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ELEMENTARY NONSTANDARD APPROACH
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Introduction

An analogy of the intuitive notion of an infinitesimal quantity is the
intuitive relation of an infinitesimal nearness in topological spaces. “x is in-
finitesimaly near to y”’ means “x lies in every neighbourhood of the element y”
in our conception. Analogically to an application of an infinitesimal quantity in
the differential calculus, the application of the relation of an infinitesimal
nearness gives a new and objective view on some topological notions.

Methods of the nonstandard analysis make possible to introduce and to
apply the relation of an infinitesimal nearness on suitably enriched topological
spaces. It is done by applying a relatively difficult apparatus of the mathematical
logic. Some interesting results are obtainable by means of a less exacting process
which utilises the so-called ultrapower construction. In applying the mentioned
construction of the set completion the choice of the concrete index set has an
important role. This paper shows one possible choice of the index set in the case
of topological spaces and its application in proving nonstandard descriptions of
some topological notions. In part IV posibilities of applications of nonstandard
analsis in proving some assertions in topology are documented.

I. Construction of nonstandard elements

Definition 1. Let / be a given non-empty set. A system & of subsets of set
I is called an ultrafilter on 7 iff
(i) 0¢F,IeF,
(i) AeF ABe¥F =>AnNnBe%F,
(i) AeF AAcBcI=BeZ,
(iv) either AeF orl— AeF if Al
A system & satisfying (i)—(iii) is called a filter.
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Definition 2. Let I be a given non-empty set. A non-empty system % of
subsets of the set [ is called a basis of a filter on 7 iff
(i) 0¢2,
(i) AcBANBedB=>ANnBeA.
By means of Zorn’s lemma the following proposition can be proved:
Proposition 1. Let 4 be a basis of a filter on /. Then there exists an ultrafilter
& on Isuch that Z <« #.

Construction of a hyperset

Let a set 4, a non-empty index set I and an ultrafilter & on I be given.
Let o/ be a set of all mappings from / into 4; let ~ mean the following
equivalence relation:

f~giff{iel; f(i) =g()}e F.

Let 4* mean equivalence classes determined by the relation ~, it means
A* = o/ | ~. The set A* is called a hyperset to the set A4.

Note. The eqivalence class containing a mapping f will be denoted as [f].

Note. In order to be able to involve 4 into 4* we identify every element
x € A with that class from A* which contains the constant mapping /(i) = x for
every i€ I. Then it is posible to write 4 < A4*.

Definition 3. Let 4* be the hyperset to the set A constructed by means of
the ultrafilter # on the index set /; further let B = 4. Then B} is defined as

B*={ae A%, fea={iel; f(i)e B}e #}.

Note. From properties of an ultrafilter it follows that the definition of B can
be written in the form

B%={ae A*; Ifea {iel, f()e Ble F}.

From properties of an ultrafilter and Definition 3 we have
Proposition 2. Let A4* be the hyperset to the set A4 constructed by means of
the ultrafilter # on the index set I; let X and Y be subsets of the set 4. Then

) XcY=XicY]
) @uDni=xiouri,
(i) XnY)i=X%nY%,
(iv) (N\Y)i=XN\Y1,
V) (X9%1=(&X%". -
Note. In (v) the complement on the left-hand side is related to 4 and the
complement on the right-hand side is related to A*.
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If an ordered pair {a, ) for two given elements a, S A* is defined as

{a, B) ={<a, b); aca r be p},

then it is not difficult to prove the following
Proposition 3. Let 4* and B* be hypersets to sets 4 and B, respectively,
constructed by means of the same ultrafilter # on the same index set 7. Then

(A x B)* = A* x B*.

(Let ae (A x B)*, a =[y], where y is a mapping y: I - A x B. Then y can be
written as y = (y,, y,), where y, and y, are mappings y,: I > 4 and y,: I - B
defined in the following way: let i€ I, y(i) = {a, b); then y,(i) = a, y,(i) = b.
Then it holds

bl =<l b.D)-

((4 x B)* is assumed to be constructed by means of the ultrafilter # on the
index set 1.)

Definition 4. Let X* and Y* be hypersets to sets X and Y, respectively,
constructed by means of the ultrafilter # on the index set 1. Let S be a binary
relation from X into Y. Then the hyperrelation S* is defined as

S*={a, BpeX* x Y*VfecaVgep: {iel; (), g(i)) e S} e F}.

It is not difficult to prove the following two propositions.

Proposition 4. Let f'be a mapping from X into Y. Then f* is a mapping from
X*into Y* and f*/X = f.

Proposition 5. Let f* be a hypermapping to the mapping f: X - Y. Let
Ac X, Bc Y. Then

Q) AP = ()%,
Gi) £*'(BY) =B}

(All hyperobjects are assumed to be constructed by means of the same
ultrafilter # on the same index set 1.)

I1. Topological spaces

Definition 5. Let (X, %) be a topological space. Let X* be the hyperset to
the set X constructed by means of the ultrafilter # on the index set I. Let x € X.
The set

Ux)=n{G¥ xeG A Ge ¥}

is called a monad of the element x. If @ € u(x), then it can be written a ~ x (ais
infinitely near to x).
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Note. The binary relation = is defined on X* x X.

It is easy to prove (by means of Proposition 2 (i)) the following

Proposition 6. Let (X, %) be a topological space; let x € X; let ¢, be a basis
of the surroundings of x. Then

ux)=n{A} AeC].

Let (X, %) be a topological space. Now the class .# , of index sets will be
defined. The index set needful to the construction of the hyperset X* will be
selected from the class £ .

Definition 6. Let X be a given set; let Z > 2%, Let I, be defined as
I, ={A c 2%, A is a finite set }. Then the class .#, is defined as

Iy={l; Z>2"}.

On each of index sets I, from tile class £, a basis &, of a filter is defined
in the following way:
Definition 7. Let /,€ .#,. Then

Be#,<Bcl,AdneN 3G, cZ...3G,c Z:
B={Yel,, GeYfori=1, ..., n}.

With respect to Proposition 1 then there exists an ultrafilter on I containing
the basis #,. This ultrafilter will be denoted (for a given index set I,) as .%.
Theorem 1. Let (X, %) be a topological space, let A = X and /e #,. Then
the set A isopen iff Vxe Y: u(x) = A%.
Proof. “ =" Let 4 be an open set, let xe 4 and let o be defined as
={G¥%kxeG A Ge¥}. Then u(x) = N ., further 4% = o, therefore u(x) =
=N < A}.
<= " Indirectly. Let 4 be a non-open set. Then Ixe AVGe%: xeG =
= G\A # 0. Now the validity of the statement 3xe 43 ae X*: ac u(x) A a¢ A%
will be proved. With respect to the axiom of choice there exists a mapping
[ {Ge¥; xe G} - X such that f(G)e G\A.
Let now i” and p; be defined as i’ = in{Ge#%; xe G},

pi= {m IX:::; > Z’ Let the mapping a: I — X be defined in the following way:

a(i) = f(p). Let a = [a].

From the construction of the mapping a it follows: Let Ge, xe G, then
Gei=a(i)eG, Gei=a(i)¢ A. From these statement it follows: Let Ge %,
x € G, then

{iel; a()e G} o {iel, Gei},
{iel;a(i)¢ A} o {iel; Geli}.
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With respect to Definition 7 it holds: {i € I; G € i} € #. Thus with respect to (iii)
in Definition 1 it holds:

(*) VGe¥U: xeG={iel;a(i)eG}e %,

(*) VGe¥U: xeG={iel;,a(i)¢ A}e F.

The statement () means: VGe#: xe G = ae G}, i.e. a€ u(x); the statement
(**) means a¢ A¥. Consequently it holds 3xe AJae X*: ae u(x) A a¢ A¥.
Q.E.D.

Thereorem 2. Let (X, %), (Y, ¥") be topological spaces; let f be a mapping
Xinto Y, let Ie #,n #,. Then fis a continuous mapping iff Vxe X Vae X*:
a ~ x = f*(a) ~ f(x) (~ on the left-hand side of the implication means infinite-
ly near in (X, %), ~ on the right-hand side of the implication means infinitely
near in (Y, ¥")).

Proof. “ =" Let f be a continuous mapping X into Y. Then Vxe X
VVe? f(x)eV=(xef "WV Af'(V)e#). Let U= f""'(V), then f(U) = V.
With respect to (i) in Proposition 5 f*(U¥) = V%. The set U is open, consequent-
ly with respect to Theorem 1 VxeU: u(x) = Uy}, therefore VxeU:
f*(u(x)) = V¥%. This relation is true for each open set V'€ ¥” such that f(x) e V.
Consequently,

f*u(x) = n{V3 Ve A f(x)e V= pu(f(x)).

Hence the implication is proved.

“e=” Let VxeX: f*(u(x)) < u(f(x)). The statement Ve¥ =f"'(V)e¥«
is to be proved. Let Ve ¥". With respect to (ii) in Proposition 5 (f~'(V))¥ =
= f*-1(V'}). With respect to Theorem 1 Vye V: u(y) = V¥, since V is an open
set in ¥". Let now x be an arbitrary element of the set f~'(¥). With respect to
the presumption VxeX: f*(u(x)) = p(f(x)) it holds that xef '(V)=
= u(x) c f*'(V¥ = (f~'(V))}. With respect to Theorem 1 this statement
means that f~'(V) is an open set. Q.E.D.

Theorem 3. Let (X, %) be a topological space, let A = X and /e #,. Then
A is a compact set iff Yae Af Jae A: ax a.

Proof. ““ = This implication will be proved by a contradiction. Let 4 a
compact set, let there exist ae A% such that Vxe 4: a¢pu(x). As u(x) =
= nN{G¥ Ge¥ A xe G}, from the given assumptions it follows

(*) VxedIG(x)eU: xe G(x) A a¢(G(x))%.

The system {G(x); x € A} is an open covering of the compact set 4, therefore
there exist elements x,, ..., x, such that 4 = G(x,) U ... U G(x,). With respect to
Proposition 2 (i) and (ii) (extended by the mathematical induction) A% <
c G(x)Fv...uG(x,)}. As ae A%, there have to exist je{l, ..., n} such that
ae (G(x))¥, which is contradictory to (*).
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*<«=" This implication will be proved by a contradiction, too. Let 4 be a
non-compact set and

(*%) Vae A¥IxeAd: a~ x.

Then there exists such an open convering & of the set 4 that each of its finite
subsystems is not an open covering of 4. By means of the axiom of choice it is
possible to construct a mapping f: {&/ < €; o is a finite non-empty subsystem
of €} - X such that f(«/)e 4\ LU .

Now an element fe A% such that VCe ¢: f¢ C¥ will be constructed.

Let for each i € I, i’ be defined in the following way: i’ = in¥. Lety: I - A
be a mapping

._{f(i’) if i #£0,
YO=14 it =0,

here a is a fixed element of A. Let f = [y]. Evidently, Be 4%. With respect to the
construction of the mapping y
VielIVCe¥: Cei—y(i)¢C,

therefore VCe ¥: {iel; y(i))¢ C} o {iel; Cei}. The set {iel, Cei} is an
element of the basis # of the filter on I, further # = &, therefore {iel;
Cei}e #. With respect to the property (iii) of an ultrafilter {ie I; y(i)¢ C} e F,
which means

(¥%x) VCe¥: B¢Cy.

With respect to (x*) there exists xz€ 4 such that = x4. The system % is an open
covering of 4, therefore there exists C(x;) € ¢ such that x,€ C(x,). The set C(x,)
is open, therefore u(xz) = (C(xp)¥. It holds Be u(xy), therefore Be (C(xp¥,
which is contradictory to (*#**). Thus the implication is proved.

Theorem 4. Let (X, %) be a product topological space of spaces (X;, U)

(e, letIe £y () Sy . Let'm (je J) denote the projections m:X — X;, let x;
jel ! ’ ’

and a; be defined as x; = m(x) and @; = 7*(a) for each x€ X and each ae X*.

Then it holds Vxe X Vae X*: ae u(x)<>Vje J: g€ p(x).

Proof: *“ = " In a product topology each of the projections is a continuous
mapping. Then with respect to Theorem 2

VxeXVaeX* aeu(x)=VjeJ: gepu(x).

*“<«="" Let us begin with a consideration: Let the subbasis & of the topology
4 be defined as & = {r;'(4); je J A A€ U}. Let the basis 2 of the topology
% be defined as the system of all finite intersections of sets from . Let us
investigate the relation ae G¥, where Ge 2. If Ge 2, then there exist sets
G,e%, ..., G, €U, such that
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(%) G={zeX; z,€G, for k=1, ...,n}.

Let ye @ and ae X*. With respect to the note following Definition 3 it holds
ae G} iff {iel;, y()e G}e F (& is the ultrafilter from Definition 7). With
respect to () it means

(%%) aeGY<>{iel; (¥()),€G, for k=1,..,ne#F.
Now we give the proof of our implication. Let the following statements hold:
xeX; ae X*; VjeJ: a;e u(x;). We have to prove: ae u(x). As the system

{Ge 2; xe G} is a basis of surroundings of x, with respect to Proposition 6 it
is sufficient to prove the statement

VGe2: xeG=aecG}.

Let Ge 2, x € G. Then there exists sets GjI EU)y oons Gj"eal/jn such that G =
={zeX; z,€G, for each ke{l, ..., n}}. As x€G, it hol.ds Vke{l, ..., n}:
X, €G . As the sets G;, ..., G, are open in the proper topologies, it holds
Vke{l, ..., n}: p(x;) = (G,)¥. From the assumption: a;€ u(x)) for each je J, it
follows

)

Vkell, ...,n}: {iel; (0(),€G}eF.
As a finite intersection of sets from & is a set from %, it holds ﬂ {iel
k=1

(D), € G} e #. Consequently, {ie I; (¥()), € G, fork =1, ..., n}e 3"—, which
with respect to (*x) means: ae G¥, q.e.d.

I11. Uniform spaces

Proposition 7. Let (X, #) be a uniform space, let %4 be the proper uniform
topology, let 7 be an arbitrary non-empty index set, let ¥ be an ultrafilter on 1.
Let the binary relation S = X* x X* be defined in the following way

(a, B)eS<=VfeaVgeBVUeR: {iel;, {f(i), g())eUle%.

Then the relation S is an extension of the relation & of the infinite nearness
( ={Ka, x) e X* x X; a~ x}), i.e. it holds

VaeX*VxeX: {a, x)eSax x.
(Note. It is not difficult to prove that it holds (similarly as by the relation ~):
(a, reS<3Ifecaigef: YVUeR: {iel; (i), g)Del}ec¥.
This statement is true, since @ and B are defined as equivalence classes.)
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Proof: “ =" Let (a, x) € §, f€ a; that means
(*) YUeR: {iel, {f(i), x>eU}e¥%.
It is necessary to prove the following implication
VAe Uy, xeA=>ae A}.
With respect to the construction of the uniform topology %,
A€eWUyNnxeA=FUeR: Ulx)c A,

where U(x) = {ye X: {(x, yD>e U}. Then {ieI; f(i)e A} o {ie I, f(i) e U(x)} =
={iel;{x,f()) e U} = {ie I; {f(i), x) e U™'}. As U' € # (with respect to the
definition of a uniform space), with respect to (*)

{iel, fh)e Ay o {iel; (@), x)e U '} e¥9,

therefore {i e I; f(i) € A} € 9, which means ae A%, q.e.d.

“<=" Let a~ x and fea. The system {U(x); Ue X} (where U(x) =
= {ye X; {x, y) € U}) is in the uniform topology %, a basis of surroundings of
the element x. With respect to Proposition 6, consequently u(x) = n {(U(x))¥
UeR}. As ae u(x), it holds

(%) ‘ VUeR: {iel, f(HleU(x)}e¥9.
It is necessary to prove the following statement
VVeR: {iel, {f(i), x)eV}e¥%.
Its validity follows from the equalities
{ie; {fO), xyeVy={iel; {x, f())e V™ '} =
={ie; f)e V~'(x)},

from the statement (**) and from the fact that V'€ %.

Proposition 7 gives a reson for using the symbol ~ in the following
definition:

Definition 8. Let (X, #) be a uniform space, let 7 be an arbitrary non-empty
index set, let ¥ be an ultrafilter on /. Let @, fe X*. We say that the element o
is infinitely near to the element f(a ~ p) iff

VicaVge Y UeR: {iel; {f(i), gl)>eUec¥.

It is not difficult to prove the following

Proposition 8. Let (X, #) be a uniform space, let 7 be an arbitrary non-
empty index set, let 4 be an ultrafilter on /. Then the relation {{a, f) € X* x X*;
a = P} is reflexive, symmetrical and transitive.
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Theorem 5. Let (X, #) and (Y, &) be uniform spaces, let f be a mapping X
into Y,let /e £yNn Iy, ynFy. Then the mapping f'is uniformly continuous iff

Vae X*VBeX* a=x f=f*(a) ~ f*(p).

Proof: ““ =" Let f be a uniformly continuous mapping, let € X*n, fe X*,
aca, be B, a ~ B. Consequently,

(*) YUeR: {iel, {a(i), b(i))e U}e F .

The composite mappings f(a(.)) and f(b(.)) are elements of the classes f*(a) and
f*(B), respectively. With respect to the note following Proposition 7 it is suf-
ficient to prove the statement

VVe: {iel;, (f(a(i), f(b()))>eVieF.
Let Ve & ; with respect to the definition of a uniformly continuous mapping

Kx, ) e X x X; {f(x), f)>eVieR.

With respect to () then it holds {i € I; {f(a(i)), f(b(i))> € V}e ¥, q.e.d.
“<«=" This implication will be proved by a contradiction. Let f not be a
uniformly continous mapping; then it holds

(%) VeSS : YUeR I{xy, yy) e U: flxy), fOGu)>¢V.

Now an ordered pair (@, ) € X* x X* such that @ ~ B and f*(a) = f*(f) will
be constructed. With respect to the axiom of choice and (+*) there exists a
mapping r: Z - X x X such that

VUeR: r(U)eU A f(r(U)) ¢V

(f(r(U)) means that the mapping will be applied to both parts of r(U)).
Nni if I"#80,
j/ . i’ = ] s = th
If i andp,aredeﬁnedas/z t‘ngl‘andp, {XxX if =0, en a

mapping y: I - X x X can be defined in the following way

y@)=rp), iel.

It holds [y] € (X x X)*, with respect to Proposition 3 [y] = {[y,], [v.]), where the
mappings y,;: I - X and y,: I - X are defined in the following way: Let i€/,
y(i) = {a, b), then y,(i) = a, y,(i) = a. Let a and B be defined as a = [y|],
B = [y,). With respect to the construction of the mapping y it holds: Let i€/,
UeR, then Uei= {y,(i), y,()>e U. It means {iel; {y@), y,())eU} >
o{iel; Uei}. Theset {ie I, Ue i} is an element of the basis # of the filter from
Definition 7 and as # < &, it holds {ie I; Ue i} e # and consequently {ie I;
(@), y,()>eUte F. Then VUe R: {ie I; {y,(i), y,(i)) € U} e F, which with
respect to the note in Proposition 7 is sufficient for @ ~ . Further from the
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construction of the mapping y it follows Vie I: {f(y,(?)), f(r,()))> ¢ V. Conse-
quently,

(w2+) lie ; JOiD), fOn())) eV} = 0¢F .
As f*(@) = (i), f*(B) = f(:(), (xx*) stands for f*(a) ¢/*(P), q.e.d.

IV. Two simple applications

1. The product topological space of compact spaces is compact.

Proof. Let (X, %) be a product topological space of compact spaces (X, %))
(je J). Theorem 3 and Theorem 4 will be used. Let @€ X*, ¢ let be defined as
a; = n*(a), consequently @;€ X As X; is a compact space, there exists x;€ X
such that g; = x;. Using the axiom of choice a mapping x: J — (U X; will be

ieJ

constructed such that @, = x(j) for each j € J. With respect to Theorem 4 a ~ x.
Consequently it holds Vae X* 3xe€ X: a~ x, which means X is a compact
space.

2. Let (X, &) and (Y, &) be uniform spaces, let the topological space
(X, %4) be compact, let f be a continuous mapping f: X — Y. Then fis a
uniformly continuous mapping.

Proof. Theorems 2, 3, 5 and Proposition 8 will be used. There exists ae X
such that a ~ q, since X is a compact space. The relation = is symmetrical and
transitive, thus S~ a A @ ~ a= =~ a. As fis a continuous mapping

a~a=f*(a) = f(a)
Bxa=f*(P)~f(a).
Finally, f*(a) = f(a) A f(@) = f*(B) =/*(@) = f*(B),

which means f'is a uniformly continuous mapping.
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PE3FOME

SJEMEHTAPHBIA HECTAHOAPTHBIN MOAX0[
K TOIMOJIOr'MYECKHUM INNPOCTPAHCTBAM

36bHex Ky6auek, Bpatucnasa
.
B craThe moka3piBaeTCi BO3MOXHOCTH BbIOOpDa KOHKPETHOTO MHOXECTBA MHIEKCOB IS
KOHCTPYKIMH HECTAHJAPTHBIX 3JIEMEHTOB B TOMOJIOrHYECKUX MPOCTPAHCTBAX M AAETCS NOKa3a-
TEJIbCTBO HECTAHAAPTHOIO ONHCAHHA HEKOTOPBIX TOMOJIOrHYECKHX TOHATHIA.

SUHRN

ELEMENTARNY NESTANDARDNY PRISTUP
K TOPOLOGICKYM PRIESTOROM

Zbynék Kubacek, Bratislava
Praca ukazuje mozZnost vyberu konkrétnej indexovej mnoziny potrebnej pre konstrukciu

ne§tandardnych prvkov v topologickych priestoroch a dokaz nestandardného popisu niektorych
topologickych pojmov.
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