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REMARKS ON SOME PROBLEMS IN THE ELEMENTARY
THEORY OF NUMBERS

ANDRZEJ MAKOWSKI, Warsaw

Abstract. Some problems in the elementary theory of numbers from the
collections of Erdos—Graham and Guy are solved or commented. They con-
cern the sum of divisors, powerful numbers, sums of squares and other topics.

The purpose of the present paper is to solve and to comment some problems
stated in [1] and [3]. Problems will be quoted in italics and those from [3] followd
by the number of section in which tiicy occur.

(B11). Are there three distinct numbers I, m, n such that lo(l) = mo(m) =
= no(n)?

We show that from any system of s different Mersenne primes one can
obtain s different numbers n with the same value of nao(n).

Denote by M, the number 2 — 1. Let 4 be the product of s different
Mersenne primes:

A= .131 M, and n, = 2"’"'A/ij(1 <Jj<s).

Then mo(n) = 2"~ IA/Alw,- M, [12%2% = 2y,
=t

which is independent of j.

This argument is a simple generalization of observation of Guy concerning
the case s = 2.

(B16). Erdds denotes by u{® < uP < ... the integers all of whose prime factors
have exponents > k. He asks if the equation u®) , — u® = 1 has infinitely many
solutions which do not come from Pell equations x** — dy* = + 1. What is the
largest r such that there are u?, ..., u? in arithmetic progression? Are there
infinitely many such r-tuples? Erdids conjectures that there are infinitely many
triples of u® in arithmetic progression, but no quadruples, and no triples of u*.
Also that U + U = U has infinitely many solutions, but that ¥ + u® = uf?
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has at most a finite number. More generally that the sum of k — 2 of the u® is at
most finitely many cases equal to u® .

Let U® = (e, .

The equation 7°x? — 3%y = 1 has a solution {x, y) = (376 766, 1 342879).
From the theory of quadratic equation with two unknowns (cf. [5], p. 57) it
follows that it has infinitely many solutions in positive integers x, y. The
numbers 3%y? and 7°x? are terms of U difering by 1 (hence consecutive) and
both are not squares. Therefore the answer to the first question is in the
affirmative.

We observe that the numbers (2 ' — 1)%, 2¢(2*+' — 1)k and (2K*' — 1)k *!
arein A. P. and belong to U®. Assume that a,, a,, ..., a, are s consecutive terms
of A. P. with difference d, which belong to U®). Then a,(a, + d)\, a,(a, + dY, ...,
a(a, + d), (a,+ d)**"' form A.P. consisting of s + 1 terms belonging to U®.
Thus there exist arbitrarily long finite arithmetic progressions consisting of
different terms of U®.

We have identity

dd@d+d'"+.. . +a+ Y +dT'@+I"+ . +a+ D)+
+..+dt@+d "+ ta+)=d@+d " +...+ta+ D).

Hence u{Y + 4 + ... + u¥ = u3 has infinitely many solutions for every k and
L

Problems on arithmetic progressions and sums of terms of U* become
difficult when we require that the considered numbers are relatively prime.
(B48)David Silverman noticed that if p, is the n™ prime, then

7 Pnt 1

n=1p, — 1
is an integer form = 1,2, 3, 4 and 8, and asked whether it is ever again an integer.
This problem can be generalized as follows: Determine positive integers n

for which o(n) is divisible by ¢(n), where ¢ is the Euler totient function and o
— the sum of divisors. Then the problem of Silverman concerns the numbers

n=[]np.

i=1

We observe that
o(n) = 4¢(n) (1)

if 2n is a perfect number greater than 6.
In fact, we have n = 22~2(2° — 1), where 2 — 1 is a prime number and p > 3
(cf. [2], p. 240), hence o(n) = (2~ ' — 1) - 2? = 4 . 2 ~3(2» — 2 = 4¢(n). Unfor-
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tunately, the converse is not true as (1) is satisfied for example by 3-5-7,
2-11-19,3-5-11-19,3-7-11-17-19,3-7-11-13-29.

However, if n is even and satisfies (1), then 2n is either perfect or abundant
(i.e. o(2n) > 4n).

To prove this we put n = 2"~ 'm, where r > 2, m odd. Then

o(n) = (2 — 1)a(m), o2n) = o(2'm) = (2'*' — 1) o(m) =
= 2"o(m) + (2" — 1) o(m) = 2" a(m) + o(n) = 2" o(m) + 4¢(n) =
=2'0(m) + 49(2" " 'm) = 2'o(m) + 4 - 2" *p(m) =
=2(o(m) + p(m)) = 2""'m = 4n.

The last inequality follows from the inequality o(m) + @(m) = 2m (cf. [4]),
whore equality holds only for m equal to 1 or a prime number.

Therefore, as (1) is not satisfied by n = 2°, we may assert that an even
number n = 2"~ 'm (m odd) satisfying (1) is a half of a perfect number if and only
if m is a prime number. .

If n = 2""?m (p > 3, m odd) satisfies (1) and m is prime, them m = 27 — 1.
This follows from the equality (2~ '— 1) (m+ 1) =4-2""*(m — 1).

If n is odd and satisfies (1), then 2n is abudant. For, o(2n) = 3o(n) =
= 20(n) + 4¢(n) > 2(o(n) + @(n)) = 4n. The above arguments show also that
the inequality o(n) > 4¢(n) implies that 2z is abundant.:

If for some integer a we have o(n) = a@(n) and for some prime number p
p+l=a+
p—1 p—1
= b(np). In particular, if 3 ¥ n and @(n)|o(n), then @(3n)|c(3n).

(C 20) Paul Turdn conjectures that all positive integers can be represented as
the sum of at most five pairwise coprime squares. Are all sufficiently large integers
representable as the sum of exactly five pairwise coprime squares?

not dividing » the number b = a

is integer, then o(np) =

From consideration modulo 3 of the equation 3k = x? + x3 + xJ + x3 + x}
it follows that for some i, j such that 1 < i <j < 5 we have 3|x;, 3|x;. Hence
the answer to the last question is in the negative.

To disprove Tran’s conjecture consider the numbers n = 2% - 3 . (8m + 5)
with k > 2. We have n = 4* [8(3m + 1) + 7], hence n is not the sum of less than
four squares. Since these numbers are divisible by 3, they are not the sums of
five coprime squares. From consideration modulo 8 it follows that # is not the
sum of four coprime squares.

(F 10) The Lehmers have shown that the smallest solution of 2" = 3 (mod n)
isn=4700063497 = 19 - 47 - 5263 229. Of course n has to be composite, and
it is not divisible by any of 2, 3,7, 17, 31, 41, 43, 73, ... What are these primes?
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We show that no prime p of the from 24k + 7 and 24k + 11 is a divisor of n
satisfying 2" = 3 (mod n). In fact, n is odd: n = 2k + 1. Hence 2**' = 3 (mod p)

e+t
and (%)=<§) Let ee{+1, — 1}. We have (g)=e, (—1)2( - _gand %

-(34k+9ei25—1)§-§(g+1) (mod 2). For prime number p =24k +

3 )]
+ 9¢ + 2¢ we have (we consider either lower or upper sings) (;) =(—1)y :

=+1=— (%), a contradiction.

([3],‘ p. 88) Let m and n be positive integers and consider the two sets

{k(m —k):1<k< %} and {l(n —1:1<i< g} Can one estimate the number

of integers common to both? Is this number unbounded? It should certainly be less
than (mn)® for every € > 9 if mn is sufficiently large.
We show below that the answer to the second question is in the affirmative.
Let f(m, n) be the number of integers common to the sets defined in the
problem and d(k) — the number of divisors of k. We show that

fR@a—-1),2a+1)= %d(a). 2)

Let a = A,4, be any representation of a as the product of two factors

(A, < A,). Evidently there are at least % d(a) such representations. Each of them

determines a common element of the two sets constructed for m = 2(a — 1) and
n=2(a+ 1). This element is equal to (42 — 1)(43—1). In fact, we have
A, + DA, —2)+ A4, — DA, + 1) =2(a@—-1),4, + )4, + 1) +
+ @ - DA, —)=2@@+ 1), A+ DA, —1)-(4 — )4, +1) =
= (A = 1)(42—=1] = (4, + 1)(4, + 1) - (4, — 1)(4, — 1). Further, the num-
bers (4% — 1)(43 — 1) corresponding to different representations a = 4,4, are
different. Suppose that (43 —1)(43—1) = (BS—1)(B:—1), a= A4, =
= B\B,. Then A} + A2 = B!+ B3, A|A, = B,B,, (4, + A)* = (B, + By,
A, + A, = B, + B,. ‘
The sum and product of two numbers determine them. The proof of (2) is
completedd.

Fora = pyp, ... p, > ay(¢) (a is the product of consecutive primes) we have
the inequality
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(1 — g)logalog?
logloga

logd(a) >

(cf. [2], p. 263). For such a we obtain

| (=elog2
fQR(a—-1),2(a+1)) > Ea ogioge. |
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PE3FOME
3AMEYAHHS O HEKOTOPBIX ITPOBJIEMAX 3JIEMEHTAPHOY TEOPUU YUCEJ
AHapxe# MonkoBcku, Bapuiasa

TIpuBOAATCSA PELLIEHNS HIIK KOMMEHTAaPHH K HECKOJIbKMM Npo6eMaM 3/1IeMEHTapHO# TeOpHH
4Hces, TIOCTaBJIEHHBIM B KHHrax Opaéma—I paxeMa # I'as. OTH npobieMMbI KacaloTCsi CyMMBI
JieJIATEJIeH YMCceNl, ABJISIOLIMXCH MPON3BEICHHAMH CTENEHEH NMPOCTBIX YHCEJ, CYMMBI KBaIpaToOB K
JIPYTHX BOTIPOCOB.

SUHRN

POZNAMKY K NIEKTORYM
PROBLEMOM Z ELEMENTARNEJ TEORIE CiSEL

Andrzej Makowski, VarSava
V praci s uvedené rieSenia alebo poznamky k niektorym problemom z knihy Erdésa a
Grahama a z knihy od Gaya. Uvedené problémy sa dotykajui sumy delitelov, sumy §tvorcov ¢isel,

ktorych prvodiselné delitele maji exponenty vicie ako zadané ¢islo atd.
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