislava
Ukazuje sa, Ze jedna prirodzena paZrava heuristika dava parenie, ktorého cena je aspon 1/2
ceny maximového parenia. AvSak pre problém minimového uplného parenia v grafoch s kladnymi
cenami spliiajicimi trojuholnikovi nerovnost takato heuristika nezarucuje dobri aproximaciu.

PE3IOME

AHAJIN3 HAUXYILETO CJIVYAS V OAHON KAJHON 3BPUCTHUKH
A1 ONITUMAJIBHOT'O MAPOCOYETAHNUA B TPA®AX

Sn Inecuuk, Bpatucnasa
Jloka3biBaeTcs, 4TO OAHA XAAHAS IBPHUCTHKA HAXOAMT NAapOCOYETaHHUE, LiEHA (BEC) KOTOPOro
HE MeHbLUe, 4eM 1/2 ueHsl MakcHManbHOro napocodeTanus. Ho ans npo6iaeMbl MHHMMAIBLHOTO

TNOJIHOro NnNapoCoYCTaHUA B rpacbax C MOJIOXKHUTEJIbHBIMH LICHAMH, YAOBJICTBOPAOUIMMH HEPABEH-
CTBY TPCYrOJIbHHKA, TaKas DBpDHCTHKA HEC FapaHTHPYET XOpoilee HpHGJ'lH“/KCHHC.

13






	
	Article


