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VECTOR-COVERING SYSTEMS WITH FOUR EQUAL MODULI

YVETA DANESOVA, Bratislava

1. Preliminary facts

Let a and n be integers with 0 < a < n. By a(n) denote the set of the all
numbers of the form a + sn, where s is an integer. Let f be the characteristic
function of the set a(n) on Z.

Definition. Let a vector ¢ = (v, ..., v,) with rational v/ s be given. The
system

(1) aj(nj), j=la-~-7 m, zsnls---snm

will be called an &-covering or vector-covering, abbreviated VCS, if for anyreZ
we have

-Zn vfin) =1
j=
This kind of covering systems was introduced in 1974 by § Znam [7].
Definition. A non-empty system (1) is called &-vanishing if for all re Z we
have

_Zl vfi(r)=0
Jj=
A VCS (1) with distinct congruences and with v,#0foreveryj=1,..,mis
called reduced if it does not contain any non-empty vanishing subsystem.
The following three lemmas give some basic properties of vanishing sys-
tems.
Lemma 1 [8]. If (1) is an &-vanishing system, then for all j=1,..,mand
s=1, ..., n; we have

$ ﬂexp 2risa, -0
n.
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Lemma 2 [8]. If (1) is an &-vanishing and v; # 0 for every j, then we have
n,_,=n,.

Lemma 3 [8]. Let (1) be e—vanishing withally, #0andn, <n,...<n,_, <
<n,_,=n,,thenforallj=1, .., mwe haven\n

The special case of VCS for ¢ = (1 , 1) is called disjoint covering system,
abbreviated DCS. DCS’s were studied ﬁrst by Paul Erdos [1].

Davenport, Mirski, Newman and Rad6 showed the following
interesting theorem. If (1) is a DCS, then at least two of the moduli are equal,
namely n,,_, =n,,

In 1957 Stein [5] studied the case if in a DCS there exists exactly one
couple of equal moduli. He proved:

Let(1)bea DCS.If n, <n, < ...<n,_,<n,_,=n, then we have n, = 2/
forj=1,...,m—2andn,_,=n, -—2’" 1

In 1969 S Znam solved the case in whnch there exists exactly one triple
of equal moduli and the remaining ones being distinct. He proved [6]:

If (1) is a DCS with n,<n,<...<n,_3<n,_,=n,_, =n, then the
moduli are uniquely determined and nj =2forj=1,...,m— 3, whilen, ,=
=n,,,__| =n,,,=3-2"'_3.

In 1972 8. Porubsky [4] proved the following theorem:

Let(1)beaDCS. Ifn, <n, < ...<n,_,<n,_s;=n,_,=n,_,=n,then
‘there are two possibilities:
a)m;=2for j=1,....m—4, n, y=n, ,=n, ,=n,=2""2,

b) ;=2 forj=1,....m-5, n,_ =3-2"5n, ,=..=n,=3.2""4

Theseresults are generalized for the case of VCS as follows:

Theorem 1 [7]. If (1) is a (v,, ..., v,,)-covering system with all v; # 0 in which
there exist exactly two equal moduli then (1) is a DCS and consequently n=2
forj=1,...,m—2,n,_,=n,=2"""holds.

Theorem 2 [8]. Let (1) be a reduced VCS with either one triple or two
couples of equal moduli whereas the others are distinct. Then all its moduli are
of the form n; = 3°- 2%, where a = 0 or 1 and b is nonnegative integer.

In our considerations we shall further use the following result of
Mann [2].

Consider the relation
2 ‘ Z a6 =
where g, are rational integers and ¢, are roots of unity. If the left-hand side of
(2) is irreducible i.e. if none of its proper subsums is equal to 0, then there exist

such primes p, < ... < p, < rand such p,p, ... p.-th roots of unity n,(t = 1, ..., r)
that
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§=a'ﬂ:

where ais a fixed number. If moreover, all @] s are positive and we cannot choose
p, < r, then we have s = 1 and the numbers g, coincide.
Theorem 3 [8]. If (1) is an e-covering system, the for all j = 1, ..., m we have

v, o 27sa, _ [0 if s=1,.., k-1
2, cxp ‘{1 it s=n,.

2.Lemma

In what follows we shall always suppose that a, b, ¢, d are noonnegative
integers. To prove the main result we shall need the following resuit.

Lemma 4. Let (1) be a e-vanishing system with all congruences distinct and
all v; # 0. ‘

a) If (1) contains two couples of congrences with respect to equal moduli,
say a,(ny), a,(ny) and a,,_,(n,), a,(n,), then forall j=1, ...,m

n\2’-n, and n)\2-n,

holds for some nonnegative integers b, c. _
b) If (1) contains exactly one triple of congruences with respect to equal
moduli, then forall j=1, ..., m

n\2’-n,,

holds for some nonnegative integer b.

Proof.

Recal that according to Lemma 2 the greatest modulus appears at least
twice and therefore there is no loss of generality if we suppose that one of the
couples is with respect to the greatest modulus. We shall proceed by induction
concerning the number m of congruences. Obviously we have m > 3.

2.1.

If m =3 then we have three distinct congrences a,(n), a,(n), a;(n) with
0 < a,, a,, a; < n. From the definition of the vanishing system for all re Z

3
3) Zl vf(r)=0
=
holds. The three congruences are distinct, hence they are disjoint. Thus from (3)
v, = v, = v; =0 follows. This is a contradiction with the hypotheses of our
lemma. Therefore such a vanishing system cannot exist.
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2.2

Now suppose that m > 3 and that the assertion of Lemma 4 is true for all
systems with less than m congrences. We shall distinquish two cases.

2.2.1.

Let here exist two couples of equal moduli nye {n,, ..., n, _,}, n,_, =n,in
the vanishing system. Lemma 1 gives for j = m
4) vm_,exp%‘—'+vmexp%=0

nm nm

and consequently |v,,_,| = |v,| -

e, _, = —,, then (4) yields 2 2% _ 280n_1 |\ 5ic that is a_ = an

nm nm

(mod n,,), which contradict that all the congruences are distinct.

) \ |
If w,  =n,, then (4) yields =20 o 2801 2m'<c + E) and a, =

n, n,
=a,_,+ n_2,,_, (mod n,,). Hence the conguences a,,(n,,), a,, _ ,(n,,) can be replaced
by a single congruence a,, _, (%"—') In such a way we obtain a vanishing system
having m — 1 congruences. Consider the following three cases.

a) There is a n,e{n,, ..., n,,_,} — {ny} such that nz—'" = n,. Then we obtain a
system with exactly two couples of equal moduli. Thus using the induction
assumption, for all j # m we have n;\ 2" - n, and '—121"-\ 2¢- n, and for all j we have

" .
n\2¢. =2,
AN
b) If forallj = 1, ..., m — 2 the inequality 12"—’ # n; holds, then we have only

one couple of equal moduli. Owing to Lemma 3 forallj= 1, ..., m — 2, n;\n,

and "_"'\no holds. Due to Lemma 1 we obtain
2

2mia,, 2mia,
v, - exp 4+ v,-exp——==0
ny ny:
and |v,| = |v,|. Ifv, = — v,, then a,, = a, (mod n,y) which is impossible because
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all the congruences are distinct. Therefore v,, = v,, and the congruences a,(n),

n .
a,(n,) can be replaced by a single congruence a,, 50 . Lemma 2 implies that

. n n, _n :
there exisst n;e {n, s cees Mpy_ 2, n—ﬂ} — {no} so that n, = =2 and that = < -2, which
2 2 2 2

yields n,, < n,. This is a contradiction with the assumption of our lemma.
¢ If ny = n—z"', then we have one triple of equal moduli. Owing to the

induction assumption for all n,e{n,, ..., n, _,} — {n} we have
b b n,
n\2’-n, and n)\?2 ?

2.2:2,

Let one triple of equal moduli in the vanishing system.exist. The last three
congruences with equal moduli are a,, _,(n,), a,,_,(#,,), a,(n,). Lema 1 yields

&) Y. vj-exp@i=0.
j=m-=2 n,

Because the vjs are rational, (5) is of the form (2). The only primes not exceeding
r = 3 are 2 and 3, thus according to Mann’s theorem there exist such 6-th roots
of unity 7, that

Cl=exp2ma'=a'nl’ t=m’m—lsm_2

m

where a is fixed. Therefore the equality (5) can be rewritten as follows:
vm—an—Zi'Um—lnm—l*'vmnm==0
: ki St

where the numbers 7, are from the set {exp Tm; k=1,..., 6}- Considering these

numbers 7, as vectors in the plane and using elementary geometrical considera-
tions we can easily show that their linear combination with real coefficients can
be 0 only in the following cases:

I. All n;s are parallel. Then at least two of them are equal which is
impossible, because we have supposed that the congruences are distinct.

II. The vectors n,s are edges of a directed equalilateral triangle. Then after
a suitable permutation of numbersa,, _,, 4, _,, a, we get

2 27 j
ol o ma,,,+_2_312 thus a,,,_,=a,,,+%

ny, n,

291



MGy _2M00 | W s am_z=am+%'

ny, ny,

This implies that the last three congruences in our vanishing system are

2
(©6) G+ (), Ayt T2, ay(n,)
3 3
and (5) implies v,, _, = v,,_, = v,,. Replacing the congruences (6) in the vanish-
ing system by a single congruence a,, %’ﬂ we obtain a (vy, ..., Uy _3, Up)-Va-

nishing system. Lemma 2 implies that there exist je{l, ..., m — 3} so thatn, = n?,,,

and according to Lemma 3 forallj = 1, ..., m — 3 we have n, n—”'. The assertion

of Lemma 4 follows in this case.

III. The vectors n;s are edges of an equilateral triangle in which one edge
is directed oppositely to the others. We have |v,, _,| = |v,,_,| = |v,,| however one
of these numbers — say v,, — has the sign opposite to the others. Add to the
vanishing system two new equal congruences

nm
[ I(nm+ I) = am+2(nm+2) =da, T ?(nm)

and put v,,,, =0, 0

ms

m+2 = — U,. Obviously

/(nl), j=1,...,m+2
27n'<a,,,+"—"’-)
2

. - i
isa (v, ..., 0, ,,)-vanishing system. Duetoexp——— = — expﬂ (5)
n

m nm

yields the equation

2mia,, _ 2mia,, _
V- 28Xp—=2 4 0, eXp—2=L 4 v, , ,€XP

2mam+ 2 —

0.

The vectors appearing here are edges of a directed equilateral triangle and
Up—_1 = Un_, = Un,,, thus by the same considerations as in case II. we get that
the congruences a,, _,(n,), a,_,(n,), a,., (n,) can be replaced by a single

n S ¢ -
congruence a,, _, ?") By a similar argument it can be shown that the con-

gruences a,,(n,,), (a,, . ,(n,, . ) can be replaced by a single congruence a,, (n—z'!> In
this way we obtain a new (v, ..., v,,_,, U,)-vanishing system

292



- n, n,
(7) al("l)’ soialy am—J(nm—-J)’ am—2<_§')’ am(?)'

The system (7) consist of m — 1 congruences. Due to Lemma 2 n,, _, = % Let

us distinquish 2 cases.

a) There exist je{l, ..., m — 4} such that n; = n?,,, Owing to the induction
hypothesis for all j =1, ..., m — 3 we have
n\2t-2n and m\20.Dm
/\ 2 ! 3

b) For all k =1, ..., m — 3 the inequality n, # n_3£ holds. Lemma 3 imples

n\ M foralik =1, ..., m—3and 2| ™ which is impossible.
“12 312

The proof of Lema 4 is complete.

3. The main theorem and remarks .

Now we shall generalize the result of Porubsky.

Theorem 4. Let (1) be a reduced VCS. Let one of the following possibilities
appear:

a) (1) contains exactly four congruences with respect to the same modulus

b) (1) contains one triple and one couple of equal moduli

¢) (1) contains three couples of equal moduli
whereas the others modulu are distinct in all three case.

Then all moduli are of the form n; = 37 - 2%, where a€{0, 1, 2} and b is
nonnegative integer.

Remark 1. Obviously we have m > 4. We shall proceed by induction
concerning the number m of congruences. The proof is put in parts 4 and 5. The
system is reduced, thus all v; # 0. We say that a vanishing subsystem S of VCS
is maximal (abbreviated MVY) if deleting S from VCS we get a reduced one.

Remark 2. In every reduced VCS or vanishing system the greatest two
moduli are equal. Therefore a vanishing subsystem can exist only in such a
system which contains at least two couples of equal moduli, one couple will
belong to the vanishing system and the second one will belong to the remaining
— reduced — system. Thus if there exist 2 or 3 equal moduli in a system, then
there cannot exist a vanishing subsystem and the system is reduced.
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4. The first step of induction

Put m = 4. Theorem 3 implies that

4 .
®) Y nexp_g.
i=1 n,

According to Mann’s theorem there exist such 6-th roots of unity 5, that

q,

4’,:=exp2 =a-n, t=1,2,3,4

n

m

with « fixed (as in part 2.2.2.). Thus
©) n,e{ekaTm; feoe 6}

All n/s are distinct, because we supposed that 0 < a,, a,, a5, a, < n,, are distinct.

We are choosing four distinct elements from the set (9) with 6 elements. Hence
. k,mi k,mi

among these 4 chosen elements there exist two — say exp IT exp 27, such

that |k, — k,| = 3, ky, k,e{l, ..., 6}. Let k, = k, + 3, then

k,mi kmi . k\mi
expT = expT “€Xp m = — exp—o,

therefore there exist such numbers — say 7,, n, — that , = — n, and
. . 2 *
exp 2mia, _ exp 2ria, _ exp (ﬂ + (b + 1),,-,') ,
n, n,, n,

n C
hence a, = a, + ?’" (mod n,,). Distinquish two cases.

a) If v, = v,, then replacing a,(n,,), a,(n,,) by a single congruence q, (%—'") we
get a reduced system (see Remark 2) with one couple of equal moduli. Accord-

ing to Theorem 1 the moduli n,, and "2—’" are of the from 2.

b) If v, # v,, then we unite the first two congruences so that instead of them
we obtain

n . . .

either a, (?"'), a,(n,) with the coefficients v,, v, — v, if v, > v,
n . . .

or a, (—2"1), a,(n,) with the coefficients v,, v, — v, if v, > v,.
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We have 3 equal moduli. Due to Theorem 2 the moduli »,,and n_?:,, are of the form

37.2% ae{0, 1}. Thus for m = 4 Theorem 4 is true

5. General step of induction

Suppose that m > 4 and the assertion of Theorem 4 is true for all systems
with less then m congruences.

J.d.

Let (1) be a VCS in which there exist one triple a,, _,(n,). 4, _ (n,,), a,,(n,,)
and on one couple a,(n,), a,(n,) of congruences with equal moduli 0 < a,, _,,
a,_,, a,<n,, 0<a,, a, <n,, nge{n,, ..., n,_,}. Owing to Theorem 3 we
obtain '

Y v,expﬂll: 0.
j=m-—

2 n,
Using similar considerations as in part 2.2.2. we get three possibilities.

I. The vectors corresponding to exp A, are parallel. The impossibility of

m

this case can be proved as in part 2.2.2.1.

II. The vectors corresponsing to exp 2_’291, j=m—2,m— 1, mform edges

of a directed equilateral triangle. Similarly as in part 2.2.2. II. replacing the three

n
congruences with equal moduli by a single congruence a,, _, ?"' we get a VCS

with 2 or 3 equal moduli or with 2 couples of equal moduli. If this system is
reduced then owing to Theorem 1 or Theorem 2 the assertion of Theorem 4
follows for this case. Suppose that the new system in which there are 2 couples

. ; n,\ .
of equal moduli is not reduced. Hence the new congruence a,,,_z(?"') is con-

tained in a MVS. Denote by M the set of remaining congruences of MVS. Due

n . . . .
tO Up_ 2 =Up_ | = Upys Qp_» (?”') can be rewritten in three original congruences.

Thus M U {a,, _,(n,), a,, _(n,), a,,(n,)} forms the vanishing subsystem in (1) and
this is a contradiction. Therefore the new VCS with 2 couples of equal moduli
is reduced and the assertion of Theorem 4 follows owing to Theorem 2.
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II1. The vectors corresponding to exp 3’%, j=mym—1,m — 2, are edges

of an equilateral triangle in which one edge is directed oppositely to the others.
Letv,_,=v,_, = — v,. By asimilar considerations as in part 2.2.2. III the last

three congruences can be replaced by a a,, _, (%) and a,, (n?,,,) In the case of

2 or 3 equal moduli we use Theorem 1 or 2.
a) In the case of 2 couples of equal moduli we distinquish two possibilities.

There exist n;e{n,, ..., n,, _3} — {ny} so that n; = n—z—”’ and n, # P for all k. If

the new VCS is reduced, then the assortion of Theorem 4 follows according to
Theorem 2. If the new VCS contains a vanishing subsystem, then it contain a

MVS and g, (%), a;(n;) belongs to this MVS.
Now if the congruence a,, _ 2(”—3’") belongs to the remaining reduced system

then according to Theorem 1 its moduli are of the form 2 and %ﬂ = 2*. Owing

to Lemma 3 all the moduli in the MVS divide the largest modulus in it which

isTm=3.20-1,
Now if the congruence a,, _, (%) belongs to the MVS, then we rewrite both

congruences a,, _ (%), a, ("—5"1) to the original congruences. Denote by M the

set of the remaining congruences of MVS. Due to definition of a vanishing
system for every integer r we have

0= 3 zv‘f,(r)+vmfm+|(r)—v..f,..+|(r)+ Y ufin)

t=m-— a(n)eM
and hence

(10) 0= 3% OO+ T uf0)

t=m-— afn)eM

where f,, , ,(r) is the characteristic function of the set a,, + % (n,) on Z. Thus the

original system contains a vanishing system, which is a contradiction.
b) Further we can get a system with 3 couples of equal moduli in the case

‘if there exist n;,, npe{n,, ..., n,,_,} — {ny} such that n, = ’;—"’, n, = fzﬁ We have
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m — 1 congruences here. If this system is reduced the assertion follows owing to
the induction hypothesis. In the opposite case we distenqish the case when to the
MYVS belongs the first or the second or both new congruences (in this case (10)
holds and a contradiction follows). We can get a MVS with one or two couples
of equal moduli. Similarly as in parts a. and b. we use Theorem 1, 2, Lemma 3
and Lemma 4 as well. The moduli in the MVS will be of the required form.
c) Further we can get a system with one triple and one couple of equal
moduli in the case if
n

! n .
either n, = ?’" and there exists n,e{n,, ..., n, _;} — {n,} so that n; = ?”'

n : n
or n, = ?'" and there exists n,e{n,, ..., n, _;} — {ny} so that n; = —2’5

We shall analyse this second case (the first case is similar). If the new VCS is
reduced then we have m — 1 congruences and the assertion of Theorem 4
follows from to induction hypothesis. Suppose that it is not reduced, i.e. it
containd the MVS. If both new congruences belong to the MVS then (10) holds
and a contradiction follows.

Suppose that only a,, (n—2’"> belongs to the MVS (due to Lemma 2 the

congruence a;(n,) does too) a,, _, (n—z"') belongs to the remaining reduced system.
Owing to Theorem 1 or 2 all moduli in the reduced system are of the form 3° - 2°,

ae{0, 1}. Thus % =3.2°. Due to Lemma 3 all moduli in the MVS divide

h=3a+l.2b—l'

Now suppose that only a,, _, <n?,,,> belongs to the MVS and a,, (n?'”), a;(n;

belong to the reduced system. According to Theorem 1 all moduli in the reduced
b+ 1

system are of the form 2°, n,, = 2° thus n?,,, = which is imposible. Hence a

vanishing system does not exist in this case.

5.2

Let (1) be a VCS in whic there exist one couples a,, _,(n,), a,,(n,,) and one
triple a,,(ng), a,(ny), as(n,) of congruences with equal moduli. According to
Theorem 3 we get (4) and |v,, _,| = |v,,|. Ifv,,_, = — v,,, then we get a contradic-
tion as in part 2.2.1. Ifv,, _, = v,,, then the last two congruences can be replaced
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by a single congruence a,, _, (%) as in part 2.2.1. If obtain a new system with

one triple of equal moduli, then we use Theorem 2.

Now suppose that we have a new system with 4 or with one triple and one
couple of equal moduli. The assertion follows from the induction hypothesis for
the reduced system. Otherwise we shall proceed as in part 5.1. II. and we get a
contradiction.

5.3.
Le (1) be a VCS in which there exist 4 equal moduli:2 < n, < ... <n,,_, <
<n,_;=...=n,. Due to Thorem 3 we obtain
Y vjexp@i =0.
j=m-3 n,

Using similar considerations as in part 4. we can show the existence of
2ria; 2mia,

exp —, exp such that
nm nm
2ria; 2mia, n,
exp—< = —exp . Then g; = g, + —* (mod n,,), too.
- n, 2
Letk=m—1,j=m.
a)Ifv,,_, = v,, then we get a new system with one or two couples of equal

moduli. If it is reduced, then the assertion follows according to Theorem 1 or

2. If it is not reduced, then aj(n?’") bolongs to the MVS and the second couple

of congruences with equal moduli 7,, belongs to the remaining reduced system
where the moduli are of the form 2* and n,, = 2° follows from Theorem 1. Owing

to the Lemma 3 all moduli in the MVS divide n—z’"- = 2"~'. Thus all moduli in (1)

are of the required form.
b) If v, # v,_, then replace a,(n,), a, _,(n,)
either by a, % » ay(n,,) with the coefficients v,,_,, v,, — v,,_, if v, > U _1

n s . .
or by a, (?"'), @, 1(n,) with the coefficients v,,, v,,_, — v,, if v,, <v,,_,.

If there is one triple of equal moduli in the new VCS then the assertion follows
from Theorem 2. If we get a VCS with one triple and one couple of equal moduli
then the moduli are of the required form, according to 5.1., in the case of the
reduced system. ’
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n
Now suppose that the new system is not reduced. Then a,, (;’") belongs to

the MVS. Owing to Theorem 2 all moduli in the remaining reduced system are
of the form 3“-2° and n,, = 3°- 2*. Due to Lemma 3 all moduli in the MVS

divide "3 —30.20-1,

54.

Let (1) be a VCS in which there exist three couples of equal moduli. Due
to Theorem 3 we obtain (4) and then |v,, _,| = |v,,| holds. If v,,_, = — v,,, then
we get a contradiction as in part 2.2.1. If v, _, = v,,, then the last two congruen-

ces can be replaced by single congruence a,, _, %’ﬂ as in part 2.2.1. We get a

system with 2 or 3 equal moduli or with one triple and one couple of equal
moduli. If it is reduced system then the moduli are of the required form
according to Theorem 2 or the induction hypothesis. If it is not a reduced system

then we get a contradiction as in part 5.1. II. Thus a vanishing system does not
exist in this case.

The proof of Theorem 4 is complete.
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PE3FOME

BEKTOPHO-ITOKPbIBAIOIIUE CUCTEMbI C YEMbIPbM A
OJWHAKOBBIMU MOAVJIAMHU

HMBeta [lanemosa, BpaTucnasa

B naHHO#M cTaThe pacCMaTpPBLIBAIOTCSA CBOHCTBA HEKOTOPBIX THIIOB TOYHO H BEKTOPHO-TIOKPBI-
BarouMx cucteM. HoBbIM pe3ybTaToOM ABJIAETCA TeOpeMa 06 BEKTOPHO-MOKPBIBAIOILEH CHCTEME
C 4eThIPbMS ONMHAKOBLIME MoaynsiMH. Bee Monymnu Buna 3°- 2%, a€{0, 1, 2}, be Z, b > 0.

SUHRN
VEKTOROVO-POKRYVAJUCE SUSTAVY SO STYRMI ROVNAKYMI MODULMI
Yveta DaneSova, Bratislava
V ¢lanku uvadzame niektoré vlastnosti presne a vektorovo-pokryvajucich sistav. Novym

vysledkom je veta o vektorovo-pokryvajicej siistave so $tyrmi rovnakymi modulmi. Moduly v tejto
sustave maji tvar 37 - 2%, a€{0, 1, 2}, b je nejaké celé nezaporné dislo.
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